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SOME REMARKS ON THE NOTIONS OF

BOUNDARY SYSTEMS AND BOUNDARY TRIPLE(T)S

MARCUS WAURICK1 AND SVEN-AKE WEGNER2

Abstract. In this note we show that if a boundary system in the sense of (Schubert et al. 2015)
gives rise to any skew-self-adjoint extension, then it induces a boundary triplet and the classification
of all extensions given by (Schubert et al. 2015) coincides with the skew-symmetric version of the
classical characterization due to (Gorbachuk et al. 1991). On the other hand we show that for every
skew-symmetric operator there is a natural boundary system which leads to an explicit description
of at least one maximal dissipative extension. This is in particular also valid in the case that no
boundary triplet exists for this operator.

1. Skew-self-adjoint extensions of skew-symmetric operators

Throughout this paper H denotes a Hilbert space and H0 : D(H0) ⊆ H → H denotes a densely defined
and closed linear operator. We say that H0 is skew-symmetric if H0 ⊆ −H⋆

0 holds. A densely defined
operator H : D(H) ⊆ H → H is skew-self-adjoint if H = −H⋆ holds. We point out, cf. Picard et al. [3,
footnote on p. 751], that in the literature the term skew-adjoint seems to be more common although
this “binary expression” might cause confusion. Notice that a skew-self-adjoint extension H of H0

automatically satisfies H ⊆ −H⋆
0 and that a skew-self-adjoint restriction of H⋆

0 automatically satisfies
−H0 ⊆ H . Moreover, H is a skew-self-adjoint extension of H0 if and only if −H is a skew-self-adjoint
extension of −H0. Theorems A and B below thus both deal with the question of determining the
skew-self-adjoint extensions of H0.

Schubert et al. [5, Definition 3.1] defined the following notion. A quintuple (Ω,G1,G2, F, ω) is a boundary
system for H0, if Ω is a sesquilinear form on H ⊕H, G1 and G2 are Hilbert spaces, ω is a sesquilinear
form on G1 ⊕ G2 and F : Graph(H⋆

0 ) → G1 ⊕ G2 is a surjective map such that

Ω((x,H⋆
0x), (y,H

⋆
0y)) = ω(F (x,H⋆

0x), F (y,H⋆
0 y)) (1)

holds for all x, y ∈ D(H⋆
0 ). By [5, Examples 2.7(b) and (c)] the standard symmetric form on H ⊕H

is given by Ω((x, y), (u, v)) = (x, v)H + (y, u)H and the standard unitary form on G1 ⊕ G2 is given
by ω((x, y), (u, v)) = (x, u)G1

− (y, v)G2
. This choice of a boundary system leads to the following

characterization of extensions, see [5, Theorem 3.6].

Theorem A. Let H0 be skew-symmetric and let (Ω,G1,G2, F, ω) be a boundary system for H0, where
Ω is the standard symmetric form and ω is the standard unitary form. Then the operator H ⊆ H⋆

0

is skew-self-adjoint if and only if there exists a unitary operator L : G1 → G2 such that D(H) = {x ∈
D(H⋆

0 ) ; LF1x = F2x}. Here, Fi : D(H⋆
0 ) → Gi is given by Fix = pri(F (x,H⋆

0x)) for i ∈ {1, 2}, where
pri : G1 ⊕ G2 → Gi denotes the canonical projection.

Boundary systems generalize the classical concept of boundary triplets on which there exists a con-
siderable amount of literature. We follow the approach of Gorbachuk et al. [2] but refer to Wegner
[6] where the skew-symmetric version of the latter results has been outlined explicitly. The notion of
boundary triples, as used e.g. by Brüning et al. [1] coincides with the original, i.e., symmetric, version
of boundary triplets in the sense of [2]. In the remainder, we say that a triple (G,Γ1,Γ2) is a boundary
triplet for H0 if G is a Hilbert space and Γ1, Γ2 : D(−H⋆

0 ) → G are linear maps such that the map
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D(−H⋆
0 ) → G⊕ G, x 7→ (Γ1x,Γ2x) is surjective and such that

(H⋆
0x, y)H + (x,H⋆

0 y)H = (Γ1x,Γ2y)G + (Γ2x,Γ1y)G (2)

holds for all x, y ∈ D(−H⋆
0 ). With this notation, the skew-symmetric version of [2, Theorem III.1.6],

see [6, Theorem 4.2], reads as follows.

Theorem B. Let H0 be skew-symmetric and let (G,Γ1,Γ2) be a boundary triplet for H0. Then
H ⊇ H0 is skew-self-adjoint if and only if there exists a unitary operator L : G → G such that D(H) =
{x ∈ D(−H⋆

0 ) ; (L− 1)Γ1x+ (L+ 1)Γ2x = 0} and H = −H⋆
0 |D(H).

Let a skew-symmetric operator be given. In Section 2 we show that then every boundary triplet
induces a boundary system in a natural way. If our operator admits a boundary system that induces
at least one skew-self-adjoint extension, then it induces a boundary triplet in a natural way. The
parametrization of skew-self-adjoint operators via the boundary system (Theorem A) is then induced
by the parametrization via the boundary triplet (Theorem B), and vice versa, in a simple way. In
Section 3 we construct for every skew-symmetric operator—thus in particular also for operators that
have no skew-self-adjoint extensions—a natural boundary system which leads to an explicit description
of at least one maximal dissipative extension. In addition, this boundary system yields an independent
proof of the fact that the equality of deficiency indices is equivalent to the existence of skew-self-adjoint
extensions. For the convenience of the reader we give a short and direct proof for Theorem B based on
the survey [6] in Section 4.

2. Boundary triplets are boundary systems are boundary triplets—or not?

At first sight, boundary triplets appear to be the special case of boundary systems with G1 = G2 = G and
Fi = Γi for i ∈ {1, 2}. In [5, Remark 3.2(a)] this is pointed out, but there Ω and ω are both the standard
skew-symmetric forms, and the boundary triplet, that one obtains in the special case, corresponds to
the symmetric situation considered in [2]. For the skew-symmetric case the aforementioned intuition is
also correct, but the result is a bit more technical.

Proposition 1. Let H0 be skew-symmetric and let (G,Γ1,Γ2) be a boundary triplet for H0. Then,
(Ω,G,G, F, ω) is a boundary system for H0, where Ω is the standard symmetric form, ω is the standard
unitary form, and F : Graph(H⋆

0 ) → G⊕ G is given by

F (x,H⋆
0x) =

( 1√
2
(Γ1x+ Γ2x),

1√
2
(Γ1x− Γ2x)

)

. (3)

The characterization of skew-self-adjoint extensions of H0 via the boundary triplet (G,Γ1,Γ2), given in
Theorem B, arises from the characterization via the boundary system (Ω,G,G, F, ω), given in Theorem
A, by multiplication with −1.

Proof. Firstly, we note that according to the comments behind [6, Definition 2.3] the domain D(−H⋆
0 )

is equal to D(H⋆
0 ). For x, y ∈ D(H⋆

0 ) we use (3) and (2) to compute

ω(F (x,H⋆
0x), F (y,H⋆

0y)) = ω
((Γ1x+ Γ2x√

2
,
Γ1x− Γ2x√

2

)

,
(Γ1y + Γ2y√

2
,
Γ1y − Γ2y√

2

))

=
(Γ1x+ Γ2x√

2
,
Γ1y + Γ2y√

2

)

G
−
(Γ1x− Γ2x√

2
,
Γ1y − Γ2y√

2

)

G

=
1

2

[

(Γ1x,Γ1y)G + (Γ1x,Γ2y)G + (Γ2x,Γ1y)G + (Γ2x,Γ2y)G

−(Γ1x,Γ1y)G + (Γ1x,Γ2y)G + (Γ2x,Γ1y)G − (Γ2x,Γ2y)G
]

= (Γ1x,Γ2y)G + (Γ2x,Γ1y)G

= (H⋆
0x, y)H + (x,H⋆

0 y)H

= Ω((x,H⋆
0x), (y,H

⋆
0y))

2



which shows (1). Let (y1, y2) ∈ G⊕ G be given. As D(−H⋆
0 ) → G⊕ G, x 7→ (Γ1x,Γ2x) is surjective, we

find x ∈ D(H⋆
0 ) such that Γ1x = 1√

2
(y1 + y2) and Γ2x = 1√

2
(y1 − y2) hold. Now we compute

F (x,H⋆
0x) =

( 1√
2

( 1√
2
(y1 + y2) +

1√
2
(y1 − y2)

)

,
1√
2

( 1√
2
(y1 + y2)−

1√
2
(y1 − y2)

))

= (y1, y2)

which shows that F is surjective. For the final statement it is enough to observe that (3) implies that
F1x = 1√

2
(Γ1x+ Γ2x) and F2x = 1√

2
(Γ1x− Γ2x) hold and that we therefore have

LF1x = F2x ⇐⇒ (L − 1)Γ1x+ (L + 1)Γ2x = 0

for x ∈ D(H⋆
0 ). This shows that the domains given in Theorem A and Theorem B coincide. Our

remarks at the beginning of Section 1 conclude the proof. �

Our next result is the converse of Proposition 1 but below we have to assume explicitly that the initial
operator H0 has at least one skew-self-adjoint extension. Notice however that this was implicitly also
assumed in Proposition 1, as the existence of a boundary triplet guarantees that there exist skew-self-
adjoint extensions, see Section 3.

Proposition 2. Let (Ω,G1,G2, F, ω) be a boundary system for H0, where Ω is the standard sym-
metric form and ω is the standard unitary form. Let L0 : G1 → G2 be a unitary operator and let
Γ1,Γ2 : D(−H⋆

0 ) → G1 be defined via

Γ1x =
1√
2
(F1x+ L−1

0 F2x) and Γ2x =
1√
2
(F1x− L−1

0 F2x). (4)

Then (G1,Γ1,Γ2) is a boundary triplet for H0.

Proof. We observe that the definitions in (4) yield the two equations

F1x =
1

2
(F1x+ L−1

0 F2x+ F1x− L−1
0 F2x) =

1

2
(
√
2Γ1x+

√
2 Γ2x) =

1√
2
(Γ1x+ Γ2x)

L−1
0 F2x =

1

2
(F1x+ L−1

0 F2x− F1x+ L−1
0 F2x) =

1

2
(
√
2Γ1x−

√
2 Γ2x) =

1√
2
(Γ1x− Γ2x).

The above together with (1) and the definitions of the standard symmetric resp. unitary form yield

(

x,H⋆
0 y

)

H
+
(

H⋆
0x, y

)

H
= Ω

(

(x,H⋆
0x), (y,H

⋆
0 y)

)

= ω
(

F (x,H⋆
0x), F (y,H⋆

0y)
)

= (F1x, F1y
)

G1

−
(

F2x, F2y)G2

= (F1x, F1y)G1
− (L−1

0 F2x, L
−1
0 F2y)G1

=
(Γ1x+ Γ2x√

2
,
Γ1y + Γ2y√

2

)

G1

−
(Γ1x− Γ2x√

2
,
Γ1y − Γ2y√

2

)

G1

=
1

2

[

(Γ1x,Γ1y)G1
+ (Γ1x,Γ2y)G1

+ (Γ2x,Γ1y)G1
+ (Γ2x,Γ2y)G1

−(Γ1x,Γ1y)G1
+ (Γ1x,Γ2y)G1

+ (Γ2x,Γ1y)G1
− (Γ2x,Γ2y)G1

]

= (Γ1x,Γ2y)G1
+ (Γ2x,Γ1y)G1

for x, y ∈ D(−H⋆
0 ). This establishes condition (2). For the surjectivity let y1, y2 ∈ G1 be given. By

the surjectivity of F we find x ∈ D(H⋆
0 ) such that F1x = 1√

2
(y1 + y2) and F2x = 1√

2
L0(y1 − y2) hold.

Thus, we obtain the following two equations

Γ2x =
1√
2

(

F1x− L−1
0 F2x

)

=
1√
2

(

y1√
2
+

y2√
2
− y1√

2
+

y2√
2

)

=
1√
2

2√
2
y2 = y2

Γ1x =
1√
2

(

F1x− L−1
0 F2x

)

=
1√
2

(

y1√
2
+

y2√
2
+

y1√
2
− y1√

2

)

=
1√
2

2√
2
y1 = y1

3



which finish the proof. �

Now we show that under the assumption, that a given boundary system induces at least one skew-
self-adjoint extension H , the statement of Theorem A arises from Theorem B by identifying unitary
operators in L(G1,G2) and unitary operators in L(G1) by composition with the inverse of the unitary
operator in L(G1,G2) that corresponds to the extension H . The bijection ψ that appears below origi-
nates from Theorem A, i.e., from the skew-symmetric version of [2, Theorem III.1.6], see also Section
4. For the formulation of the next result we use the abbreviations

U(G1,G2) =
{

L ∈ L(G1,G2) ; L unitary
}

and U(G) = U(G,G).

for Hilbert spaces G1, G2, and G.

Theorem 3. Let H0 be skew-self-adjoint and let (Ω,G1,G2, F, ω) be a boundary system for H0, where
Ω is the standard symmetric form and ω is the standard unitary form. Let L0 : G1 → G2 be a unitary
operator. Let (G1,Γ1,Γ2) be the boundary triplet established in Proposition 2 and let

ψ : U(G1) −→
{

H : D(H) ⊆ H → H ; H0 ⊆ H and H = −H⋆
}

be the bijection established by Gorbachuk et al. [2] which is defined via

ψ(L) = −H⋆
0 |D(ψ(L))

D(ψ(L)) = {x ∈ D(−H⋆
0 ) ; (L− 1)Γ1x+ (L + 1)Γ2x = 0}.

Then the bijection

ψ : U(G1,G2) −→
{

H : D(H) ⊆ H → H ; H ⊆ H⋆
0 and H = −H⋆

}

of Schubert et al. [5] is given by

ψ(L) = −ψ(L−1
0 L).

Proof. We define ψ as above, show that it is a bijection, and establish that it gives precisely the
correspondence outlined in Theorem A. We observe that

U(G1,G2) −→ U(G1), L 7→ L−1
0 L

is a bijection. Moreover, the map

σ :
{

H : D(H) ⊆ H → H ; H0 ⊆ H & H = −H⋆
}

−→
{

H : D(H) ⊆ H → H ; H ⊆ H⋆
0 & H = −H⋆

}

given by

σH = −H

is well-defined and bijective with inverse given by σ−1 = σ. Indeed, if H ⊇ H0 is skew-self-adjoint then
−H is also skew-self-adjoint and we have −H = H⋆ ⊆ H⋆

0 . If, conversely, H ⊆ H⋆
0 is skew-self-adjoint,

then −H is skew-self-adjoint and −H = H⋆ ⊇ H⋆⋆
0 = H0 since H0 is closed. Combining both facts we

conclude that ψ is a bijection. For a unitary operator L ∈ U(G1,G2) we compute

ψ(L) = −ψ(L−1
0 L) = H⋆

0 |D(−ψ(L−1

0
L))

and

D(ψ(L)) = D(−ψ(L−1
0 L)) = {x ∈ D(−H⋆

0 ) ; (L
−1
0 L− 1)Γ1x+ (L−1

0 L+ 1)Γ2x = 0}
= {x ∈ D(H⋆

0 ) ; L
−1
0 L(Γ1x+ Γ2x) = Γ1x− Γ2x}

= {x ∈ D(H⋆
0 ) ; L

−1
0 L(

√
2F1x) =

√
2L−1

0 F2x}
= {x ∈ D(H⋆

0 ) ; LF1x = F2x}

which shows that ψ establishes precisely the correspondence given in Theorem A. �
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We mentioned already that Proposition 1 and Theorem 3 both require, more or less explicitly, that our
initial operatorH0 has at least one skew-self-adjoint extension. We conclude this section by summarizing
the different appearances of the latter condition that we met already up to this point and relate them
to the equality of the deficiency indices of H0.

Proposition 4. Let H0 be skew-symmetric. Then the following are equivalent.

(i) There exists a skew-self-adjoint extension of H0.

(ii) The deficiency indices of H0 are equal.

(iii) There exists a boundary triplet for H0.

(iv) There exists a boundary system for H0 with dimG1 = dimG2.

Proof. (i)⇒ (ii): Let H ⊇ H0 be a skew-self-adjoint extension. Then by [6, Lemma 5.4], which is a
skew-symmetric version of the arguments in Schmüdgen [4, Section 14], the equalities

D(H)+̇ ker(1 +H⋆
0 ) = D(−H⋆

0 ) = D(H)+̇ ker(1 −H⋆
0 )

hold in the sense of a direct but not necessarily orthogonal sum. This means that the deficiency indices
of H0 coincide.

(ii)⇒ (iii): [6, Theorem 5.1].

(iii)⇒ (iv): Proposition 1.

(iv)⇒ (i): If dimG1 = dimG2 holds, then there exists a unitary operator L : G1 → G2 that induces via
Theorem A a skew-self-adjoint extension of H0. �

Reviewing the results of this section suggests that the notions of boundary triplets and boundary
systems are equivalent in the sense that the scope of their extension theories is the same. This is indeed
true, but only for the case that skew-self-adjoint extensions are considered. In view of Proposition 4,
enlarging the class of extensions under consideration means to allow different deficiency indices, and
suggests that an extension theory based on boundary systems, then necessarily with dimG1 6= dimG2,
can yield new insights.

3. Boundary systems for operators with different deficiency indices

From Proposition 4 it follows that if there is no skew-self-adjoint extension for a skew-symmetric
operator, then there is no boundary triplet for this operator either. The situation is different for
boundary systems. Below, we construct a natural boundary system for any skew-symmetric operator.
We use this boundary system to look for maximal dissipative extensions and to give a short proof for
equal deficiency indices being necessary and sufficient for the existence of skew-self-adjoint extensions.

Theorem 5. LetH0 be skew-symmetric. Let G1 := ker(1−H⋆
0 ), G2 := ker(1+H⋆

0 ) and let Pj : D(H⋆
0 ) →

Gj be the projection for j ∈ {1, 2} according to the direct decomposition D(H⋆
0 ) = D(H0) +̇G1 +̇G2,

see [6, Lemma 2.5]. Let Ω be the standard symmetric form, ω be the standard unitary form and let
F : Graph(H⋆

0 ) → G1 ⊕ G2 be defined by

F (x,H⋆
0x) = (

√
2P1x,

√
2P2x).

Then (Ω,G1,G2, F, ω) is a boundary systems for H0.

Proof. The direct decomposition

D(H⋆
0 ) = D(H0) +̇ ker(1−H⋆

0 ) +̇ ker(1 +H⋆
0 )

shows immediately that F is surjective. It thus suffices to show that (1) holds. For this, we note that
H⋆

0P1x = P1x and H⋆
0P2x = −P2x holds for all x ∈ D(H⋆

0 ). Let x, y ∈ D(H⋆
0 ). Using the orthogonal

decomposition above, we have

x = x0 + P1x+ P2x and x = y0 + P1y + P2y

5



for some x0, y0 ∈ D(H0). It is a lengthy but straightforward computation to verify

Ω((x,H⋆
0x), (y,H

⋆
0 y)) = (P1x, P1y)H + (P1x, P1y)H − (P2x, P2y)H − (P2x, P2y)H

= (
√
2P1x,

√
2P1y)H − (

√
2P2x,

√
2P2y)H

= ω(F (x,H⋆
0x), F (y,H⋆

0y)),

which implies the assertion. �

From Theorem 5 and Theorem A we obtain an alternative proof for the equality of deficiency indices
to be a necessary and sufficient condition for the existence of skew-self-adjoint extensions.

Corollary 6. Let H0 be skew-symmetric. Then there exists a skew-self-adjoint extension H ⊇ H0 if
and only if dim ker(1 −H⋆

0 ) = dimker(1 +H⋆
0 ) holds.

Proof. Let (Ω,G1,G2, F, ω) be the boundary system constructed in Theorem 5. Then by Theorem A,
skew-self-adjoint extensions exist if and only if there exists a unitary operator from G1 onto G2. The
latter is equivalent to dimG1 = dimG2. �

A classical application of the theory of boundary triplets is the characterization of those extensions of
a given operator H0 that generate a C0-semigroup. For this it is enough if the extension is maximal
dissipative, and neither necessary that it is skew-self-adjoint, nor necessary that skew-self-adjoint exten-
sions exist at all. The mere existence of a boundary triplet however requires the latter. The following
corollary could be a silver lining indicating that boundary systems might lead to a suitable theory of
maximal dissipative extensions for operators with different deficiency indices.

Corollary 7. Let H0 be skew-symmetric and (Ω,G1,G2, F, ω) the boundary system constructed in
Theorem 5. Then H := H⋆

0 |D(H0)+̇G2
is a maximal dissipative extension of H0.

Proof. At first, we show that H is dissipative. Let x ∈ D(H). Then we use P1x = 0 to compute

2Re(H⋆
0x, x)H = (x,H⋆

0x)H + (H⋆
0x, x)H

= Ω((x,H⋆
0x), (x,H

⋆
0x))

= ω(F (x,H⋆
0x), F (x,H⋆

0x))

= 2 ((P1x, P1x)H − (P2x, P2x)H)

= −2(P2x, P2x)H 6 0.

Next, we prove that H is maximal dissipative which is equivalent to 1−H being surjective, see e.g. [6,
Section 7]. For this, it suffices to prove that 1−H⋆ is injective since ran(1−H) = ker(1−H⋆)⊥ holds
and ran(1−H) ⊆ H is closed as H is dissipative. Using the boundary system, it is not difficult to see
that D(H⋆) = D(H0)+̇G1 and H⋆ = −H⋆

0 |D(H0) +̇G1
holds, see Lemma 8 below. For y ∈ D(H⋆) we use

the equations above and P2y = 0 to obtain

−2Re((1 −H⋆)y, y)H = −2(y, y)H + 2Re(−H⋆
0y, y)H

= −2(y, y)H − 2
(

(P1y, P1y)H − (P2y, P2y)H
)

= −2(y, y)H − 2(P1y, P1y)H 6 −2(y, y)H,

which proves that 1−H⋆ is injective and concludes the proof. �

Lemma 8. Let H0 be skew-symmetric, let G1 := ker(1 − H⋆
0 ), G2 := ker(1 + H⋆

0 ) and let H :=
H⋆

0 |D(H0)+̇G2
. Then H⋆ = −H⋆

0 |D(H0)+̇G1
.

Proof. First of all note that −H0 ⊆ H ⊆ H⋆
0 . Hence, H0 ⊆ H⋆ ⊆ −H⋆

0 . Let (Ω,G1,G2, F, ω) be the
boundary system for H0 introduced in Theorem 5. We have that y ∈ D(H⋆) holds if and only if

∀ x ∈ D(H) : (Hx, y)H = (x,−H⋆
0y)H,

6



holds. By the definition of Ω this is equivalent to

∀ x ∈ D(H) : 0 = (x,H⋆
0 y)H + (H⋆

0x, y)H = Ω((x,H⋆
0x), (y,H

⋆
0 y))

being true. By Theorem 5, we deduce that y ∈ D(H⋆) holds if and only if

∀ x ∈ D(H) : (P1x, P1y)− (P2x, P2y) = 0

is valid. Since P1x = 0 for all x ∈ D(H) and P2[D(H)] = G2, we infer

(y,H⋆
0y) ∈ Graph(H⋆) ⇐⇒ y ∈ D(H⋆

0 ) & P2y = 0,

which implies the assertion. �

Example 9. Let H = L2(0,∞), Hf = f ′ with D(H) = W1,2
0 (0,∞). Then H0 does not have any

skew-self-adjoint extension. However, it is well-known that H is maximal dissipative and generates the
right shift semigroup.

4. Appendix: direct proof for theorem b

In the book [2] the authors consider extensions of symmetric operators instead of skew-symmetric ones
and deal with relations. For the convenience of the reader we give a proof for Theorem B, or more
precisely for the bijectivity of the map ψ that appeared in Theorem 3, based on the notation and results
outlined in the survey [6].

Proof (of Theorem B). By [6, Proposition 4.8] we know that

φ :
{

H : D(H) ⊆ H → H ; H0 ⊆ H maximal dissipative
}

−→
{

L ∈ L(G) ; L contraction
}

,

given by φ(H) : Γ1x + Γ2x 7→ Γ1x − Γ2x, is well-defined and bijective. In particular, we have G =
{Γ1x+ Γ2x ; x ∈ D(H)}. We fix a skew-self-adjoint extension H of H0. Then we have

D(−H⋆) =
{

y ∈ D(−H⋆
0 ) ; ∀ x ∈ D(H) : (Γ1x,Γ2y)G + (Γ2x,Γ1y)G = 0

}

.

By [6, Proposition 2.8] we have H ⊆ −H⋆
0 . In addition, H0 ⊆ H implies that H⋆ ⊆ H⋆

0 is true and
thus H = −H⋆ is equivalent to D(H) = D(−H⋆). We thus obtain that H = −H⋆ if and only if

D(H) =
{

y ∈ D(−H⋆
0 ) ; ∀ x ∈ D(H) : (Γ1x,Γ2y)G + (Γ2x,Γ1y)G = 0

}

(5)

holds. On the other hand we have that φ(H) is unitary if and only if

(

φ(H)(Γ1x+ Γ2x),φ(H)(Γ1y + Γ2y)
)

G
=

(

Γ1x+ Γ2x,Γ1y + Γ2y
)

G

holds for all x, y ∈ D(H). Using the definition of the left hand side of this equality, we obtain after
straightforward algebraic manipulations that φ(H) is unitary if and only if

∀ x, y ∈ D(H) : (Γ1x,Γ2y)G + (Γ2x,Γ1y)G = 0 (6)

is valid. Now we claim that H = −H⋆ holds if and only if φ(H) is unitary.

“⇒” Assume H = −H⋆. Then equation (5) shows that (Γ1x,Γ2y)G + (Γ2x,Γ1y)G = 0 holds for all
x, y ∈ D(H). This is precisely the condition in equation (6) and thus φ(H) is unitary.

“⇐” Let φ(H) be unitary. Then the condition in equation (6) implies that in (5) the inclusion “⊆”
holds. It thus remains to establish “⊇”. To show this we fix y ∈ D(H⋆

0 ) such that

(Γ1x,Γ2y)G + (Γ2x,Γ1y)G = 0

holds for all x ∈ D(H). Multiplying the latter with two and adding (Γ1x,Γ1y)G + (Γ2x,Γ2y)G on both
sides yields

2(Γ1x,Γ2y)G + 2(Γ2x,Γ1y)G + (Γ1x,Γ1y)G + (Γ2x,Γ2y)G = (Γ1x,Γ1y)G + (Γ2x,Γ2y)G
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which we can reorganize to

(Γ1x+ Γ2x,Γ1y + Γ2y)G = (Γ1x− Γ2x,Γ1y − Γ2y)G.

Since x belongs to D(H) we know that Γ1x− Γ2x = φ(H)(Γ1x+ Γ2x) holds, which we can plug in on
the right hand side of the last equation. Using that φ(H) is unitary on the left hand side establishes

(

φ(H)(Γ1x+ Γ2x),φ(H)(Γ1y + Γ2y)
)

G
=

(

φ(H)(Γ1x+ Γ2x),Γ1y − Γ2y
)

G

for every x ∈ D(H). As φ(H) : G → G is surjective this yields that

φ(H)(Γ1y + Γ2y) = Γ1y − Γ2y

holds. By [6, Propositions 4.7 and 4.8] we know

D(H) =
{

y ∈ D(−H⋆
0 ) ; φ(H)(Γ1y + Γ2y) = Γ1y − Γ2y

}

which establishes y ∈ D(H) as desired.

To conclude the proof it is enough to observe that the map ψ in Theorem 3 is the restriction of the
inverse of φ as given in [6, Proposition 4.8]. �
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