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ABSTRACT 
In this paper we present an evaluation of an affective 
multimodal fusion approach utilizing dimensional 
representations of emotion. The evaluation uses 
physiological signals as a reference measure of users’ 
emotional states. Surface electromyography (EMG) and 
galvanic skin response (GSR) signals are known to be 
correlated with specific dimensions of emotion (Pleasure 
and Arousal) and are compared here to real time continuous 
values of these dimensions obtained from affective 
multimodal fusion. The results (both qualitative and 
quantitative) suggest that the particular multimodal fusion 
approach described is consistent with physiological 
indicators of emotion, constituting a first positive 
evaluation of the approach.  
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INTRODUCTION 
Affective interfaces rely on the detection and interpretation 
of emotional signals through a number of different 
modalities, creating new challenges in the field of 
multimodal interfaces. Projects such as SmartKom [44] 
have incorporated affective signals, such as facial 
expressions, as another input modality within traditional 

(e.g., task-based) multimodal interfaces, establishing 
affective input as an important component of modern 
multimodal interfaces [20]. 

Yet, even when the analysis of users’ emotional states is the 
primary objective of an interface (rather than a sub-unit of a 
task-based interface), a multimodal approach is required in 
order to be successful. This is a logical consequence of the 
fact that the expression of a given affective state takes place 
through a range of non-verbal behaviours, including, but 
not limited to: posture and body motion, gestures, and 
affective speech parameters.  

Multimodal corpora of affective expression (such as [1]) 
provide further evidence of the need to follow a more 
integrated approach. However, work dedicated to 
multimodal fusion in the context of affective interfaces is 
not as advanced as that relating to task-based multimodal 
systems. Most of the research to-date has investigated the 
fusion of low-level input signals to improve the recognition 
accuracy and robustness of a given emotional category [34, 
43]. Little research has been dedicated to semantic 
approaches to multimodal affective fusion, in which a high-
level affective interpretation of different modalities is 
integrated to capture complex affective states, even less so 
when these semantic representations depart from “universal 
emotions”. Semantic considerations are a core part of 
traditional approaches to multimodal fusion [33], yet it is 
unclear whether discrete representations (in which semantic 
approaches are often realised) are the most appropriate for 
dealing with real-time affective states. 

We have previously argued that multimodal affective fusion 
was justified at a semantic level in a range of practical 
applications, such as capturing representations of user 
experience. However, this is dependent on an appropriate 
underlying emotional model as a unifying representation 
across modalities, and we have suggested that dimensional 
emotion models in particular could be at the centre of the 
fusion mechanism [12]. 

The development of semantic approaches is hindered by a 
lack of reference models or ground truth, especially when 
departing from basic or “universal” emotions whose 
descriptive power in terms of user experience may be fairly 

 
 



limited. Richer methods of subjective evaluations such as 
FEELTRACE [41] are not employable in interactive 
scenarios, such as new media installations, where 
participants are constantly engaged with the interactive 
system. 

This presents a major difficulty in evaluation, as 
multimodal semantic systems contain a number of empirical 
assumptions and incorporate multiple results from the 
affective computing literature (e.g., when defining the 
mapping between individual modality data and dimensional 
values of an emotional model). 

In this paper, we evaluate a previously described 
multimodal affective fusion approach, described in [12], 
based on a dimensional model (Pleasure-Arousal-
Dominance or PAD [28]), by using physiological signals 
which have been demonstrated to correlate strongly with 
the individual dimensions of this model. Our aim is to show 
that physiological signals associated with dimensions of 
Valence (Pleasure) or Arousal are consistent with the output 
of a PAD-based affective fusion mechanism. 

RATIONALE 
Traditional examples of affective interfaces have included 
the recognition of user emotions when engaging in 
multimodal dialogue with a computer [44], or measuring 
the affective state of a user engaged with an intelligent 
tutoring system [36]. More recently, there has been a 

growing interest in affective interfaces as a means to control 
computer games, by making these react to the emotional 
state of the user, often using physiological signals [39] or 
Brain-Computer Interfaces [29]. Despite their 
categorization as entertainment, most computer games 
remain task-based in essence, the player having to achieve 
specific objectives and complete “levels”.  

However, affective interfaces have wider potential in the 
field of Art and Entertainment, as they can potentially be 
used to characterize the overall user experience, which is 
multimodal in nature. This type of application departs from 
traditional communication tasks and is one for which 
universal emotional categories (such as anger, joy or 
sadness) are insufficiently descriptive. On the other hand, 
dimensional models of emotion [28, 37], which support a 
continuous representational space, seem to offer a richer 
affective description of a changing user experience over 
time.  

We have previously described a system to study how 
multimodal affective interfaces could be used to capture 
user experience, using a variety of unobtrusive channels 
such as video and speech [12]. Input modalities consist of 
both user attitudes (bodily movements and posture [17, 22], 
as well as more traditional non-verbal behaviour [14]), and 
affective content of speech utterances (considering both 
acoustic parameters and affective interpretation of specific 
keywords). These various modalities are fused via an 

 
Figure 1. The affective multimodal installation. Input is gathered through cameras and microphones, and interpreted as a 
number of affective modalities. Upper body and face movement and orientation, affective keywords and affective speech 

characterizations are mapped to vectors in the PAD space. An overall vector is calculated as a weighted sum of modalities and is 
smoothed over time. 



affective representation generic enough to capture the 
changing affective nature of the experience. The PAD 
model of Mehrabian [27] seems to provide such a 
representation, and there is a growing use of the PAD 
model in HCI research, in capturing user attitudes [25] and 
expressive movements [23], as well as simulating emotions 
in autonomous agents [11]. 

Interactive Installation 
We have designed an interactive installation to explore the 
multimodal affective behaviour of users. The main 
requirement for such an installation is the ability to elicit 
sustained affective response from the users during an 
experimental session, expressed through multiple channels 
in a naturalistic manner. This has been achieved through an 
installation that dynamically responds to emotional input, 
providing an affective “feedback loop”. A dynamic 
visualization is generated using the metaphor of a virtual 
tree whose growth and appearance reflect perceived user 
attitudes (Figure 1). Tree behaviour is not purely reactive, 
however, and incorporates some hysteresis in its response. 

The tree does not reflect the exact pre-existing emotional 
state of one or other of the users, but uses affective 
interpretation to respond to perceived audience sentiment or 
aesthetic response to the installation as a whole. The 
interactive nature of the tree elicits responses from users 
and has been demonstrated to be successful throughout 
various experiments. This interactive approach is similar to 
the affective loop experiences described by Höök [18]. 

The installation is designed to elicit multimodal behaviour 
in the context of a situation that is predominantly one of 
observation rather than traditional communication. In other 
words, although the users may understand that the 
installation is responding, they are not engaging in task-
related communication.  

Through preliminary experiments, we have concluded that 
the best engagement is obtained with pairs of subjects rather 
than individuals, not least because they spontaneously 
communicate verbally with each other about the 
installation. Analysis of videos of pair interaction show that 
subjects spend ~90% of the time facing the display of the 
installation, interacting directly or commenting on it, with 
very little time spent interacting solely with each other. 

From Input Devices to Affective Modalities 
Each modality present in the installation consists of input 
from a sensing device (processing video or audio signals) 
together with affective semantics that determine the 
interpretation of input in terms of a dimensional model of 
emotion (PAD). Mapping parameters are derived from the 
literature and subject to experimental calibration. 

For non-verbal behaviour (Figure 1a), we track interested 
parties through a face detection/tracking input system. 
Movements are related to affective dimensions via the 
theory of approach/avoidance [7, 17]. Approach is mapped 

to increasingly positive Pleasure, while avoidance is 
mapped to negative Pleasure. Since higher levels of 
movement activity are judged by observers to correspond to 
emotional states of higher arousal [9], we interpret the 
magnitude of optical flow in terms of the Arousal 
dimension.  

Affective interpretation of speech is performed by two 
simultaneous analyses of audio from a microphone situated 
near participants. We have trained the EmoVoice system 
[45] to recognise characteristic speech in four quadrants of 
a 2-dimensional sub-set of PAD emotional space (Figure 
1b). Multi-keyword spotting detects pre-defined affective 
keywords, whose semantic interpretation is provided as a 
PAD tuple, derived from a list of affective words by Russell 
and Mehrabian [38]. 

We define an additional modality to extract affective 
information from signs of user interest [16]. This interest 
measurement is characterised as an active attentiveness, 
corresponding to the Arousal and Dominance dimensions of 
the PAD model, and independent of the valence of a 
reaction. Other distinct aspects of user experience with an 
affective nature, such as frustration could be incorporated in 
a similar manner, mapped to an appropriate PAD 
representation. 

Together, these modalities provide a complementary 
interpretation of behaviour in terms of the PAD emotional 
space. No one dimension is interpreted by a single 
modality, and each modality considers at least two 
dimensions. 

PAD-based Multimodal Fusion 
The PAD model has been defined as a generic 
representation of the emotional experience, in terms of felt 
emotion, affective evaluation of objects or situations and 
emotional temperament (a tendency to feel one emotion 
over another in response to a given situation). A wide range 
of descriptive affective labels have also been described in 
terms of representative values of PAD dimensions [38].  
The canonical emotional meaning of stimuli can be derived 
from aggregation of PAD representations of measured 
affective responses, both in terms of the temperament of a 
single person and characteristic responses of multiple 
people. 

Since the PAD space confers a unified semantics to the 
various affective modalities, each of which can be 
represented as a vector in the PAD space, we posit that 
fusion can be achieved through a linear combination of the 
individual modality vectors (Figure 1 c). The resulting 
overall vector characterises user affective response at a 
point in time. The aggregate user affective experience is 
then characterised by the trajectory of this vector in 3-D 
PAD space, over the length of an interactive session (Figure 
1d). This is described in more detail in [12]. 

Temporal aspects play an important part in all types of 
multimodal fusion, and multimodal affective fusion is no 



exception. However, rather than the temporal patterns 
between modalities [32], the important aspect for affective 
input is the dynamics of modalities themselves. In the 
current system, these were inspired by a study of underlying 
psychophysiological processes: affective user experience 
incorporates feedback mechanisms, where a person’s 
temperament and affective state affect future emotional 
responses [28, 35].  

PAD-based multimodal fusion is also the key to utilising 
physiological ground truth indications of emotional feeling 
(through empirically discovered associations of PAD 
dimensions with physiological signals). The PAD model 
allows us to consider Pleasure, Arousal and Dominance 
separately as (almost) orthogonal dimensions1, allowing 
comparison with separate physiological signals, supporting 
the evaluation of affective interpretation and fusion in terms 
of personal emotional response to an experience. 

PHYSIOLOGICAL SIGNALS AS EVALUATION 
The principle underlying our evaluation experiments is as 
follows: since specific physiological signals have been 
demonstrated to correlate strongly with individual 
dimensions of the PAD model, these can be used as 
reference values for representations based on those 
dimensions, within a hypothesis of orthogonality of the 
dimensions. 

More specifically, surface electromyography (EMG) 
measurements of the zygomaticus major and corrugator 
supercilii facial muscles have been shown to be strongly 
correlated with positive and negative values of the 
                                                             
1 Described by Mehrabian [28] as “nearly orthogonal” and 
showing “considerable independence”. 

P(leasure) dimension respectively [4, 14, 24]. Galvanic skin 
response, or skin conductance (GSR) has been shown to be 
strongly correlated with the A(rousal) dimension  [2, 4, 24, 
40]. 

Furthermore, because both types of signal are compatible 
with high frequency sampling, they can be used for 
dynamic value comparison, in the form of time series, over 
a whole experimental session. Correlation values given for 
session means in the studies by Lang [24] are 0.56 for 
zygomaticus EMG (zEMG), -0.90 for corrugator EMG 
(cEMG) and 0.81 for GSR (r=0.8 for GSR in [4] and r=0.81 
in [40]). 

While these properties have been assessed in use with 
discrete, separate stimuli, we seek to use them to explore 
the temporal dynamics of user interaction with a 
multimedia system. Rather than considering mean levels of 
activations in a period associated with an emotional 
stimulus, we attempt to match patterns of activation with 
similar patterns in constructed emotional representations 
from the fusion system, in the form of time series 
comparison, over a whole experimental session. 

There does not appear to be a separate physiological 
correlate to the Dominance dimension, and a study by 
Oehme et al. [31], specifically considering PAD-based 
emotional representation supports this. Only very recently 
have new approaches to the measurement of Dominance 
been proposed [13].   

The identified associations of physiological signals have a 
natural mapping onto the dimensions of the PAD model, 
illustrated in Figure 2. The basis of our evaluation is to 
compare the instantaneous value of P produced by our 
fusion method to the normalised instantaneous EMG value 
(calculated post-hoc), and similarly for A and GSR. The 
instantaneous value of P (and A) is produced by projecting 
the PAD(t) vector onto the P (and A) axis. 

Because the fusion vector is the result of several modalities’ 
contributions (see Figure 1c), its projection over the P and 
A axes retains this property. Therefore the comparison of 

 

Figure 2. Using physiological signals as emotional references. 
Skin conductance (GSR) is compared to the projection of the 

fused PAD vector on the Arousal dimension (Afusion), while 
EMG is compared to the Pleasure dimension (Pfusion).  

 

Figure 3. Contribution of each modality to each emotional 
dimension and to the overall fusion PAD vector. The 

distribution confirms the true multimodal nature of the 
interaction. The modalities are: Interest, Emotional Speech 
Recognition (ESR) by EmoVoice, Multi-Keyword Spotting 

(MKS) and Video Feature Extraction (VFE). 



Pfusion and EMG (as well as Afusion and GSR) will actually 
evaluate the quality of fusion itself. This is further justified 
by the finding that i) three modalities contribute to P and all 
four contribute to A (Figure 3), and ii) upon inspection of 
the time dynamics of the various modality vectors in the 
PAD space, individual modality vectors all follow a rotating 
pattern, meaning no single one is permanently orthogonal to 
both the P and A axis. Figure 3 gives modality 
contributions in terms of percentage of aggregate P, A and 
D(ominance) value across all sessions, as well as the 
relative contribution to the overall fused PAD vector. 

The evaluation compares PAD fusion data obtained for one 
pair of subjects to physiological signals captured on just 
one subject from each pair. This is justified by previous 
comparison of subject experience on a small sample 
showing strong correlation of electrophysiological 
responses between subjects (correlation at matched time 
lag: 0.48 < r < 0.73), confirmed via subjective emotional 
questionnaires for all pairs (r = 0.75 for Pleasure, r = 0.56 
for Arousal, p < 0.05). Hence, in the experiments, fusion 
does not combine different individual, possibly diverging, 
experiences into an average across a pair: quite the 
contrary, the pair response is strongly correlated to both 
individual responses. An example trace showing the high 
correlation between subjects in a pair is shown in Figure 4. 

As subjects spend most of the time watching and interacting 
with the tree, the correlation cannot just be explained by the 
communication between subjects in a pair or possible 
emphatic responses between them, but rather shared 
reaction to the installation itself. 

EVALUATION SETUP 
The physical setup of the installation takes the form of an 
Augmented Reality (AR) system implementing a “magic 
mirror” paradigm using a 30-inch LCD monitor. The use of 
an AR approach has a number of advantages for both 
interaction and display. In particular it defines a zone for 
interaction, delimited by the video cameras used both for 
motion analysis and AR, and supports the inclusion of 
elements of tangible interfaces in the form of AR markers 
attached to solid objects.  

The setup is shown in Figure 5. Audio was recorded via the 

microphone used for speech capture, and an external video 
camera was used to record subject interactions and 
generated artwork visuals. Outputs from the fusion system 
were also recorded, both in terms of detected affective 
interaction events, and the contribution to the emotional 
representation from each modality used. 

Explicit instructions to subjects were kept to a minimum, to 
retain the exploratory aspects of the experience. Subjects 
were allowed to view a non-interactive session with no 
emotion-derived visual reactions during baseline 
physiological measurements. They were given an indication 
of the duration of the evaluation and examples of the broad 
range of explicit interactions understood by the system 
(including the fact that it would respond to ambient speech). 
However, users were not informed before sessions of any 
aspect of the underlying emotional model or the mapping 
between affective interpretation and installation visuals. 

Pairs were allowed two sessions of around 3 minutes 
duration each—an empirically discovered engaging lifespan 
for the installation, which still allows the dynamics of 
interaction to play out. In particular, subjects were allowed 
to finish their last interaction before being interrupted.  

Physiological signals were recorded using ProComp 
Infiniti™ data acquisition devices and sensors. GSR and 
EMG sensors were used, with recommended electrode 
placements as per Fridlund [10]. EMG sensors were placed 
in pairs over the specific muscles identified earlier. Ground 
electrodes were placed on the forehead below the hairline. 
EMG electrode placements are illustrated in Figure 6. EMG 
signals were smoothed using a 10-500Hz bandpass filter 
constructed in MATLAB. 

21 single-wired pairs were evaluated in total, with two 
sessions of interaction each. This was considered a 
sufficient number of pairs—usability studies show 
effectiveness with a smaller number of subjects [19], and 

!
 

Figure 5. Experimental setup with two subjects interacting as a 
pair. Installation visuals are displayed on a 30-inch LCD 

screen, while audio and video signals are captured with the 
microphone and webcam (in addition to the AR camera). 

!

 

Figure 4. Correlation of zygomaticus major EMG signals 
between the two subjects in a pair (r=0.71), suggesting a 

shared affective experience. 



other typical studies of relationships between physiological 
signals and emotion have used between 15 and 33 [24, 6] 
subjects. 

Of the 42 total sessions, 8 sessions encountered technical 
problems with the installation or the physiological sensors 
(mainly due to sensor artefacts or failure due to excessive 
movement dislodging sensors or cables). Sensor problems 
were identified by comparison of physiological baselines 
and normative reactions—artefacts were typically 4-8 times 
the magnitude of a maximal muscle response. Low 
amplitude noise and muscle movement artefacts were dealt 
with by smoothing the signal before analysis. 

For each experimental session zEMG and GSR traces were 
normalized using baseline means and minima, as were the 
fusion-integrated Pleasure and Arousal output. Data are 
compared as time series with normalized values on a scale 
of 0.0 to 1.0. 

Evaluative Principles 
Although the emotional representation in the fusion system 
is integrative, it is still predicated on event-based emotional 
phenomena. We are thus interested in a match between the 
phasic properties of physiological signals and transitions of 
affective characterisations. The PAD emotional space is 
continuous and at any time the projection of the fusion PAD 
vector on the individual dimensions can be characterised as 
positive or negative, with a putative “neutral” region to 
allow for system variability/sensitivity. 

While the amplitude of reconstructed PAD representations 
is variable across the full range of -1.0 to +1.0, the most 
important property for EMG signal matching is whether it is 
positive or negative. We allow a general region of ±0.1 
before considering a signal to be representative of a positive 
or negative affective reaction in the Pleasure dimension. 

GSR signals needs to be calibrated with a neutral value in 
terms of user interaction. Negative Arousal values 
correspond to a relaxed or non-interactive state, with a 
neutral value indicating a normal amount of activity 
(constructed in our case from head movements and neutral 
statements). GSR baselines were taken while asking 

subjects to remain still and relaxed, so GSR is compared 
with the full range of Arousal values, meaning the Arousal 
dimension was normalised in analyses to be between 0.0 
and 1.0. 

While both GSR and EMG have phasic properties of 
interest, GSR is subject to changes in tonic arousal levels. 
While this can be adjusted for between sessions with new 
baselines, it cannot be automatically accounted for during 
an interactive session. Arousal and GSR recordings were 
therefore de-trended to remove changing patterns in 
baseline levels, and allowing us to concentrate on phasic 
properties. 

The fusion system and components have a certain amount 
of delay in interpreting input signals, while the interval 
between samplings of overall PAD fusion is 500ms. In 
addition, while physiological recording was started at the 
same time as fusion during evaluation, this was performed 
manually, so there was human error in this synchronization. 
In order to accurately assess correlation between 
physiological signals and PAD emotion values, the two 
signals need to be synchronised by removing these lags. 
This was done by assessing cross-correlation between the 
signals in a narrow window (±6s) and finding the peak 
correlation. The lag at this correlation was then used to 
synchronise the two time series. Example cross-correlation 

 

Figure 6. EMG electrode placements for the physiological 
measurement of the P dimension. 

 

 

 
Figure 7. Cross-correlation examples for zEMG against 

Pleasure component of fusion showing significant 
correlation. Peak correlation occurs around the zero lag 

point, above the 95% confidence limit (horizontal line 
around 0.2).  



peaks are shown in Figure 7. The true lag time of the 
system is expected to be around zero, and the mean 
calculated lag for experimental sessions was 18 samples, or 
2250ms, with an approximately normal distribution (-33 < 
lag < 47). 

There was no consistent correlation between corrugator 
activity (cEMG) and negative Pleasure component values 
from fusion within a session, while the highest correlation 
occurred during sessions where there was little activity 
overall. The particular nature of the experimental 
installation means that cEMG is poor at distinguishing 
between subjects who didn’t participate or were 
disengaged, and those who engage in passive negative 
affective responses. Negative reactions manifested 
themselves as difficulty to engage with the installation or 
unease with the multimodal interface, confirmed by manual 
video analysis for subject pairs exhibiting the poorest 
correlations. 

Analytical Considerations 
Comparison of EMG and GSR to subject measurement of 
emotions while listening to music was performed by Klein 
[21], using cross-correlations as a measure of relatedness. 
An informal significance threshold for correlation of 0.35 
was posited, without a formal justification, although 
confidence intervals are marked in the cross-correlation 
graphs. 

Loeb et al. [26], when looking at synchronisation of muscle 
movements via EMG, suggest that peak cross-correlations 
of greater than 0.3 are non-random. They were unable to 
suggest a general quantitative test of significance, as their 
EMG signals display autocorrelation when looking at the 
timescale of individual muscle movements. 

Miller et al. [29] looked at EMG synchronisation over 
longer timescales (85s), a similar order of magnitude to the 
study in this paper. They made an estimate of the 5% level 
of significance (p < 0.05) to be ±0.15, but did not have 
enough positive correlations to make a more accurate 
estimate, so selected correlations of above 0.25 as a 
conservative level of significance.  

The traces in the current experiment are sampled and 
smoothed beyond the effects of autocorrelation present in 
short EMG bursts, and as they are also normalised, fit a 
normal distribution, indicating that classical statistical tests 
of significance can justly be applied to the cross-correlation 
[3, 5, 8]. 

The 5% level of significance (equivalent to a 95% 
confidence limit) is established for EMG cross-correlations, 
when comparing to other physiological data such as EEG 
[15] or the activity of neurons [42]. For our quantitative 
analysis, we therefore compare peak cross-correlations to 
95% confidence limits in cross-correlation distributions. 
This is done individually for each session, and also taking 
the correlations for all sessions as a whole (possible because 
of the data normalisation). 

RESULTS AND ANALYSIS 
The strength of the correlation can be illustrated on a 
qualitative level by considering the event-based peaks in 
emotional expression in both fused PAD representation and 
physiological data. (Three representative examples are 
shown in Figure 8). It can be seen that peaks are generally 
aligned (taking into account variations in system lag), 
illustrating correlation in the nature of the signals. 
Qualitative examples are shown after overall lag-
adjustment. 

This also indicates that quantitative analysis will 
substantially underestimate the true correlation of the 
signals, due to the inherent difference in the relative 
magnitudes of the physiological and emotion signals. EMG 
magnitude shows less variance beyond a threshold of about 
0.3, while PAD measures show much more variation. A 
possible explanation of this is that muscle signals are more 
discrete in nature than the continuous calculation of PAD. 
Details of a selection of peaks are shown in Figure 9, 
showing the proximity of related peaks, but also the greater 
variability in PAD values. 

For quantitative analysis, significance tests were applied as 
described in the previous section, against a 95% confidence 
limit. Peak correlations (r) were significant within-session 
for zEMG in 70% of sessions, with 

! 

"0.05 < r < 0.64  (mean 

 

 

 
Figure 8. Qualitative analysis of the correlation between peak 

signals representing significance of zEMG and Pleasure 
component values obtained after fusion, for three sessions 

(r=0.400, 0.334 and 0.551). This suggests a strong correlation 
between affective events, which is confirmed by video analysis.  
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r = 0.315), while 62% of sessions had peak correlation that 
was significant globally across sessions. For GSR, 
correlation was individually significant in 74% of sessions, 
with 

! 

0.04 < r < 0.54  (mean 

! 

r = 0.290), and 68% of sessions 
were globally significant. 

This means that in the majority of cases, a significant 
portion of the variation in Pleasure and Arousal can be 
accounted for by the continuous physiological signal. With 
a 95% confidence limit, only 5% of sessions would be 
expected to be significant by chance. Comparing 
physiological and PAD data from different sessions gives 
no significant correlation, indicating that patterns of 
interaction are distinct in each session. This strengthens the 
argument that correlation is due to an inherent relationship 
between the two measures rather than an artefact of the 
similarity of interactive experience across all pairs. Given 
that correlation values underestimate the true correlation as 
mentioned above, a relationship between physiological 
signals and representative measure of emotion is well 
supported. 

Considering the sessions that did not exhibit significant 
correlation, around half were very close to the confidence 

limit (within 0.02). An example of such a session is given 
in Figure 10. Video analysis of these sessions showed a 
small number of instances where conflicting reactions of 
subjects in, combined with the magnitude effects illustrated 
in Figure 9 could make the session potentially correlated in 
actuality. 

We also analysed post-hoc subjective questionnaires of all 
pairs for which no significant correlation could be 
demonstrated. In a non-trivial number of cases (~18%) we 
found discrepancies between subjects suggesting they did 
not successfully share the same experience. As shared 
experience was one central hypothesis for our installation, 
this explains lack of correlation in these cases. Figure 11 
shows the percentage of sessions that were correlated, 
uncorrelated without sufficient explanation and 
uncorrelated with accompanying subject differences. 

CONCLUSION 
The evaluation of Affective Multimodal Fusion is faced 
with very significant challenges due to the fragmented 
nature of data in literature, the richness and variability of 
signals that can be used as affective modalities, the rarity of 
multimodal corpora and their possible lack of genericity, 
beyond the applicative context in which they are collected. 
 We have proposed an approach in which real-time 
physiological data are used as ground truth for core 
dimensions of the emotional model into which Multimodal 
fusion takes place.  
Our evaluation has comprised a qualitative element (the 
inspection of matched curves for fusion data and 
physiological signals, together with observation of subjects’ 
videos) and a quantitative element in the form of time series 
correlation measures. Considering that the correlation 
between physiological signals and affective dimensions 
reported in the literature [4, 14, 26, 40] is itself not absolute, 
as well as the complexity of any experimental procedure 
involving multiple affective modalities, the high level of 
correlation observed over a large number of sessions is 
extremely encouraging, even more so if we take into 
account that the statistical analysis is sensitive to 

 

 

 
Figure 9. Qualitative analysis of peak alignment for three 

sessions. Peaks of Pleasure intensity, as determined by 
zEMG and by the Pleasure component of PAD-fused 

multimodal input, show very significant temporal 
alignment but differ in intensity, leading potentially to 

lower time series correlation values (see text for 
discussion). This is due to the intrinsic nature of EMG 

response. 

 
Figure 10. A plot of Pleasure intensity from zEMG against 

Pleasure component of PAD fusion for a non-significant 
session close to confidence limit. Differences in subject 
reactions account for the sections where Pleasure from 

fusion does not match zEMG, 
 



differences in amplitude for the fusion data and the 
physiological signal, even when interaction events 
represented by P or A “spikes” are fully aligned across both 
curves (Figure 8). 
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