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Abstract: Leaving is usually an option for individuals if they cannot tolerate their defective partners. In a two-
player game, when a player chooses to leave, both she and her opponent become single players. However, in a
multi-player game, the samedecisionmayhavedi�erent consequences depending onwhether group cohesion
exists. Playerswho choose not to leavewould still be united together rather than be separated into singletons if
there is cohesion among them. Considering this di�erence, we study two leaving mechanisms in public goods
games. In the first mechanism, every player would be single once any of the group members leaves. In the
second, we assume group cohesion exists that members who don’t leave form a union. In our model, each
player adopts a trigger strategy characterized by a threshold: she leaves if the number of defectors in her group
exceeds the threshold. We find that under both mechanisms, when the expected lifespan of individuals is long
enough, cooperators with zero tolerance toward defection succeed in the evolution. Moreover, when cohesion
exists in groups, cooperation is better promotedbecause the cooperators haveahigher chance toplay together.
That is, group cohesion facilitates positive assortment and therefore promotes cooperation.

Keywords: Group cohesion, Public goods game, Cooperation emergence, Conditional Dissociation, Positive
assortment

Introduction

1.1 Cooperation is indispensable for a society to form and persist. However, cheaters may earn higher fitness and
beat the cooperators in the evolution, and hence cooperation seems impossible in many scenarios resembling
Prisoner’s Dilemma. To explain the ubiquitousness of cooperation and the existence of society, several mecha-
nisms promoting cooperation have been proposed and studied in-depth (Nowak 2006; Perc et al. 2017). These
mechanismsusually shareacommoncharacter,which is termedaspositiveassortment (Doebeli&Hauert 2005;
Eshel & Cavalli-Sforza 1982; Fletcher & Doebeli 2006, 2009) that allows cooperators to preferentially interact
among themselves.

1.2 Moreover, it has been shown that when players are given the option to leave their current partners and regroup
withothers, cooperation is alsopromoted (Aktipis 2004; Fujiwara-Greve&Okuno-Fujiwara2009; Izquierdoet al.
2014, 2010; Joyce et al. 2006; Qu et al. 2016; Schuessler 1989; Vainstein et al. 2007). This topic is of interest to
researchers in di�erent fields (Fujiwara-Greve & Okuno-Fujiwara 2009), because it is easy to think of various
examples where people dissolve di�erent kinds of relationships: workers resign from companies and find new
jobs; people migrate from one country to another; and couples may divorce and re-marry.
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1.3 Most of the previous studies concerning this topic focus on the Prisoner’s Dilemma game. Since this is a two-
player game, it is unsuitable for situations where people form multilateral relationships. In bilateral relation-
ships, if one individual leaves, it is natural to assume that the other individual would be single. However, it
may not be the case for multilateral relationships. For example, manymusic bands including The Beatles, Pink
Floyd, andXiaoHuDui etc., breakup completely a�er a singlemember’s leaving. On theother hand, just like the
resignation and migration issues we just mentioned above, companies or countries seldom collapse because
of a few individuals’ leaving. Except for the group sizes, a key di�erence lies in whether cohesion exists or not.

1.4 Cohesiveness is an important element that influences a group’s performance. It is studied extensively in various
domains, including psychology, organization behavior, sport, and education, etc.(Evans & Dion 1991; Mullen
& Copper 1995). In his pioneering work, Festinger (1950) defines group cohesiveness as “the resultant forces
which are acting on the members to stay in a group”. This definition has been accepted by most subsequent
researchers (Mullen & Copper 1995) notwithstanding some further refinements and modifications were pro-
posed (Carron & Brawley 2000). In general, it is believed that high levels of group cohesion are advantageous
or associated with better group performance (Gully et al. 1995). However, some empirical observations of the
relation turn out to be negative (Høigaard et al. 2006). This contradiction arises becausewe are not clear about
how cohesiveness a�ects performance (Paskevich et al. 1999). To better understand this question from amicro
perspective, we apply evolutionary game theory to study the impact of group cohesion on cooperation.

1.5 We extend the conditional dissociationmodel (Izquierdo et al. 2014, 2010; Qu et al. 2016) to public goods game
and investigate two dissociation mechanisms corresponding to the above scenarios. Under the first mecha-
nism, there is no cohesion. For a group of players, everyone would be single and enter the matching pool if
anyone in the group dies or chooses to leave. So all players are single in the matching pool, and they would
be rematched randomly to continue the game. Under the second mechanism, we assume the existence of co-
hesion. For a group of players, while those who leave would be single, the remaining ones would be united
together rather than be single. So some players are single and the others are in unions in the matching pool.
The rematching process is conducted in the following way. Given their cohesion, single players would first join
existing unions (wherein the number of single players is the di�erence of the group size and the union size).
The remaining single players are then randomly regrouped. It is worth pointing out that since all the unions
can always be filled with single members, they would not be regrouped with other unions.

1.6 For each player, since leaving is also an option, her strategy should include at least two parts: the cooperation
part and the leaving part. Despite the dissociation and rematching processes are di�erent under the twomech-
anisms, players’ strategy sets are the same in our model. For each individual, the cooperation part is fixed,
i.e., she either always cooperates or always defects, regardless of histories and opponents she encounters. The
leaving part is a trigger strategy that is characterized by a threshold. When the number of defectors in her group
exceeds the threshold, she leaves. So the threshold represents a player’s tolerance level towards defectors. In
the Prisoner’s Dilemma models of dissociation, it is unsuitable to define this tolerance level since there is at
most one defective co-player. Thus, ourmultiplayer-gamemodel also facilitates the investigation of the coevo-
lution of cooperation and tolerance.

1.7 We have twomain findings.

1.8 First, when the expected lifespan of the individuals is long enough, cooperators aremore likely to dominate the
population under both dissociation mechanisms. This result is similar to those obtained from the Prisoner’s
Dilemma gamemodels (Izquierdo et al. 2014, 2010; Qu et al. 2016). Our results reveal that when leaving is avail-
able, thewinning cooperators always have zero tolerance towarddefectors, which is significantly di�erent from
the previous conclusion thatmoderate tolerance benefits cooperation (Chen et al. 2009; Szolnoki & Chen 2015).
In these studies, some more sophisticated strategies and population structures are introduced. The tolerance
level of a player not only a�ects her own choice of strategies but also the structure of the underlining popula-
tions. As a consequence, the systemsmeet a highest assortativity coe�icient with moderate tolerance level.

1.9 Second, cooperation arises more quickly and in larger-scale when group cohesion exists. Roughly speaking,
This result can also be attributed to the positive assortment e�ect. Since the winning cooperators are always
intolerant, comparing how these twomechanisms promote cooperation is equivalent to comparing how intol-
erant cooperatorsbehaveunder these twomechanisms. For the samestrategydistributions, there shouldbean
equal number of players in the matching pool under both mechanisms. In particular, the number of intolerant
cooperators in thematching pool, all of whom are single, is almost equal under bothmechanisms. Since some
players are in unions undermechanism II, there are less single players in thematching pool. With equal intoler-
ant cooperators but less single players, the probability that an intolerant cooperator meets another intolerant
cooperator is larger under mechanism II, implying that the positive assortment e�ect is more significant.
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Literature review

1.10 Our research is mostly related to the study of conditional dissociationmechanisms. We use “conditional disso-
ciation” to emphasize that players’ leaving decisions are conditional on their opponents’ actions. Other similar
terms include exit (Schuessler 1989), walk away (Aktipis 2004), mobility (Vainstein et al. 2007), voluntarily sepa-
rable (Fujiwara-Greve & Okuno-Fujiwara 2009), out-for-tat (Hayashi 1993), migration (Li & Ye 2018), and partner
switch (Wubs et al. 2016) etc.

1.11 In some studies, individuals are assumed to be located on spatial lattices of periodic boundaries (Aktipis 2004;
Chen et al. 2015; Li & Ye 2018; Vainstein et al. 2007). Di�erent migration rules have been investigated. For ex-
ample, the individualswithwalk-away strategy alwaysmovewith randomdirectionswhen encountering defec-
tors (Aktipis 2004); the success-driven individuals move towards higher payo� locations (Helbing & Yu 2009);
aspiration-driven individuals move to neighbors that bring them greater satisfaction (Chen et al. 2015) and the
always-move individuals leave their current locations definitely and aimlessly.

1.12 As have been shown in many works, population structures have a significant impact on the evolution of co-
operation (Rong et al. 2013; Szabó & Fath 2007; Van Veelen et al. 2012). To better understand how dissociation
promotes cooperation, some works consider well-mixed populations in order to rule out the e�ect of popu-
lation structures (Fujiwara-Greve & Okuno-Fujiwara 2009; Izquierdo et al. 2014, 2010; Qu et al. 2016). In these
works, when a player leaves her current opponent, both of them would enter a common matching pool. All
the players in thematching pool would be randomlymatched to continue interactingwith others and receiving
payo�s. Theseworks find that the intolerant cooperative strategy is successful when players’ expected lifespan
is long enough.

1.13 Previousworks on dissociationmostly focus on two-playermodels based on the Prisoner’s Dilemma game and
relatively fewworks consider public goodsmulti-player interactions. In the works of (Hauert et al. 2002; Sasaki
et al. 2007; Semmann et al. 2003), it is not everybody’s obligation to participate in a game. Besides cooperating
and defecting, the so-called loner strategy is introduced. In each round of interactions, loner players do not
play with anyone but leave the game and receive a fixed baseline payo� (which is larger than zero but smaller
than the fully cooperative payo�). Despite the fact that the participation in an interaction is optional, this dis-
sociation is unconditional, i.e., players have to leave their current opponents a�er each interaction.

1.14 The rest of this paper is organized as follows. Wedescribe themodel in Section 2, present the simulation results
in Section 3, provide the analytical results in Section 4, and thenwe conclude this paper in Section 5with some
further discussions.

Themodel

2.1 We consider a population ofN individuals who are grouped randomly to play public goods games. Each group
consists ofG players (G < N andG can divideN ). At the beginning of the game, each individual is endowed
with one unit of wealth, and she has two options, either to cooperate (C) or to defect (D). A cooperator con-
tributes one unit of her private wealth to the public pool, while a defector does not contribute. All the wealth in
the public pool is multiplied by amultiplication factor r (1 < r < G) and then equally shared by all the players
in that group. Let ai denote player i’s action in a single game: ai = 1 if she cooperates, and ai = 0 otherwise.
In summary, in a single round of the game, the payo� for player i is

ui =
r

G
· ΣGj=1aj + (1− ai).

It is easy to see that defection is a dominant strategy. Therefore, all players defect is the only Nash equilibrium
and the only NSS (Neutrally Stable Strategy, which is a refinement of Nash equilibrium). Nevertheless, this is
unsatisfactory, because all players cooperate is the desirable outcome.

2.2 Fortunately, if the public goods game is repeated infinitely, then cooperation is reachable. This classical result
is usually referred to as the folk theorem (Fudenberg & Maskin 1986; Rubinstein 1979). In the classical frame-
work, the termination of the repeated games is exogenously determined. In this work, we study the conditional
dissociation mechanism, under which players are allowed to leave their current opponents so the repeated
games among them is terminated (Izquierdo et al. 2014, 2010; Qu et al. 2016). Once a player chooses to leave,
she and her opponents enter the matching pool. All players in the matching pool will be rematched randomly
to continue the game, until someone chooses to leave. This process is infinitely repeated. It is assumed that no
player chooses to leave if all her opponents playC in the current round. Therefore, it is possible that a group of
players consecutively play for infinitelymany rounds. However, if anyone playsD, then the groupmay dismiss.
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Figure 1: An illustration of the two dissociationmechanisms.

2.3 In previousworks, the game studied is the Prisoner’s Dilemma game (Izquierdo et al. 2014, 2010; Qu et al. 2016).
Since it is a two-person game, a single player’s leaving naturally leads both players to become single. In multi-
player games like the public goods one studied here, the situation may be di�erent. In some cases, all the
members of a group become single, while in some other cases, only those leaving become single and the le�
ones are still united together. Corresponding to these two di�erent cases, we consider two dissociation mech-
anisms.

2.4 Under the first mechanism, there is no cohesiveness among group members. For a group of players involved
in the repeated games, if anyone chooses to leave, all the members of this group become single and enter the
matching pool. This is similar to the two-player game case, and all players in thematching pool are single. They
are randomly regrouped to continue the subsequent rounds of the repeated game.

2.5 Under the second mechanism, there exists cohesiveness among group members. For the same group of play-
ers, only those choosing to leave would be single but the remaining ones would be united together. For con-
venience, we call them a union. So in the matching pool, single players and unions of various sizes may co-
exist. The matching process is a little more complex under this mechanism. In our main text, we assume
unions are first grouped with single players. Some general discussions are made in the Appendix A. We firstly
fill the unions with single players and then randomly regroup the rest of single players. For a union of size
k, k ∈ {2, · · · , N−1},G−k single players are randomly chosen from thematching pool. So they form a group
and leave thematching pool. Thenwe continue to another union until only single players exist in thematching
pool. At last all these single players are re-matched randomly to form groups to play games.1

2.6 The details of these two dissociation mechanisms are illustrated in Figure 1.

2.7 We remark that, to simplify the analysis, there is no cost for thematching process. Players in thematching pool
do not lose any wealth and the matching process is fast enough so that players do not pay any waiting cost to
reenter the game.

2.8 Players’ strategies include two parts: the cooperation part indicates whether to cooperate or defect in the cur-
rent round of games; and the leaving part indicates her reactions toward her groupmembers’ defection. In our
model, for each individual, the cooperation part is fixed. That is, each player either always cooperates or al-
ways defects; she never changes actions in her life. The leaving part is a trigger strategy. To be specific, player
i’s strategy is expressed as a tuple (pi, qi) ∈ Σ = {C,D}×{0, 1, . . . , G−1} (so there are 2Gdi�erent strategies
in total), where pi = C if the player cooperates and pi = D otherwise, and qi is the number of defective oppo-
nents a player can tolerate, i.e., if there are more than qi defectors among her opponents, then player i leaves.
Players are simple-minded in that they do not change their strategies during their lifetimes. Their strategies do
not depend on any tags or reputations and the memory size is one. So the requirement for players’ cognitive
abilities is rather low.

1When unions exist in the matching pool, there are also other matching procedures to regroup the agents.
In Appendix A, we investigate another re-matching process where unions would be regrouped with unions and
we obtain similar conclusions (see Figure 4).
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2.9 The selection dynamic is similar to the Moran process. A�er each round of interaction, every individual dies
with probability ξ. Hence, the lifespan of an individual is geometrically distributed with mean value α = 1

ξ .
The death of an individual makes her group dismiss and the groupmembers enter thematching pool. Without
cohesiveness, under the firstmechanism, if oneplayerdies, all her survivinggroup-mateswouldbecomesingle.
With cohesiveness, under the secondmechanism, if one player dies, all her surviving group-mates who do not
leavewould formaunion. Each individualwhodies is replacedby anewentrant, so thepopulation size remains
unchanged. The newentrantswould be single players and put into thematching pool. So in thematching pool,
the total number of players is always divisible by G. The strategy of the new entrant is determined either by
mutationorby imitation. Ifmutationhappens,whichoccurswith a fixedprobability ofµ, thenewentrantwould
randomly choose one of the 2G strategies. Otherwise, she imitates one of the surviving individuals’ strategies,
and the probability that one individual’s strategy is imitated is proportional to her fitness, which is defined as

fi = wsi

where wi is the wealth player i has gained since she was born and s is the selection strength of the dynamics.
When s = 0, 1 and∞, it equals the neutral dri�, standard Moran process and best response dynamics respec-
tively.

2.10 The above evolution dynamics defines a finite, irreducible, and aperiodic Markov chain. So a unique stationary
distribution exists.2

Simulation Results

3.1 We run two series of simulations to investigate how the twodi�erent dissociationmechanisms a�ect the evolu-
tionof cooperation in thepublic goods game.3 From (Izquierdo et al. 2014, 2010), weknow theexpected lifespan
of individuals determines whether conditional dissociation promotes cooperation. In this paper, we compare
the two mechanisms for di�erent lifespans too. In Figure 2, we present how the strategy distributions evolve
and the main findings are summarized as follows.

i Longer lifespans promote cooperation.
It can be seen from Figure 2 that, both dissociationmechanisms promote cooperation as the expected lifes-
pan increases. When the expected lifespanof the agents is 20, defectors dominate the population and coop-
erators can hardly survive under these two mechanisms. When the expected lifespan is 1000, cooperators
dominate the population for both mechanisms. In the study of repeated games, while the folk’s theorem
tells us that cooperation may arise if the discount factor (the surviving rate here) is high enough, it doesn’t
explain how it arises.The above results show that conditional dissociation is an e�ective way to further pro-
mote the emergence of cooperation in repeated games.

ii Group cohesion results in higher cooperation level.
Comparing the top four panels with the bottomones in Figure 2, we find that cooperation ismore abundant
when cohesion exists. The most significant di�erence is observed when the expected lifespan is 200: with
all other parameters fixed, more than half of the population are cooperators when cohesion exists while
only about 30 percent are cooperators when there is no cohesion. This is due to the higher level of positive
assortment among intolerant cooperators under mechanism II. As intolerant cooperators almost always
appear in thematching pool, themore defectors in unions, themore likely that those intolerant cooperators
be grouped with each other.

iii When cooperators dominate the population, strategy (C, 0) is most abundant.
Just as shown in (Izquierdo et al. 2010; Qu et al. 2016), it is not surprising that themost intolerant strategies
take the lead in the simulation when the players’ expected lifespan is long enough. It is interesting that the
flourish of strategy (C, 0) always comes a�er the more tolerant strategy (C, 1).
As there are initially equal numbers of defectors and cooperators and the death rate of players is low, there
are about half defectors a�er 1000 rounds of games. These defectors aremainly in thematching pool, mak-
ing it hard to find a group of cooperators. Apparently, for the same strategy distributions, themore tolerant
strategies can form stable groups earlier at the cost of being exploited. Compared with returning to the
2This does not mean the dynamics has a unique stable state corresponding to this stationary distribution.
3In our main text, we set s = 1, G = 5, r = 3, N = 200 for all the simulations, and outcomes for other

parameters are presented in Appendix E (see Figure 9-12). And for di�erent initial strategy distributions, the
results are presented in Appendix D (see Figure 7 and 8).
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Figure 2: The evolution of strategies in 107 rounds. Thehorizontal bar chart in the northwest of eachpanel is the
strategy distribution at the final round and the data in bracket is the standard deviation. The top four panels are
the outcomes ofmechanism I that there is no cohesion and the bottom four are formechanism II that cohesion
exists. From le� to right, theexpected lifespansare20, 100, 200and 1000, respectively. Eachvalue is theaverage
of 100 simulations. Parameters are: multiplication factor r = 3, group sizeG = 5, population sizeN = 200,
mutation rate µ = 0.05, selection strength s = 1, which corresponds to the standard Moran process.

matching pool andmeeting other players, to tolerate a defector pays o�. As the number of (C, 1) strategists
increases, the (C, 0) strategists gain advantage and excess the (C, 1) strategists.

iv When defectors dominate the population, the most successful strategy is (D, 3).
While cooperators can hardly survive under these scenarios, mutations change some individuals into coop-
erators occasionally. So cooperators aremainlymutants and first appear in thematching pool. For a player
to gainmore, she should spendmore time to playwith cooperators. In practice, a successful defector needs
to do two things. Firstly, she should leave her group immediately if all of her groupmembers are defectors.
If a defector is too tolerant e.g. (D, 4), she has a smaller chance to enter the matching pool, and thus less
likely to meet with cooperators. Secondly, once having encountered even one cooperator, a player should
not leave because cooperators are rare, it is almost impossible to find a group containing two ormore coop-
erators. From this point of view, (D, 0), (D, 1), and (D, 2) strategies are too intolerant. On the other hand,
unless the mutant strategy is (C, 4), almost no player can play with the same cooperator in the next round.
When it happens, a group of one (C, 4) and three (D, 3) or (D, 4) players can last for some rounds. So the
(D, 3) strategy gains its advantage over (D, 0), (D, 1), and (D, 2)when they meet with (C, 4) players. This
conjecture is justified in Figure 5, where strategy (C, 4) is made unavailable for players.

In the sequel we will provide some theoretical analyses to ensure the robustness andmore importantly to bet-
ter understand the dissociation mechanisms. In these analyses, we usually consider only two strategies: one
is strategy (C, 0) and the other is a defective strategy. This would simplify the matching problem in the pool
significantly as the strategy distribution would be a Binomial distribution. However, for the last two findings, a
theoretical analysis becomes extremely harder. This is because when we do that, at least three or more strate-
gies should be considered, which lead to multiple equations. In addition to that, with more strategies also
means the strategy distributions in thematching pool become aMultinomial distributionwhich alsomakes the
problem evenmore di�icult.
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Analytical results

4.1 Although some simplifications have been operated, it is still hard to make a complete analysis of the evolution
dynamics due to the complexity of the leaving and rematching processes. In this section we are going to prove
the following three statements:

1. only defective strategies can be NSS;

2. longer expected lifespan favors cooperation;

3. group cohesion promotes cooperation.

Only defective strategies can be NSS

4.2 It is easy to see that no strategy is an evolutionarily stable strategy as each cooperative (or defective) strategy is
neutrally against another cooperative (ordefective) strategy. Sowe justneed todiscusswhetherneutrally stable
strategies (NSS) exist. According to Weibull (1997)’s definition, a strategy is an NSS if when the frequency of the
invading strategies is small enough, the invaders could not earn greater payo�s than that of the incumbent
strategy.

4.3 Before we continue on our analysis, we recall that unlike Fujiwara-Greve & Okuno-Fujiwara (2009) and Rob &
Yang (2010)whose analyses are conducted on the full strategy spaces of the repeated prisoner’s dilemmagame,
the strategy space considered here is rather simple and limited. In our paper, the strategy space is defined as
Σ = {C,D} × {0, 1, . . . , G− 1}, which contains nomixed strategies. We also assume continuous populations
in the following to simplify our analysis. We first prove that all defective strategies are NSSs and then that no
cooperative strategy is NSS.

4.4 Firstly, when the incumbent strategy is a defective strategy and the proportion of invading cooperative strategy
is small enough, the expected payo�s of invading cooperators would be about r

Gξ as they are almost always
playing games with defectors, while the expected payo�s of defectors are 1

ξ . Since
r
Gξ <

1
ξ , and each defective

strategy is neutral to each other, we see that the focal defective strategy is an NSS.

4.5 Secondly, when the incumbent strategy is a cooperative strategy and the proportion of invading defective strat-
egy is small enough, then the payo�s to the invading defectors would be about r(G−1)

Gξ + 1
ξ , which is larger than

r
ξ , the payo�s of cooperators. So the invading defectors get more than the incumbent cooperators. That is, no
cooperative strategy could be an NSS.

Longer Expected lifespan favors cooperation

4.6 In this part, for simplicity,we consider the case thatnocohesionexists andassume that the cooperative strategy
is (C, 0) and the defective strategy is any one but (D, 4).

4.7 Since no cohesion exists, and defectors could not endure a groupwith no cooperators, at the beginning of each
round, all the defectors appear in thematching pool as single players. For a cooperator, shemay either appear
in the matching pool as a single player or stay in her group with other G − 1 cooperators. Let xg denote the
proportion of cooperators who are in groups, xs those in the pool and y the proportion of defectors (xs + xg +
y = 1). Then the mean-field equations for xg , xs and y in the large populations are:

ẋg =

(
xg +

xGs
(xs + y)G−1

)
(1− ξ)G − xg

ẋs =

(
xg +

xGs
(xs + y)G−1

)
(1− ξ − (1− ξ)G) + xs

(
1−

(
xs

xs + y

)G−1
)

(1− ξ) +
ξ · πc
πc + πd

− xs

ẏ = y(1− ξ) +
ξ · πd
πc + πd

− y,

(1)

where πc and πd are the total payo�s of cooperators and defectors respectively. A more detailed explanation
of the above equations are given in Appendix F, here we only briefly introduce how to get ẋg . In each round
of games, some single cooperators might form new cooperative groups. And the proportion of players in the
newly formed cooperative groups is xG

s

(xs+y)G−1 . So the total proportion of cooperators in cooperative groups is
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Figure 3: The proportions of cooperators at the stable rest states decrease for increasing ξs. Parameters are
G = 5 and r = 3.

xg +
xG
s

(xs+y)G−1 . For a cooperative group, the probability that none of the group members dies in the current
round is (1 − ξ)G. Thus in the end of the current round (also the beginning of the next round), the proportion
of cooperators in groups is (xg +

xG
s

(xs+y)G−1 )(1− ξ)G and then we get ẋg .

4.8 To fully describe the dynamics, we now calculate πc and πd. In our model, players’ payo�s are accumulated
since they were born. As the strategy distribution changes over time, it is hard to calculate players’ payo�s
from the beginning of the evolution. However, when the population evolve near to the stationary strategy dis-
tribution, we can calculate their payo�s approximately. For a cooperator if she is in a cooperative group, her
payo�s are r; if she is single she would be regrouped with anotherG − 1 single players whose strategy distri-

bution is a Binomial distributionB
(
G− 1,

xs
xs + y

)
and her expected payo� would be 1

G ·
(

1 + (G−1)xs

xs+y

)
r.

So at a stable interior rest point (if exists), the average expected total payo�s for cooperators and defectors are,
respectively,

πc =
1

ξ
·
(

(Gxs + y)xsr

G(xs + y)
+ xgr

)
,

πd =
1

ξ
·
(

(G− 1)xsry

G(xs + y)
+ y

)
.

(2)

4.9 While it is impossible to get full solutions of the above system defined by equation (1) and (2) (which are equiv-
alent to a series of fi�h and higher degree equations) in general, numerical methods suggest that the system
has a stable interior rest point when ξ ≤ ξ∗ (for our parameters, ξ∗ is about 0.035), and as ξ increases and no
more than ξ∗, the proportion of cooperators shrinks as can be seen in Figure 3. Because the expected lifespan
of players is the reciprocal of ξ, cooperation is enhanced when expected lifespan increases.

Group cohesion favors cooperation

4.10 In this section, we prove that the expected number of cooperators that a cooperator may meet is larger when
cohesiveness exists.

4.11 Under mechanism I, all the players in thematching pool are single. Because thematching process is randomly
conducted, the groupmembers’ distribution is a binomial distribution. Theprobability for a cooperator tomeet
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with k(k ≤ G− 1) cooperators is

Pk =

(
G− 1

k

)
xksy

(G−1−k)

(xs + y)(G−1)
.

And the expected number of cooperators she canmeet isEc1 =
(G− 1)xs
xs + y

.

4.12 Undermechanism II, there are three kinds of players in thematching pool: single cooperators, single defectors
and unions of defectors. Let yk denote the proportions of players in k−unions (2 ≤ k ≤ G − 1) and ys the

proportion of single defectors, so we have y = ys +
G−1∑
k=2

yk.

4.13 For each k−union, G − k single players are needed and their strategy distribution is a Binomial distribution
B(G − k, xs

xs+ys
). A�er the unions have all been regrouped, the single players are going to be regrouped, and

the strategy distribution of each group is also a Binomial distributionsB(G, xs

xs+ys
). Denote pk the probability

that a single player would be grouped with a k−union. Obviously, it depends on the number of k−unions and

pk =
yk(G− k)

k(xs + ys)
.

The expected number of cooperators that a cooperator maymeet is

Ec2 =

G−1∑
k=2

pk · (G− k − 1) · xs
xs + ys

+

(
1−

G−1∑
k=2

pk

)
· (G− 1) · xs

xs + ys

=
xs

xs + ys

[
(G− 1)−

G−1∑
k=2

pkk

]

=
xs

xs + ys

[
(G− 1)−

G−1∑
k=2

yk(G− k)

xs + ys

]

4.14 For fixed xs and y, to proveEc1 < Ec2, we just need to proveEc2 − Ec1 > 0.

Ec2 − Ec1 =
xs(G− 1)(y − ys)
(xs + ys)(xs + y)

− xs
(xs + ys)2

G−1∑
k=2

yk(G− k)

=
xs(G− 1)

∑G−1
k=2 yk

(xs + ys)(xs + y)
−
xs
∑G−1
k=2 yk(G− k)

(xs + ys)2

=
xs

xs + ys

[
(G− 1)

∑G−1
k=2 yk

xs + y
−
∑G−1
k=2 yk(G− k)

xs + ys

]

=
xs

xs + ys

G−1∑
k=2

yk

(
G− 1

xs + y
− G− k
xs + ys

)
Let

4 =

G−1∑
k=2

yk

(
G− 1

xs + y
− G− k
xs + y −

∑G−1
k=2 yk

)
(3)

Then
∂4
∂yk

=
G− 1

xs + y
− G− k
xs + y −

∑G−1
k=2 yk

−
(G− k)

∑G−1
k=2 yk

(xs + y −
∑G−1
k=2 yk)2

=
G− 1

xs + y
− (G− k)(xs + y)

(xs + y −
∑G−1
k=2 yk)2

(4)

It is easy to verify that

∂4
∂yk

∣∣∣∣∣∣G−1∑
k=2

yk=0
=
G− 1

xs + y
− G− k
xs + y

=
k − 1

xs + y
> 0
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Since

Ec2 − Ec1

∣∣∣∣∣∣G−1∑
k=2

yk=0
= 0 ,

we know for su�iciently small yk,
Ec2 − Ec1 > 0.

While it is hard to give the exact proportion of players in unions during the repeated games, we can learn from
the above analysis that cooperators are more likely to meet each other when some defectors are united to-
gether. Actually, from equation (3), we see that when

G−1∑
k=2

yk <
xs + y

G− 1
, Ec2 − Ec1 > 0.

4.15 Based on the above simulation and theoretical results, we can explain the di�erences of the two mechanisms
in promoting cooperation. Since strategy (C, 0) is the only cooperative strategy thatmaywin the evolution, the
di�erences of the two mechanisms are essentially how they promote the evolution of strategy (C, 0). Under
bothmechanisms, the players using (C, 0)would leave their current groups whenever theymeet defectors. So
in the matching pool, all players using (C, 0) are single players. For a player using (C, 0), she could meet other
(C, 0) strategists only when she is grouped with single players. Under the first mechanism, all players in the
matching pool are single players. But under the second mechanism, some players are in unions. For the same
strategy distribution, there would bemore single players in the matching pool under the first mechanism than
under the second mechanism. However, there should be equal amount of (C, 0) strategists in the matching
pool. As a result, the single (C, 0) players are more likely to be regrouped with each other under the second
mechanism. That is, cohesion brings about a stronger positive assortment e�ect, and thus promotes a higher
level of cooperation.

Discussion

5.1 We have studied how cooperation evolves in public goods games under conditional dissociation mechanisms
and investigated the role of group cohesion. We have compared two dissociation mechanisms, one with cohe-
sion and the other without. Our results show that both mechanisms promote the evolution of cooperation if
the expected lifespan of the players is long enough. The dissociation mechanisms promote cooperation from
two aspects. Firstly, the intolerant cooperators have a greater chance to find new cooperative partners. Sec-
ondly, once they meet a group of cooperators, the expected periods of the repeated games they play together
are longer too. Both e�ects increase the probability that cooperators play games together. From this point of
view, conditional dissociation can also be classified as a kind of positive assortment. Moreover, we find that the
existence of cohesion can lead to significant higher levels of cooperation. This is because positive assortment
e�ect is stronger when cohesion exists.

5.2 In game theory studies, cohesion is seldom studied. Unlike (Ja�e 2006) and (Ja�e & Zaballa 2010) just treating
the social cohesion as levels of cooperation, we regard cohesion as the tendency that a group of players would
stay together a�er someone’s occasional leaving. In psychological studies (Petersen et al. 2004), cohesion is
usually measured by asking the subjects a series of questionnaires concerning their feelings and attitudes to-
wards their groups. Then they compare how subjects behave in groups with di�erent cohesion scores. While
this method gives us a vivid figure of the correspondence between cohesion and people’s performance, they
can hardly tell us how it functions. Despite of capturing the point of staying together asmentioned in Festinger
(1950)’s definition, our definition does not capture all successive modifications developed by other psycholo-
gists. Hogg (1993) and Hogg & Hains (1996) pay more attention to the psychological essence of cohesion and
claim cohesion is rooted in self-categorization. Bettencourt et al. (1997) find that increased cohesion is closely
associated with ingroup favoritism. The existence of ingroup favoritism and its e�ect on cooperation is contro-
versial, and attracted lots of studies. Balliet et al. (2014) conduct a meta-analysis and confirm the existence of
ingroup favoritism e�ect. They find evidence that categorization would result in ingroup favoritism. However,
they also find that this e�ect is even stronger under structured situations, which supports reciprocity theory.
Combining these studies together, we see another clue of how cohesion interacts with group performances.
That is, as a result of self-categorization, cohesion leads to more intragroup interactions and the reciprocity
mechanismworks to promote cooperation and in turn ingroup favoritism.
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5.3 It is noteworthy that the increase of players’ expected lifespan also means the deathrate of players is lower. So
for a group of players, the probability that they continue playing games together is higher, which implies higher
cohesiveness too. Inprevious studyof repeatedgames, thediscounting factor is interpretedasplayers’ patience
(Fudenberg & Maskin 1986). Our work shows that it can also be interpreted as the cohesiveness of groups. To
elaborate this point, we conduct another series of simulations where a group may disband by mistake. The
mistake could be viewed as a result of poor cohesiveness. And we find (in Figure 6) that as the probability
of mistakenly breaking up increases, cooperation is less promoted. Of course, the connotation of cohesion is
rich. Our paper only considers one aspects of it. Studies investigating other aspects of cohesionwould be good
directions in future.

5.4 While our paper does not consider the full strategy space as Fujiwara-Greve &Okuno-Fujiwara (2009) and Rob&
Yang (2010) do, it is natural to askwhether someof our results are robust to the trust-building strategies found in
these studies. As is known, trust-building strategies cannot succeedwhen the expected lifespan is too short. So
with short enough lifespans, cooperation cannot emerge even trust-building strategies are considered. On the
other hand, when the expected lifespan is long enough, then both trust-building strategies and (C, 0) strategy
users get similar payo�s in the long run, which means they are neutral to each other. When the expected lifes-
pan is medium, the situation is complex. On one hand, the trust-building strategy users su�er less than (C, 0)
strategy users when confronted with defectors. On the other hand, they are also wasting there periods to play
with defectors as theywould not leave a defective group immediately as (C, 0) strategists do. Combining these
e�ects together, it is hard to figure out how the population evolve whenmore complex strategies are available.
Moreover, as trust-building strategies all require longermemory sizes, the strategy space is extraordinarily large
and the methods used in this paper are ine�icient in handling the new problems.

5.5 Wubs et al. (2016) study Prisoner’s Dilemma game too and refer to conditional dissociation as partner switch-
ing. They compare it with two other partner control mechanisms, the direct reciprocity and punishmentmech-
anism. They find that when the population size is small, partner switching is less e�icient than the other two
mechanisms in promoting cooperation. However, as the population size increases, partner switching mech-
anism results in more cooperation than other mechanisms. In the Appendix (see Figure9), we obtain similar
findings that a larger population size generates a higher proportion of cooperation.

5.6 In ourmodel, it costs players nothing to leave their opponents and to be regrouped. Their privatewealthwould
not decrease and theywaste no time to engage in another roundof interaction of the repeated games. If players
pay somecostduring the leavingprocess, cooperation is better promoted inPrisoner’sDilemmagamewhen the
cost is small (Izquierdo et al. 2010; Qu et al. 2016). An intuitive explanation is that defectors are more disliked,
so they lose more. In public goods games, the situation may be more complex and beyond the scope of this
paper. The followings are some of our considerations. Players would su�er more losses once they enter the
matching pool as the probability to be groupedwith satisfiedmembers ismuch smaller in public goods games.
Since the winning cooperative strategy is also the intolerant strategy, it su�ers more. So cooperation may be
suppressed. Moreover it is also problematic that whether players in unions should su�er the same losses as
single players. If not, how the sizes of unions a�ect the losses is open to question too. So it requires more
careful and comprehensive discussion and would be an interesting topic for further research.

5.7 Furthermore, previous works e.g. Han et al. (2017); Martinez-Vaquero et al. (2015); Van Segbroeck et al. (2012)
have considered trigger strategies with a threshold in the context of repeated games. Namely, players can de-
cide whether to cooperate in a next round of the game or stay in a long-term agreement depending onwhether
the number of cooperative co-players in the current round reaches a certain threshold. These works however
do not allow the possibility that players can leave the group. On the other hand, the present work does not in-
clude such reciprocal strategies. It would be interesting to study how reciprocity and the leaving mechanisms
interact and compete in the context of repeated games. For instance, whether it is necessary to leave a group in
which there are many defectors or it is better to act reciprocally instead, especially when leaving and rejoining
another group are very costly.
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Appendix A: Di�erent re-matching processes
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Figure 4: Strategy distribution a�er 107 rounds of games with new re-matching process. Parameters are: group
sizeG = 5, multiplication factor r = 3, population sizeN = 200, mutation rate µ = 0.05, selection strength
s = 1.

In the main text, the re-matching process of mechanism II does not allow unions to be regrouped with other
unions. Yet, in reality, the contrarymay occur too. In this part, we consider another re-matching process where
unions are regrouped with unions firstly.

Let k−union denote a union that consists of k players and Sk denote the set of all the k−unions remained in
the matching pool (Here we treat each single player as a 1−union). Let L(k) = max{l|l ≤ k, Sl 6= ∅} be
the size of the largest unions that remain in the matching pool with sizes no bigger than k. LetMk = SL(k).
The largest union in the matching pool is regrouped first. If there are more than one largest unions, then we
randomly choose one of themwith equal probabilities. LetK be the size of the largest unions remaining in the
matching pool. For the chosenK-union, it would be unitedwith a randomly chosen union fromMG−k. For this
newly formed union, if its size isG, then it forms a group and all its members leave the matching pool. Else if
its size is smaller thanG, it remains in the matching pool and the above matching process is continued. A�er
a finite number of rounds of matchings, all the players in the matching pool will be regrouped. Then all the
groups, either previously formed and or newly formed, play the public goods game simultaneously.

From Figure 4, we can see that themain conclusions we get in ourmain text still hold for thismatching process.
Compared with Figure 2, we see that cooperation is better promoted under this new matching process. With
this matching process, single players are more likely to meet single players, implying that (C, 0) strategists are
more likely to meet other (C, 0) players.
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Appendix B: When strategy (C, 4) is unavailable
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Figure 5: The details of the simulations without strategy (1, 4). The upper two graphs are the results for mech-
anism I and the bottom two are for mechanism II. From le� to right, the expected lifespan are 20 and 100 re-
spectively. Each graph is an average of 100 simulations. Parameters are: group sizeG = 5, multiplication factor
r = 3, death rate ξ=0.001, mutation rate µ = 0.05, selection strength s = 1, population size N=200.

In these simulations, there are equal number of cooperators and defectors initially too. To achieve this setting,
each of the other four cooperative strategies are endowedwith 25 players. Moreover, whenmutation happens,
by a similar means, the probability to be a cooperator is also equal to be a defector. In the simulations, the
expected lifespan of individuals are 20 and 100. The results are shown in Figure 5. It can be seen, the leading
advantage of (D, 3) is much smaller in these simulations, which can serve as a verification of our hypothesis.
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Appendix C: Noise e�ect
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Figure 6: The details of the simulations when noises exist. The upper 3 panels are for mechanism I where no
cohesion exists. And the bottom 3 are for mechanism II with cohesion. Noises happen with probability 0.05,
0.01 and 0.005 respectively from the le� to right. Other parameters are: group sizeG = 5, multiplication factor
r = 3, death rate ξ=0.001, mutation rate µ = 0.05, selection strength s = 1, population size N=200.

Figure 6 shows that the existenceof noises causes severe detriments to cooperators. From the viewof cohesion,
noises can be seen as a lack of cohesion. The larger probability that noises happen, the less cohesion among
the groupmembers and cooperation.
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Appendix D: Di�erent initial strategy distributions
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Figure 7: Expected lifespan is 200

In Figure 7 and Figure 8, we present the details of simulations with di�erent initial distributions of strategies.
In each figure, the upper 2 panels are for mechanism I and the bottom 2 panels are for mechanism II; the le�
2 panels are simulations initialized with 2

5 agents being cooperators while the right 2 panels are simulations
initialized with 3

5 agents being cooperators. We can see from these two figures that despite the di�erences in
initial proportions of cooperators, the simulations end upwith similar strategy distributions a�er 107 rounds of
games given all other settings being the same.
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Figure 8: Expected lifespan is 1000
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Appendix E: Other di�erent parameters
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Figure 9: The details of the simulations with di�erent population sizes. The upper 3 panels are for mechanism I
where no cohesion exists. And the bottom 3 are for mechanism II with cohesion. The population sizes are 100,
500, and 1000 respectively from the le� to right. And other parameters are: group size G = 5, multiplication
factor r = 3, death rate ξ=0.005, mutation rate µ = 0.05, selection strength s = 1.

From Figure 9, we can see that when population size increases, cooperation is promoted. This finding agrees
with (Wubs et al. 2016) that dissociationmechanismpromotes cooperation better when population size is even
larger.
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Figure 10: The details of the simulations with di�erent selection strengths. The upper 3 panels are for mecha-
nism I, and the bottom 3 are for mechanism II. Selection strengths from the le� to the right are s = 0.5, s =
2, s = 5 respectively. Other parameters are: group sizeG = 5, multiplication factor r = 3, death rate ξ=0.001,
mutation rate µ = 0.05, population size N=200.

In Figure 10,weobserve that, our results are robustwhen the selection strengths are not too strong (see, s = 0.5
and s = 2). For stronger selections (see s = 5), defective strategies have a greater chance to survive. However,
cooperative strategies still have larger frequencies under cohesion (Mechanism II) thanwhen it is absent (Mech-
anism I). Moreover, it is noteworthy that, behavioral experiments with real human subjects in various contexts
have confirmed that selection strengths are usually not excessively strong (see e.g. Rand et al. (2013); Zisis et al.
(2015)).
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Figure 11: The details of strategy evolution with di�erent value of r. The upper 2 panels are for mechanism I,
and the bottom 2 are for mechanism II. The value of r are 2 for the le� two panels and 4 for the right 2. Other
parameters are: group size G = 5, death rate ξ=0.005, mutation rate µ = 0.05, selection strength s = 1,
population size N=200.

It has long been proved (Szabó & Fath 2007) that in public goods game, cooperators gainmore advantageswith
smaller group sizes or larger multiplication factor, and Figure 11 and 12 show that this conclusion still holds in
our model.
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Figure 12: The details of strategy evolution in 107 rounds of gameswith di�erent group size. The upper 2 panels
are formechanism I, and the bottom2 are formechanism II. The sizes of groups are 4 for the le� two panels and
6 for the right 2. Other parameters are: multiplication factor r = 3, death rate ξ=0.005, mutation rate µ = 0.05,
selection strength s = 1, population size N=200.
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Appendix F: Explantation of Equation (1)

Let xg(t), xs(t), y(t) be the proportion of cooperators who are in a cooperative groups, single cooperators and
single defectors in the matching pool at the beginning of round t. Then single players are randomly regrouped
and play games. A�er some players’ leaving and death, the proportions change.

Now let us calculate xg(t+ 1), xs(t+ 1), y(t+ 1).

xg(t + 1), players who are in cooperative groups at the beginning of round t + 1, are constituted of two kinds
of players. Some of them are in fully cooperative groups and some are single at the beginning of round t but
are then grouped together in that round, withwhich the proportion is xG

s (t)
(xs(t)+y(t))G−1 . Since the probability that

a single player dies in each round of games is ξ, for a group of cooperators, they would survive round t with a
probability of (1− ξ)G. Putting these two sources together, we get

xg(t+ 1) =

(
xg(t) +

xGs (t)

(xs(t) + y(t))G−1

)
(1− ξ)

xs(t+1), single cooperators are constituted of three kinds of players. Firstly, some of them are thosewho have
been in cooperative groups at round t but unfortunately some of the groupmembers die. Since the proportion
of players who have been in cooperative groups is xg(t) +

xG
s (t)

(xs(t)+y(t))G−1 , and some groups survive to round t

with probability (1− ξ)G, the proportion of surviving single players is
(
xg(t) +

xG
s (t)

(xs(t)+y(t))G−1

)
(1− ξ − (1−

ξ)G). Secondly, some of them are those who are single and meet some defectors and survive to round t + 1.

And the proportion of this kind of players is xs
(

1−
(

xs(t)
xs(t)+y(t)

)G−1
)

(1− ξ). Finally, some newborn players

are being cooperators, and the proportion is ξ·πc

πc+πd
. So

xs(t+1) =

(
xg(t) +

xGs (t)

(xs(t) + y(t))G−1

)
(1−ξ−(1−ξ)G)+xs

(
1−

(
xs(t)

xs(t) + y(t)

)G−1
)

(1−ξ)+
ξ · πc
πc + πd

y(t+ 1), single defectors are constituted of two kinds of players. Some are those surviving to round t+ 1 and
some are newborn ones. The proportion of these two kinds of defectors are y(t)(1− ξ) and ξ·πd

πc+πd
respectively.

So
y(t+ 1) = y(t)(1− ξ) +

ξ · πd
πc + πd

Themean-field equations for ẋg, ẋs and ẏ, is then gotten as

ẋg = x(t+ 1)− x(t)

=

(
xg +

xGs
(xs + y)G−1

)
(1− ξ)G − xg

ẋs = xs(t+ 1)− xs(t)

=

(
xg +

xGs
(xs + y)G−1

)
(1− ξ − (1− ξ)G) + xs

(
1−

(
xs

xs + y

)G−1
)

(1− ξ) +
ξ · πc
πc + πd

− xs

ẏ = y(t+ 1)− y(t)

= y(1− ξ) +
ξ · πd
πc + πd

− y,

which is equations (1).
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