
Opponent Modeling in a PGM framework

Nicolaj
S?ndberg-Jeppesen

Dept. of Computer Science
Aalborg University
Aalborg, Denmark
nsj@cs.aau.edu

Finn V. Jensen
Dept. of Computer Science

Aalborg University
Aalborg, Denmark
fvj@cs.aau.edu

Yifeng Zeng
Dept. of Computer Science

Aalborg University
Aalborg, Denmark

yfzeng@cs.aau.edu

ABSTRACT
We consider the situation where two agents try to solve their
own task in a common environment. In particular, we study
a type of sequential Bayesian games with unlimited time
horizon where two players share a visible scene, but the
tasks (termed assignments) of the players are private infor-
mation. We present a probabilistic graphical model (PGM),
together with recursive modeling techniques, for represent-
ing this type of games. We introduce the type tree which
can be used to calculate policies and to efficiently approxi-
mate the opponent’s state of belief. Secondly, we propose a
method for reasoning with a mixture of models when a true
model of opponent agents is unknown in the game due to
their private information. We demonstrate its performance
in a Grid game.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
multiagent systems, opponent modeling, sequential Bayesian
games, probabilistic graphical models

1. INTRODUCTION
It is a central problem in multiagent research to model

the reasoning necessary when multiple agents, each with in-
dividual objectives, interact in the same environment. While
each agent may change the state of the environment towards
a more favorable state for itself, other agent’s actions may
change the state to a less favorable state. When planning
under such conditions it is beneficial to take into account
the other agent’s reasoning.

A solution to the aforementioned planning problem may
employ an opponent modeling method that equips each agent

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

with a model which models the other agents until a pre-
defined nesting level is met. Such solutions include recur-
sive modeling methods (RMM) [6], nested influence dia-
grams (NIDs) [4], interactive POMDPs [5] and its graph-
ical counterpart called interactive dynamic influence dia-
grams (I-DIDs) [2], and a general framework based on recur-
sive influence diagrams (RIDs) [16]. Particularly, RIDs nat-
urally inherit well-developed probabilistic graphical model (PGM)
techniques for handling the problem complexity, and have
been supplied with a set of approximate solutions to the
planning problem of unlimited time horizons. In this pa-
per, we further improve RIDs on adapting agent behavior
to respond to co-inhabiting opponents.

Previous work on RIDs mainly focuses on approximate
techniques to alleviate the complexity due to the curse of
time horizon [16]. Exploiting that an agent will have partial
information about his opponent, the approach reduces the
size of the relevant past by using the concept of conditional
independence in the structural representation. The RID
modeling technique has been applied in a typical sequen-
tial Bayesian game where the planning involves interactions
of two agents as well as unlimited time horizons. However,
the current approach concerns only a single model of op-
ponents. Consequently, the solution may become invalid in
a real situation where true models of opponents are often
unknown, particularly in a competitive multiagent setting.

In this paper, we adapt RIDs solutions to the planning
problem in which an agent needs to consider a set of candi-
date models of its opponents in the game. We introduce a
concise representation, called type tree, to recursively model
possible types of opponents. The type tree also serves as
a computational model in which we can update probability
distributions over candidate models of opponents. The up-
date employs a Bayesian mechanism for calculating new dis-
tributions given the emerging information about agents’ be-
havior. The probability distribution will then weight policies
generated by solving the set of models and the weighted poli-
cies become the predicated behavior of opponents in RIDs.

Meanwhile, we observe that a true model of opponents is
often unknown in a problem domain. We may use a mixture
of models and adapt them to the actual opponent. However,
we may get some online behavior that is unexpected from
any model in the model space. Consequently, the Bayesian
update on the hypothesized model becomes invalid due to
the inconsistency in the predicated behavior. Our solution
is to add to the mixture a model which assumes random be-
havior which then becomes the only likely model in case all
other models encounter conflicts. We implement a typical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322325586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sequential Bayesian game, called Grid, in which two agents
compete for their individual rewards while sharing a com-
mon grid environment. We show favorable performance of
the proposed techniques in the game and list some observa-
tions for further investigation.

2. GAMEDESCRIPTIONANDNOTATIONS
We consider games with the following characteristics. The

scene is visible to all players. Each player has a set of ac-
tions, which have an effect on the state of the scene. The
players act concurrently, and the joint effect of the two ac-
tions may be non-deterministic. Each player gets a score,
which is a function of the state of the scene. In case of
zero-sum games, the actual gain/loss is the score minus the
other player’s score. The score function is known only to
the player. We call the score function the assignment of the
player, and the assignment of each player does not change
during the game. We assume everything to be finite (scene,
actions, assignments). In this paper we consider games with
only two players. We shall call this kind of games a Simple
Sequential Bayesian Game (SSBG).

Formally, an SSBG consists of two players ♥, ♠ and a
world W with a finite set of states {w0, w1, w2, . . . , wn}. We
assume♥ to be female and♠ to be male. The players have fi-
nite sets ofmoves, M♥ andM♠, which affectW . The transi-
tion between world states at time t to time t+1 is determined
by a probabilistic function τ , τ : W ×M♥ ×M♠ ×W → R,
where τ (w1,m

♥,m♠, w2) is the probability of Wt+1 being in
state w2 given that Wt was in state w1 and the two players
make the moves m♥ and m♠, respectively. Furthermore,
each player draws an assignment from a finite set A. The
assignment is a particular score function reflected in utility
numbers over states of the world. For the sake of notational
convenience we shall throughout the paper assume that ♥
has received the assignment a1. The structure of the game
and the world state is always known by both players, but
the actual assignment of the other player remains hidden,
and the opponent’s moves may also be hidden.

When both players have decided their moves, the game
continues with the next time step. There is no prefixed limit
on the number of moves, but the time for playing the game
is so short that discounting is not relevant. That is, the
players aim for maximizing the sum of the utilities gained
after each move.

3. RECURSIVE INFLUENCE DIAGRAMS
We start with a brief review on recursive influence dia-

gram (RID) and describe its solutions for addressing the
problem of time horizon when determining optimal policies.
We refer readers to [16] for more details.

3.1 The RID Representation
An RID is a dynamic influence diagram [17] that models

the agent’s subjective decision-theoretic reasoning and its
reasoning about other agent’s reasoning. Figure 1 shows an
RID modeling an SSBG as seen in the eyes of ♥. The model
consists of 3 influence diagrams, namely the A-Model, B-
Model and the λ-Model, representing ♥’s model, ♥’s model
of ♠ and ♥’s model of ♠’s model of ♥ respectively.

RIDs follow the same notations and conventions as influ-
ence diagrams [7] with chance nodes, decision nodes and util-
ity nodes represented as circular nodes, rectangular nodes

W0 W1 W2

M♥
1

M♠
1

M♥
2

M♠
2

U1 U2

A♥ A♠

W0 W1 W2

M♥
1

M♠
1

M♥
2

M♠
2

U1 U2

A♥ A♠

W0 W1

M♥
1

M♠
1

U1

A♥

A-Model B-Model λ-Model

Figure 1: An ID framework for opponent modeling
which contains a set of nested models.

and diamond shaped nodes, respectively. The nodes labeled
by A♥ and A♠ represent the assignments; the nodes labeled
withM represent moves; the U -labeled nodes represent score
functions, and the Ws represent the world states. The tran-
sition function is represented by the conditional probability
P (W1|W0,M

♥,M♠). Looking at the A-Model, when decid-
ing for the first move ♥ knows her assignment A♥ and the
world state W0, and when deciding for the second move she
will also know W1 as well as her own first move, M♥

1 .
The connection between the A-Model, the B-Model and

the λ-Model is as follows: in the A-Model, ♥’s own deci-
sions are represented as decision nodes while she represents
♠ decisions as chance nodes. That means that the policy
for ♠ in each of his decisions must be represented as a con-
ditional probability distribution. To find these, ♥ consults
the B-Model - which in this case is another RID but this
time representing the game in the eyes of ♠. In the B-
Model, ♠’s decisions are represented as decision nodes and
♥’s decisions as chance nodes. The conditional probability
distributions representing ♥’s decisions in the B-Model are
found by consulting the λ-Model which in this case is an
ordinary influence diagram where an assumption about the
opponent’s policy has been made, i.e. that ♠ in this case is
playing completely at random. The model in the λ-Model
can be solved using standard algorithms for solving IDs (see
for instance [14, 15, 8]) and when a policy is found in the
λ-Model it can be represented as a conditional probability
distribution in theM♥

1 andM♥
2 nodes of the B-Model. Then

we can proceed by solving the B-Model and obtain policies
for M♠

1 and M♠
2 which are then represented as conditional

probability distributions in the M♠
1 and M♠

2 nodes of the
A-Model. Finally, we can solve the A-Model and get a policy
for M♥

1 and M♥
2 .

3.2 The Player Representation
It is clear from the above discussion that RIDs have in-

herent assumptions about how many future time steps ♥ is
taking into account, how many future time steps ♥ thinks
♠ is taking into account and finally how many future time
steps♥ thinks♠ thinks♥ is considering. Furthermore, RIDs
have inherent assumptions about how deep ♥’s nesting level
is. In Figure 1 the A-Model, the B-Model and the λ-Model
takes 2, 2 and 1 future time steps into account respectively,
and the nesting level of the A-Model is 3. In order to cap-
ture ♥’s nesting level and time horizon in a concise way, we
give the following definition (inspired by [1]).



Definition 1. Player Representation
A player representation P is a pair defined as follows:
NIL represents a level 0 player, which moves completely

at random.

1. P = (h,NIL) represents a player with time horizon
h and nesting level 1 (assuming the opponent to be a
NIL player).

2. Given a player representation O, with nesting level l−1
and time horizon q. Let h ≥ q. Then P = (h,O)
represents a player P with time horizon h and nesting
level l.

When obvious from the context, we will use the term ’player’
rather than ’player representation’.

For example, Figure 1 represents a (2,(2,(1,NIL))) player
where the B-Model represents a (2,(1,NIL)) and the λ-Model
represents a (1,NIL) model.

3.3 Solutions
RIDs provide different ways of addressing the curse of time

horizon in the models by either removing arcs or adding arcs
in the influence diagrams. When removing arcs RIDs use
limited memory influence diagrams (LIMIDs) which were
proposed in [11] and when new arcs are introduced the idea
of information enhancement is used[16]. More specifically,
an approximation using information enhancement in SSBGs
can be obtained by assuming that at some point in the fu-
ture, a set of private information is revealed to a relevant
player. The technique can be implemented by altering the
structural representation of RIDs. By doing this, we can re-
duce the computational complexity on solving RIDs. For the
example of the B-Model in Figure 1, an approximation can
be obtained by adding an arc from A♥ toM♠

2 , (♥ assumes ♠
to know her assignment when deciding for the second move).
The result is that W0 and M♠

1 become irrelevant to the de-
cision made in M♠

2 (see [9] for more information). In ex-
periments with games where different models using LIMIDs
and information enhancement respectively were compared
to the exact models, the amount of consumed memory was
significantly reduced while acceptable performance was still
achieved.

4. TYPE TREE
In this section we introduce the type tree. A type tree is a

data structure that can be used to represent ♥’s probability
distribution over ♠’s assignment. It can also represent ♥’s
beliefs of ♠’s belief of ♥’s assignment etc. We show how to
use the type tree to calculate policies, and how to update
the type tree when observations are received.

4.1 A Player’s type
Each player has private information. In the beginning of

the game, the private information is the assignment taken
from A. Together with the assignment, each player holds a
belief of the opponent’s assignment. In our context a belief
is a subjective probability distribution. Each player also has
a belief of the opponent’s beliefs. During the game the play-
ers make observations and use them to update their beliefs.
We assume that the players update their subjective prob-
abilities in a rational way. Furthermore, the players will
during the game collect further private information, namely

♥[a1]

♠[a1]

♥[a1]

♠[a1]

♠[a2]

♠[a3]

♥[a2]

♠[a1]

♠[a2]

♠[a3]

♥[a3]

♠[a1]

♠[a2]

♠[a3]

♠[a2]

♥[a1]

♠[a1]

♠[a2]

♠[a3]

♥[a2]

♠[a1]

♠[a2]

♠[a3]

♥[a3]

♠[a1]

♠[a2]

♠[a3]

♠[a3]

♥[a1]

♠[a1]

♠[a2]

♠[a3]

♥[a2]

♠[a1]

♠[a2]

♠[a3]

♥[a3]

♠[a1]

♠[a2]

♠[a3]

0.3

0.6

0.9
0.1
0.0

0.2

0.8
0.1
0.1

0.2

0.7
0.1
0.2

0.4

0.2

0.6
0.1
0.3

0.7

0.5
0.1

0.4

0.1

0.4
0.1

0.5

0.3

0.1

0.3

0.1
0.6

0.1

0.2

0.1
0.7

0.8

0.1

0.1
0.8

Figure 2: The tree representing the level 3 initial
type for ♥. ♥ knows her own assignment a1. From
the root there is a branch to a sub tree for each
possible ♠ assignment. The edges are labeled with
the probability assigned to each subtree.

their own moves. This means that each player should extend
their beliefs to cover beliefs of the opponent’s moves and the
opponent’s belief of her moves.

We will adopt the notion of type from game theory, and
by a player’s type refer to her private information as well as
her beliefs [3].

Definition 2. Initial Types
Let O and P be players, and let A be a finite set of as-

signments.
A level 1 initial type T for O is a pair (a,∆(A)), repre-

senting a level 1 player, where

i a ∈ A is the assignment of O

ii ∆(A) is a probability distribution over A representing
O’s belief of P ’s assignment.

If the two players draw their assignments from different sets,
it can be represented through 0-probabilities in ∆(A).

A level l initial type for O is defined recursively as follows:

iii Let U be a set of level l − 1 initial types for P , one
for each member of A; let ∆(U) be a probability dis-
tribution over U, and let a be O’s assignment. Then
T = (a,∆(U)) is a level l initial type for O.

An initial type can be depicted as a tree. Figure 2 depicts
an initial type as a type tree containing a level 3 initial type
with A = {a1, a2, a3}. The root has been labeled with ♥’s
assignment, namely a1. The root has 3 subtrees one for each
possible ♠ assignment. Each link is labeled with ♥’s belief
of ♠ having the particular assignment. The same is done
recursively down from the roots of the subtrees.

A type is a distribution over types, but it is also implicitly
a distribution over the opponent’s assignments. In Figure 2
this distribution can be read from the edges going out from
the root. We shall call this distribution the player’s (or
type’s) primary belief. The player’s secondary belief is her
belief of what the opponent believes of her assignment. This
can also be read from the type.

From the type in Figure 2 we can easily read ♥’s primary
belief, namely P (A) = (0.3, 0.4, 0.3). To find her secondary



T

W0 W1 W2

M♥
1

M♠
1

M♥
2

M♠
2

U1 U2

A♠

T
a1

W0 W1 W2

M♥
1

M♠
1

M♥
2

M♠
2

U1 U2

A♥

T
a2

W0 W1 W2

M♥
1

M♠
1

M♥
2

M♠
2

U1 U2

A♥

T
a3

W0 W1 W2

M♥
1

M♠
1

M♥
2

M♠
2

U1 U2

A♥

T
a1a1

W0 W1

M♥
1

M♠
1

U1

T
a1a2

W0 W1

M♥
1

M♠
1

U1

T
a2a1

W0 W1

M♥
1

M♠
1

U1

T
a3a1

W0 W1

M♥
1

M♠
1

U1

. . .

. . .

. . .

Figure 3: An influence diagram representation of the
type tree for player ♥. The tree is used to calculate
the ♥’s policies δ1 and δ2. Probabilities on the links
have been omitted in this figure.

belief, we need to go a bit deeper into the structure. With
probability 0.3 ♠ has the belief (0.6, 0.2, 0.2), with probabil-
ity 0.4 he has the belief (0.2, 0.7, 0.1), and with probability
0.3 he has the belief (0.1, 0.1, 0.8). Altogether, this yields
the belief (0.29, 0.37, 0.34).

We will also use conditional beliefs: if the opponent has
type t, what is then his primary or secondary beliefs? In
Figure 2, for example, we have that given that ♠ has as-
signment a1 then (♥ believes that) his secondary belief is
(0.84, 0.10, 0.06); given the assignments a2 and a3 the sec-
ondary beliefs are (0.51, 0.10, 0.39), and (0.13, 0.10, 0.77),
respectively.

A type holds private information and beliefs relevant for
decisions, and in the initial state the assignment is the only
private information relevant for deciding the move. As men-
tioned above, the move performed by the opponent may ac-
tually be hidden to the player. Therefore, the types of the
players should be extended with moves taken, belief of the
opponent’s move, belief of what the opponent beliefs, etc.
This causes a combinatorial explosion (the curse of current
history). We could extend the definition of type to also in-
clude the situations after moves. However, we will refrain
from that, as we later will show how to use an initial type
as an approximation.

4.2 Type tree with RIDs
Each internal node in a type tree represents an acting

agent, and we have to find the policy for each of them. So,
we attach an influence diagram to each internal node. Figure
3 shows a type tree of influence diagrams representing the
RIDs from Figure 1.

4.2.1 Notations
A node in the type tree of IDs has a label (an assignment),

and it has an ID attached. A node is identified through a
sequence of assignments s = {aj1 . . . ajk}, where the assign-
ment of the root is not included, and the node is denoted T s.
That is, in Figure 3, the node with an ID for ♠ with assign-
ment a2 is denoted T a2 , and its child node with assignment
a1 is denoted T a2a1 . Note that the label of the node is the
last assignment in the sequence s. Note also that if k is even,
then the player is ♥, and if k is odd, then the player is ♠.
We shall also let T s refer to the node’s attached ID.

The probabilities and policies from the various IDs are
also indexed by s. δa2a3 is the policy for T a2a3 , δa2

1 is the
policy for the first decision in T a2 , and P a3 is a probability
table from the ID T a3 .

4.2.2 Solving the type tree with IDs
The tree is solved from the leaves and up to the root.

Taking the type tree in Figure 3, we first calculate the nine
optimal policies δaiaj (W0) in the leaves. They are used to
determine P ai(M♥|W0, aj):

P
ai(M♥|W0, aj) = δ

aiaj (W0). (1)

Next, the 3 IDs T ai are solved to provide δ
ai
1 (W0) and

δ
ai
2 (W0,W1,M

♠
1 ), and we set

P (M♠
1 |W0, ai) = δ

ai
1 (W0) (2)

and

P (M♠
2 |W0,W1,M

♥
1 , ai) = δ

ai
2 (W0,W1,M

♥
1 ). (3)

Finally, we solve the ID in the root to get the policies δ1(W0)
and δ2(W0,W1,M

♥
1 ) (for the assignment a1).

4.3 Updating the type tree
When both players have taken a move and the resulting

world state is observed, they shall exploit the new informa-
tion to update their beliefs in order to determine their next
move. In our setting this means that ♥ has to update her
type tree. In the description below we take outset in the
structure in Figure 3, but the methods cover all structures.

4.3.1 Public moves
We shall first assume that the players are informed about

the opponent’s moves. Then the private information does
not vary during the game, and the structure of the type is
invariant. Hence, ♥ shall only update beliefs of assignments.

At the leaf level there is no updating to do, as at the leaves
the opponent is assumed to play completely at random and
an even distribution over assignments is always assumed. So,
the updating consists in updating her primary belief and the
conditional beliefs. With respect to influence diagrams, the
updating consists in updating the prior probabilities for A♠

in the A-model and the priors for A♥ in the 3 B-models.
Assume now that after the first move ♥ has observed:

d = {W0 = w0,M
♥
1 = m♥,W1 = w1,M

♠
1 = m♠}. To deter-

mine the new belief of A♠, she can enter the observations as
evidence in the A-model influence diagram, and belief up-
dating in the model provides P (A♠|d). The formula for the
calculation is

P (A♠|m♥
, w0, w1,m

♠) ≃ P (m♠|w0, A
♠)P (A♠), (4)



where ≃ means that the two vectors of numbers are propor-
tional. The right hand side is transformed to a probability
distribution by normalizing it: divide each number by the
sum of all numbers. Note that the two (conditional) proba-
bility tables of the right hand side are part of model A.

The updated probabilities for A♠ are new labels on the
links from the root in the type tree.

Next, she has to update the conditional primary beliefs.
Take the subtree T a, where ♠ has the assignment a. ♠’s ev-
idence is e = {W0 = w0,M

♥ = m♥,W1 = w1,M
♠ = m♠}.

It is entered to the B-model T a, and propagation yields
P a(A♥|e). The calculation is similar to the calculation of
the primary belief, and the formula is

P
a(A♥|w0,m

♥
, w1,m

♠) ≃ P
a(m♥|w0, A

♥)P a(A♥), (5)

where the two probability tables of the right hand side are
part of the B-model.

To determine her next move, ♥ changes the prior prob-
abilities for the assignments in the influence diagrams and
does the same for the first move.

4.3.2 Private moves
If the opponent’s moves are not disclosed, then her up-

dated belief of A♠ is based on c = {W0 = w0,M
♥ =

m♥,W1 = w1}. Again, P (A♠|c) is found through belief
updating in the A-model. The calculation formula is

P (A♠|m♥
, w0, w1) ≃

∑
M♠ P (w1|w0,m

♥,M♠)

P (M♠|w0, A
♠)P (A♠), (6)

where the probability tables of the right hand side are part
of the A-model.

Things are more complicated with respect to the condi-
tional beliefs. If ♠ has assignment a, he will use the evi-
dence c♠ = {W0 = w0, A

♠ = a,W1 = w1,M
♠
1 = m♠}, and

he does not know M♥
1 . He would use the B-model to get

P a(A♥|w0, w1,m
♠) for which the formula is

P
a(A♥|w0, w1,m

♠) ≃
∑

M♥
1

P a(w1|w0,m
♠,M♥

1 )

P a(M♥
1 |w0, A

♥)P a(A♥). (7)

However, as M♠
1 is not disclosed to ♥, she cannot perform

this calculation. She could condition on M♠
1 and add nodes

to the type tree, but that has to be done after each move,
and the type tree will grow exponentially with the number
of moves. On the other hand, if the policies are determin-
istic, then knowing the assignment will suffice. She has his
policy represented in the A-model as P (M♠

1 |W0, A
♠), and

♠’s calculations can be simulated through the formula

P
a(A♥|w0, w1,m

♠) ≃ P a(A♥)
∑

M♥
1

P a(M♥
1 |w0, A

♥)
∑

M
♠
1

P (w1|w0,M
♠
1 ,M♥

1 )P (M♠
1 |w0, a), (8)

where the 2 first probability tables of the right hand side
are part of the B-model for assignment a while the 2 last
probability tables are part of the A-model. Note that the
evidence m♠ does not appear at the right hand side.

If ♠ has several optimal moves given his assignment and
the world state, then ♥ cannot perform a correct simulation
of ♠’s calculation. Instead, she can as an approximation
use the average of his estimates: ♠ will with probability
P (m♠|w0, a) use P a(A♥|w0, w1,m

♠) for the updating. In

average, the updating will be

P
a(A♥|w0, w1) ≃ P a(A♥)

∑
M

♥
1

P a(M♥
1 |w0, A

♥)
∑

M
♠
1

P (w1|w0,M
♠
1 ,M♥

1 )P (M♠
1 |w0, a), (9)

Equation 9 is actually the same formula as the one for deter-
ministic policies. In this way we avoid the curse of current
history.

5. MIXTUREMODELS FORADAPTATION
So far we have assumed that ♥ works with only one op-

ponent model. In reality, she may work with a mixture of
models and may not know the true model of ♠. To react
in an intelligent way, ♥ needs to adapt the set of models to
the actual behavior of ♠. The adaptation becomes straight-
forward if the true ♠ model is contained in the model set.
Otherwise, ♥ needs to handle the inconsistent observation
of ♠’s behavior due to his unexpected model.

5.1 General Adaptation
Formally, let Γ1, . . . ,Γk be models. Then a mixture model

can be denoted as

Γ =
⊕

i

µiΓi, (10)

where µi are positive reals for which
∑

i
µi = 1.

When calculating the policies in the Γ, you combine the
policies from the Γi-models. Let δ1, . . . , δk be policies pro-
vided by Γ1, . . . ,Γk respectively, then the combined policy,
δ, is

δ =
∑

i

µiδi. (11)

Updating of beliefs for the Γi-models is performed as de-
scribed previously, and you calculate a combined belief as
you calculated combined policies. You may consider the
mixture as combining models with their probabilities. That
is, µi is the modeler’s (subjective) probability, P (Γi), that
the opponent plays in accordance with model Γi. Now, when
information e has been collected, then the probabilities for
the various models change. Let P (e|Γi) denote the proba-
bility of the evidence e if ♠ plays in accordance with model
Γi. Then standard Bayesian conversion yields

P (Γi|e) ≃ P (e|Γi)P (Γi). (12)

This means that if we can calculate P (e|Γi) for all i, then we
can use the collected information about ♠’s moves to adapt
the mixture to his actual reasoning.

For updating of beliefs you have the evidence e = {wo,
w1, m

♥
1 } and the updating will for the ♠-types be exactly

as for single models, and in this way you get Pi(A
♠|e), the

updated belief of ♠’s assignment given that he plays accord-
ing to model Γi represented in the type Ti. However, we also
need to update the probabilities of the 3 models. From the
Bayesian inversion above we see that it is sufficient to calcu-
late P (w0, w1,m

♥
1 |Ti), the probability of the evidence given

the model with type Ti. For notational convinience, let Pi

denote probabilities in the model with type Ti. Then

Pi(w0, w1,m
♥
1 ) ≃

∑
M♠ P (w1|w0,M

♠,m♥)
∑

A♠ Pi(M
♠|w0, A

♠)Pi(A
♠), (13)

where P (w1|w0,M
♠,M♥) is the transition rule in the game,

Pi(M
♠|w0, A

♠) is δai for the various ♠-assignments, and



Pi(A
♠) is the initial belief of ♠’s assignment given that he

plays according to model i. Altogether we get

P (Ti|w0, w1,m
♥) � P (Ti)

∑
M♠ P (w1|w0,M

♠,m♥)
∑

A♠ Pi(M
♠|w0, A

♠)Pi(A
♠). (14)

At time step t, ♥ receives an observation and needs to
update her type tree Tt. For that she could use the update
function (6), but it will only suffice if observation received at
time step t is consistent with her type tree. If the observation
is inconsistent with Tt (i.e. the observation has probability
0 according to her model), Bayesian update becomes invalid
and ♥ will have no way of assessing the probabilities of Tt+1.
Consequently, we are unable to update the probabilities over
the model from that state and forward.

Actually, we are dealing here with a general problem in
opponent modeling techniques. When ♥ has a model of ♠,
the model of ♠ will inevitably contain a wrong model of
♥ (otherwise the model would be infinite) and inconsistent
observations will eventually emerge. It is an open issue how
this important problem must be handled so we propose a
more thorough analysis of this problem as future research.

For the purpose of the experiments in this paper we pro-
pose to resolve the conflict by adding a baseline model, Γ0

= NIL, that prescribes random behavior, into the mixture
of models. As Γ0 hypothesizes all possible actions that an
opponent may take, updating the probability over the mix-
ture of models can always be executed through the Bayesian
function (6).

In spite of its simplicity, the approach using a mixture of
models with additional randomization has some merit. It is
possible to investigate whether one of the candidate models
is the correct opponent model. One could apply an entropy
based score to get an idea of whether there is a great degree
of confusion in the mixture. If the entropy is high, it means
that the player is uncertain which candidate model is the
right one. That can be used in a future line of work where
such a score is used to draw conclusions on whether the
mixture is a good representation of the opponent model or
whether other candidate models should be considered.

We implemented RID and the proposed type tree frame-
work using the HUGIN1 engine. To perform empirical ex-
periments with the methods, we have implemented a game
named Grid that is an abstraction of popular physical games
in northern Europe. We demonstrate that our models are
able to capture players’ interactions and to improve players’
performance when facing various types of opponents in the
game. In the experiments we shall refer to the models listed
in Table 1.

In Grid, 2 players stand on each their side of a table with
a ball placed on top of it. The objective is for each player
to blow the ball to a favorable position. The players have
each their assignment which determines the player’s desired
destination for the ball and the table is surrounded by walls
such that the ball does not fall over the edge. The table is

1www.hugin.com

Table 1: Models used in the experiments.
Model

Γ0 NIL

Γ1 (1, NIL)
Γ2 (2, (1, NIL))
Γ3 (3, (2, (1, NIL)))
Γ4 (3, (3, (2, (1, NIL))))

Opponent
Models

MIX1 Γ0,Γ1,Γ2

MIX2 Γ1,Γ2

MIX3 Γ1,Γ2,Γ3

represented as an m×n grid and an example of a 4×2 grid
game in Figure 4.

Initially, both players draw an assignment (from the set
A = {a1, a2, a3}) and the assignment each player gets de-
termines the pay-off function over the ball’s positions in the
grid. Pay-off functions corresponding to assignments a1, a2

and a3, respectively, are shown in Figure 4.
In each turn the players observe the position of the ball

and decide to blow it either up, down, right or left, (N , S,
E and W ). The effect on the ball is a combination of the
directions in which the two players blow, and it is determined
by the non-deterministic transition function.

When the ball is in its new position, the players are re-
warded according to their assignments and the next turn
begins. The real game scores are not revealed to the play-
ers. The game is a zero-sum game so ♥ is deducted what ♠
wins and vice versa. The game has unbounded time horizon,
but it is interrupted by the game master after a number of
turns.

❍ ❍ ❍ ❍

❍ ❍ ❍ ❍

❍ ❍ ❍ ❍

❍ ❍ ❍ ❍

❍ ❍ ❍ ❍

❍ ❍ ❍ ❍

{W,W } {W,E}

a1 a2 a3

5 0 0 5
5 0 0 0

5 5 0 0
0 5 0 0

5 0 0 0
0 5 5 0

Figure 4: An example of the game Grid. In the first
move, both players choose to move W . In the second
turn, ♥ and ♠ move W and E respectively, canceling
each other’s effect.

In the first series of experiments we have measured the
performance of player ♥ when she has the correct model of
♠ and compared with games where ♥ has made wrong as-
sumptions about ♠’s nesting level. We have used the 4× 2
board and the 3 assignments from the above example. In
each encounter between the ♥ and ♠ models they play 100
games. To avoid one player having an advantage from one
particular assignment we let ♥ and ♠ play with each possi-
ble configuration of assignments the same number of times.
Furthermore, we have left out the configurations where ♥
and ♠ have the same assignment since these games will al-
ways end in a draw (0 – 0 in fact).

The results are summarized in Table 2. The column player
♥ with models Γi, (i = 1,. . .,4) competes with the row player
♠ with models Γj , (j = 0,. . .,3). Note that ♥ has the correct
model of ♠ if i = j−1, while ♥ overestimates ♠ if i > j−1,
and finally, ♥ underestimates ♠ if i < j − 1.

As expected, ♥ wins when she has the correct assumptions
about ♠’s nesting level, whereas her performance is reduced
when ♥ overestimates the opponent.



Table 2: Average scores and standard deviations
(italics) obtained on different levels.

♥\♠ Γ0 Γ1 Γ2 Γ3

Γ1 23.2(12.3) – – –
Γ2 12.85(15.6) 12.1(19.1) – –
Γ3 4.77(17.7) -6.59(17.1) 13.75(17.0) –
Γ4 14.9(14.2) -16.5(19.2) 3.71(18.5) 35.8(13.9)

If we look at the results in the eyes of♠ we can see the con-
sequences of underestimating the opponent. For instance, in
the column labeled Γ1, ♠ is assuming ♥ to play with the Γ0

model, whereas ♥ is really playing with models Γ2, Γ3 and
Γ4 respectively. ♠ is generally loosing when ♥ has the cor-
rect model of him but that does not seem to be true when
♥ has overestimated ♠. For instance, ♠ has won on average
6.59 points with the Γ1 model against ♥ with the Γ3 model.
Arguably, the results seem to indicate that the Γ1 model is a
rather successful choice against an overestimating opponent.
However, it is not the best choice. Look for instance at the
games against the Γ3 model. The Γ1 model wins with 6.59
points on average against the Γ3 model but the Γ4 wins with
35.8 points on average against the same model. Hence the
best result seems to be obtained when a player knows the
correct model of the opponent.

Overall the results indicate that the best results are ob-
tained when the opponent’s model is known. However, if
the model of the opponent is unknown it may be a good
choice to use a Γ1 model. The advantage of this observation
is even better if we do not know the opponent’s model but
we have information that the opponent does certainly not
use the Γ2 model. If, however, the opponent is using a Γ2,
model the Γ1 is a bad choice. In that case a Γ3 model is the
optimal choice. Generally it may be a good policy to play a
combination of the Γ1 and the Γ3 models if the opponent’s
model is unknown. The scheme for adaptation we have pro-
posed here may be a good scheme for playing with such a
combination of models.

6.3 Adaptation
In the second series of experiments we used mixtures of

models to allow the player to adapt to the opponent’s model.
We used the mixture models, MIX1, MIX2 and MIX3 from
Table 1. The model Γ0 plays randomly, so he can always be
expected to pick any action. All mixture models will start
with uniform priors. MIX2 and MIX3 will add Γ0 with prob-
ability 1 in case they observe an inconsistent observation.

We report the results of the experiments in Table 3. Player
♥ plays with the 3 mixtures from Table 1 against player ♠
playing with Γ0, Γ1, Γ2 and Γ3 respectively. Note that when
♥ uses MIX1 and MIX2 against Γ3 she is playing against a
model which is not included in her mixture. ♥’s performance
does not seem to be very good in these cases. However,
playing with MIX1 is better than playing a pure Γ2 against
the Γ3 (See Table 2).

The results also show the influence from including Γ0 in
the mixture. Against Γ1 and Γ2 MIX1 has performed worse
than MIX2 and MIX3. Not surprisingly, MIX1 shows the
best performance against Γ0. This is because MIX1 will
adapt faster to the Γ1 policy than to the other models. Ta-
ble 4 shows the average probability assigned to Γ1 after 10
moves for each of the experiments. It shows that MIX1 has

Table 3: Average scores and standard deviations
(italics) obtained by the mixture models in Table 1.

♥\♠ Γ0 Γ1 Γ2 Γ3

MIX1 20.5(12.4) 2.05(14.7) -0.35(15.4) 2.9(19.7)
MIX2 11.2(15.3) 7.35(18.6) 10.4(16.0) -1.7(22.2)
MIX3 12.6(13.7) 2.85(15.8) 10.3(17.1) 9.25(24.0)

Table 4: Average beliefs assigned to Γ0 in models
MIX1, MIX2 and MIX3 after 10 moves against Γ0,
Γ1, Γ2 and Γ3 respectively.

♥\♠ Γ0 Γ1 Γ2 Γ3

MIX1 1.00(0.00) 0.85(0.02) 0.77(0.02) 0.99(0.00)
MIX2 0.62(0.05) 0.02(0.00) 0.04(0.01) 0.41(0.06)
MIX3 0.53(13.7) 0.11(0.01) 0.01(0.0 ) 0.01(0.00)

a strong tendency to conclude that the opponent is using
the Γ0 model (and hence it will use the Γ1 model). Further-
more, MIX1 has a tendency to loose when ♠ uses Γ2 but it
has a tendency to win against Γ3. The explanation may be
that Γ1 looses to Γ2 but it wins against Γ3 (see Table 2).

Table 4 shows that the MIX2 model and the MIX3 model
do not have the same tendency to conclude that the oppo-
nent plays randomly. This is actually a small disadvantage if
the opponent actually plays randomly. Against the Γ0 model
MIX2 and MIX3 have only assigned probabilities 0.62 and
0.53 respectively to the Γ0 model. This in turn explains the
lower performance of the MIX2 and MIX3 models against
the Γ0 model compared to the MIX1 model.

The results are comparable to the results of Table 2. Take
for instance the results of MIX3. The performance against
the Γ0 model is in the best case 23.2 when ♥ plays a pure Γ1

model and it is 12.6 if ♥ uses MIX3. Against the Γ3 model
♥ wins on average 35.8 points when she plays with the pure
Γ4 model but it has dropped to 9.25 with MIX3. These
are however comparisons with games where the pure models
have not overestimated nor underestimated the opponent’s
model. A more fair comparison would be to compare the
performance of e.g. MIX3 with the performance of the pure
Γ4 model. In this case the performance against the Γ1 model
has increased from -16.5 to 2.85 and against the Γ2 the per-
formance has increased from 3.71 to 10.3.

Overall the proposed adaptation scheme seems to provide
good performance and may be a fruitful approach when the
exact opponent models are unknown.

6.4 Model Complexity
The most demanding computation is to solve the influence

diagrams in the models. They are converted into a compu-
tational structure called a strong junction tree [8]. It is the
number of cells in the strong junction tree that constrains
how complex models we can solve.

Table 5 shows the average time used for each move and
the total number of cells used by the influence diagrams in
each model’s type tree. Time is the average time used per
move while space consumption is measured in the number
of cells used in the underlying strong junction trees. The
average time has been measured on a computer with a 2.5
GHz Intel Xeon CPU, with 32 GB RAM. The actual memory
consumption of the Γ2 model was 25 MB. The Γ3 however,



Table 5: Time (Avg t) and space consumption (JT
Size) of the fixed sized models.

Avg t JT Size

Γ1 0.001 sec. 2,361
Γ2 0.003 sec. 22,861
Γ3 24 sec. 7,445,513
Γ4 283 sec. 25,679,069

consumed 1.3 GB while the Γ4 could not run since it requires
more RAM than available on the system. Approximation
methods proposed in [16] were applied in order to implement
the Γ4 model.

7. RELATED WORK
RIDs contribute to the growing line of research on proba-

bilistic graphical models for multiagent decision making in-
cluding nested influence diagrams (NIDs) [4], multiagent in-
fluence diagrams (MAIDs) [10] and interactive dynamic in-
fluence diagrams (I-DIDs) [2]. Both NIDs and MAIDs pro-
vide an analysis of the game from an external viewpoint, and
adopt Nash equilibrium as the solution concept. However,
the deficiencies of equilibrium (non-unique and incomplete)
prevent the applications of NIDs and MAIDs in a general
setting. Recently, I-DIDs emerge as an alternative frame-
work for solving the sequential multiagent decision making
problem. The technique represents the problem from the
perspective of an individual decision maker and allows a
general setting of both cooperative and competitive agents.
Due to the computational complexity, current research on
I-DIDs still focuses on the planing problem of limited time
horizons [18]. Analogous to I-DIDs, RIDs appear as one
PGM framework for solving sequential Bayesian games, and
mainly target at a more natural planning problem in which
the time horizons are unknown or unlimited. More impor-
tantly, RIDs can resort to many effective PGM techniques,
like the information enhancement method [16] for overcom-
ing the curse of time horizon, therefore resulting in more
efficient solutions.

In parallel, other frameworks for modeling the multiagent
decision-making problem exist. Most notable among them is
the decentralized POMDP (Dec-POMDP) [13]. This frame-
work is suitable for cooperative settings only and focuses
on computing the joint solution for all agents in the team.
Many Dec-POMDP techniques [12] exploit the conditional
independence concept to factorize the state space with the
purpose of providing scalable solutions.

8. DISCUSSION AND CONCLUSION
The curse of current history emerges in games where the

moves of the opponents are not disclosed. The player will
have to represent all moves taken along with each possible
belief state of the opponents for each possible opponent move
resulting in a combinatorial explosion. In this paper we first
introduce the notion of type tree and show how they can
be used to address the curse of current history. Secondly,
we observe that the true model of the opponent is often
unknown in opponent modeling scenarios. To address this
problem, we apply a mixture of models. As experiments also
have shown, the success of the player depends on whether
the player makes correct assumptions about the opponent’s
model. With a mixture of models this requirement can be

relaxed.
The possible lines of future research are many. However,

we have identified the following as the most interesting topics
to pursue: (i) The area of modeling inconcistency in oppo-
nent modeling is not yet fully understood and more work is
needed in this area. (ii) In this paper we have not investi-
gated in depth how a good set of candidate opponent models
can be selected. It is possible to come up with some good
advice based on the present experiments but a general in-
vestigation has yet to be performed. (iii) We have assumed
that the opponent is playing with a singleton model. It must
be investigated how to handle situations when the opponent
is allowed also to use a mixture of models.

9. REFERENCES
[1] D. Carmel and S. Markovitch. Incorporating opponent

models into adversary search. In AAAI, pages 120–125,
1996.

[2] P. Doshi, Y. Zeng, and Q. Chen. Graphical models for
interactive pomdps: Representationsand solutions.
JAAMAS, 18(3):376–416, 2009.

[3] D. Fudenberg and J. Tirole. Game Theory. The MIT Press,
Cambridge, MA, 1991.

[4] Y. Gal and A. Pfeffer. A language for modeling agents’
decision making processes in games. In AAMAS, pages
265–272, 2003.

[5] P. J. Gmytrasiewicz and P. Doshi. A framework for
sequential planning in multi-agent settings. JAIR,
24:49–79, 2005.

[6] P. J. Gmytrasiewicz, E. H. Durfee, and D. K. Wehe. A
decision theoritic approach to coordinating multiagent
interactions. In IJCAI, pages 62–68, 1991.

[7] R. A. Howard and J. E. Matheson. Influence diagrams. In
Readings on the Principles and Applications of Decision
Analysis, pages 721–762, 1984.

[8] F. Jensen, F. V. Jensen, and S. L. Dittmer. From influence
diagrams to junction trees. In UAI, pages 367–374, 1994.

[9] F. V. Jensen and E. Gatti. Information enhancement for
approximate representation of optimal strategies for
influence diagrams. In PGM, pages 102–109, 2010.

[10] D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. In IJCAI, pages
1027–1034, 2001.

[11] S. L. Lauritzen and D. Nilsson. Representing and solving
decision problems with limited information. Management
Science, 47:1235–1251, 2001.

[12] J. Pajarinen and J. Peltonen. Efficient planning for factored
infinite-horizon dec-pomdps. In IJCAI, pages 325–331,
2011.

[13] S. Seuken and S. Zilberstein. Formal models and algorithms
for decentralized decision making under uncertainty.
JAAMAS, pages 190–250, 2008.

[14] R. D. Shachter. Evaluating influence diagrams. Operations
Research, 34(6):597–609, 1986.

[15] P. P. Shenoy. Valuation-based systems for Bayesian decision
analysis. Operations Research, 40(3):463–484, 1992.

[16] N. Søndberg-Jeppesen and F. V. Jensen. A pgm framework
for recursive modeling of players in simple sequential
bayesian games. IJAR, 5(51):587–599, 2010.

[17] J. A. Tatman and R. D. Shachter. Dynamic programming
and influence diagrams. IEEE Trans. on Systems, Man,
and Cybernetics, 20(2):365–379, 1990.

[18] Y. Zeng and P. Doshi. Exploiting model equivalences for
solving interactive dynamic influence diagrams. JAIR,
(43):211–255, 2012.


