
Automated Modular Verification for Relaxed
Communication Protocols

Andreea Costea1, Wei-Ngan Chin1, Shengchao Qin2, and Florin Craciun3

1 School of Computing, National University of Singapore

2
{andreeac,chinwn}@comp.nus.edu.sg

School of Computing, Media and the Arts, Teesside University

3
s.qin@tees.ac.uk

Faculty of Mathematics and Computer Science, Babes-Bolyai University

craciunf@cs.ubbcluj.ro

Abstract. Ensuring software correctness and safety for communication-
centric programs is important but challenging. In this paper we introduce
a solution for writing communication protocols, for checking protocol
conformance and for verifying implementation safety. This work draws
on ideas from both multiparty session types, which provide a concise
way to express communication protocols, as well as from separation-
style logics for shared-memory concurrency, which provide strong safety
guarantees for resource sharing. On the one hand, our proposal improves
the expressiveness and precision of session types, without sacrificing their
conciseness. On the other hand, it increases the applicability of software
verification as well as its precision, by making it protocol aware. We also
show how to perform the verification of such programs in a modular and
automatic fashion.

1 Introduction

Asynchronous distributed systems are ubiquitous in digital applications, yet
achieving their safe design and implementation is notoriously hard. The diffi-
culties in building such systems are many-fold. First, these systems are normally
described in the designing phase using communication protocols. The problem
at this phase is that, because of the lack of formal, yet easy-to-use specification
languages for communication protocols, designers prefer to draft the communica-
tion using RFC documents. But these drafts lack mathematical rigorosity, and,
therefore, lead to ambiguous interpretations of the communication. Secondly, a
developer often validates a system’s correct implementation via testing. However,
in the case of distributed systems, where reproductibility of execution is chal-
lenging, testing is rarely exhaustive. This kind of behavior commonly harbors
difficult-to-detect bugs. Thirdly, the safe coordination of independent entities
interacting with each other is problematic: on the one hand, the developer must
ensure exclusive access to shared resources in the case of tightly coupled enti-
ties, and, on the other hand, it must offer safe communication guarantees for
the loosely coupled ones. Lastly, it is often the case that the code refactoring of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322325292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

one of the communicating entities requires the re-validation of the entire system.
Since validation might be expensive, or difficult to achieve if the source code of
certain components is not available, it is desirable for the developer to be able
to only validate her changes locally, rather than at the global level.

Over the last decades, behavioral types [35,26] have been studied as specifi-
cations of the interactions in communicating systems. In particular, multiparty
session types [23], or MPSTs, provide a user-friendly syntax for writing chore-
ographic specifications of distributed systems, and a lightweight mechanism for
enforcing communication safety. Communication is considered correct when the
system’s constituent processes are statically type-checked against the end-point
projections of the MPST. This formalism and its numerous extensions are at-
tractive in checking if the implementation follows the intended communication
pattern, but it lacks the strong safety and correctness guarantees normally pro-
vided by the resource-aware verification systems. Specifically, the MPST ap-
proach checks if a transmission’s exchanged type is the expected one. However,
in their most common form, MPSTs are unable to assert something about the
message’s numerical properties, and even less so about its carried resources in
the case of tightly coupled systems. All these, while numerical properties and re-
source sharing constitute the pièce de résistance for separation logic [38], a logic
for reasoning about resource sharing. In this work, we attach a communication
logic in the user-friendly style of MPST, to a separation logic for program veri-
fication. Even though we draw on ideas from MPST, the proposed logic differs
from MPST in a number of features which yield a more expressive commu-
nication specification - without compromising its friendly syntax. The current
proposal ultimately leads to stronger guarantees w.r.t. the safety and correctness
of distributed system. We shall next highlight these differences.

Writing Multiparty Communication Protocols. The language we propose
for writing communication protocols is described in Fig. 1a. Similar to MPST,
the language contains the terminal notation S−→R : c〈v·∆〉 to describe a transmis-
sion from sender S to receiver R, over channel c. Different from type approaches
where a message abstracts a type, the exchanged message v is expressed in the
logical form ∆ (defined in Fig. 1b). Do note that v·∆ is in fact a shorthand for
the lambda function (λv .∆). This language uses G1 ∗ G2 for the concurrency of
global protocols G1 and G2, and G1 ∨ G2 for disjunctive choice between either G1 or
G2, and finally G1 ; G2 on the implicit sequentialization of G1 before G2 for either
the same party or the same channel. Let us next consider a series of examples
to introduce this language and to highlight the benefits over MPST.

Example 1: We consider a cloud service for video editing, where a client sends
to the cloud a file of some video format, and expects back an enhanced version
of the original file, see Fig. 2a. A client-server protocol to describe this simple
interaction is written as follows:

CSa , C−→S : c〈v·v : file〉 ; S−→C : c〈v·v : file〉.
The CSa lightweight protocol suffices to describe the order of communication

and the exchanged message type. A rigorous specification though, also empha-
sizes that the server applies some filter on the original file:

Global protocol G ::=
Single transmission S−→R : c〈v ·∆〉
Concurrency | G ∗ G
Choice | G∨ G
Sequencing | G ; G
Exists | ∃P∗, c∗, v∗·G
Protocol Instance | H(P∗, c∗, v∗)
Inaction | emp

(Parties) S, R, P ∈ Role
(Channels) c ∈ Chan
(Messages) v ·∆

v: first-order variable

(a) Global Protocol Specification

Formula Φ::=
∨

∆ ∆ ::= ∃ v∗·κ∧π
Separation κ::= emp | v7→d(v∗) | p(v∗)

| C(c, P, L) | κ∗κ | V
Pure π::= v : t | b | a | π∧π | π∨π

| ¬π | ∃v · π | ∀v · π
Boolean b::= true | false | b=b
Ineq. a::= s=s | s≤s
Presbg. s::= kint | v | s+s | −s

where kint: integer constant;
d: data structure; t: type;
V: second-order variable;
L: local protocol (Fig. 6)

(b) The (Program) Specification Language

Fig. 1: Mercurius

Cloud ServiceClient

file

ENH(file)

(a)

Server

Helper1

Helper2

file

ENH(file)

video

ENHv(video)

audio

ENHa(audio)

(b)

Fig. 2: A Multimedia Cloud Service: A Client requests the Server for a video
file enhancement (a). The Server engages two helpers to process the desired
enhancement (b)

CSb , ∃fd : file · (C−→S : c〈fd〉 ; S−→C : c〈ENH(fd)〉).
where C−→S : c〈fd〉 is a prettyprint for C−→S : c〈v·v : file ∧ v=fd〉, and ENH(fd)
is a logical predicate describing the enhanced file, e.g. such as applying a bright-
ness, or a slow motion filter. For the simplicity of this explanation we do not
define ENH, keeping it abstract, however a user can always attach a definition
to ENH to reflect the changes over the file referenced by fd. To note that this
protocol not only highlights that the server returns an enhanced file, but that
it actually returns the enhancement of the original file since both transmissions
reference the same file via fd.

Moreover, the protocol could also be instrumented to capture the server’s
enhancement action:

CSc , ∃fd : file · (C−→S : c〈fd〉 ; FILTER ; S−→C : c〈ENH(fd)〉).
If the server were to delegate its task to some helper processes - Fig. 2b, where,
for example, one processes the video and one handles the audio component of
the original media file, the enhancement protocol could be defined as follows:

FILTER , ∃H1, H2, c1, c2 · (S−→H1 : c1〈fd.vid〉 ; H1−→S : c1〈ENHv(fd.vid)〉) ∗
FILTER , ∃H1, H2, c1, c2 · (S−→H2 : c2〈fd.aud〉 ; H2−→S : c2〈ENHa(fd.aud)〉).

where ENHv and ENHa describe some video and audio effects, respectively. The ∗
operator which denotes concurrent interactions, intentionally resembles the sep-
arating conjunction of separation logic to express a clear separation of communi-
cation. In this context, all of the following four possible C-like implementations
of the server faithfully follow the FILTER protocol:

(i)

send(c1 ,fd.vid);

send(c2 ,fd.aud);

fd.vid = receive(c1);

fd.aud = receive(c2);

(ii)

send(c1 ,fd.vid);

fd.vid = receive(c1);

send(c2 ,fd.aud);

fd.aud = receive(c2);

(iii)
(send(c1 ,fd.vid); fd.vid = receive(c1);)

||

(send(c2 ,fd.aud); fd.aud = receive(c2);)

(iv)
(send(c1 ,fd.vid); send(c2 ,fd.aud);)

||

(fd.vid = receive(c1); fd.aud = receive(c2);)

and the combinations could continue with the sequential permutations between
sends or receives in (i) and (iv), or the parallelzation of selected pairs of inter-
actions in (i) and (ii) as long as the sending on a certain channel precedes the
local receive on the same channel. To the best of our knowledge, the current
state of the art in formalizing communication protocols does not allow such per-
missive protocols, where the relaxed order of transmissions is explicitly captured
by the communication protocol. We stress on the fact that the relaxed order of
transmissions is not restricted to just inter-party parallel composition specific
to MPST, but also comprises the intra-party parallel composition as exempli-
fied above. There is an attempt to tackle the arbitrary order of transmissions
in MPST [10], but instead of writing a relaxed protocol, the authors engage
a swap relation to check whether the interleaving of transmissions should be
allowed at the implementation level. The approach of [10] only checks against
cases (i) and (ii) though, and fail to recognize (iii) and (iv) as correct imple-
mentations of the server described by the FILTER protocol. Any other MPST
extension would require four different global types to capture the four different
kinds of implementation exemplified earlier.

Another subtle point of this example is the careful usage of the resources,
the file in this case. The file pointed by fd is split into its two components,
fd.vid and fd.aud, respectively, and exclusively shared between helpers H1 and
H2. The server gains back the ownership of the two components only after the two
helpers have finished their job and return the resources back to the server. Any
attempt to access a resource before the helper returns its ownership to the server
is regarded as unsafe in our approach. To the best of our knowledge, this is the
first such approach where the safe resource usage is captured in a lightweight,
yet expressive multiparty protocol even in the case of hybrid communication,

with both loosely (C and S) and tightly (S, H1 and H2) coupled communicating
entities. Better yet, the communication protocol does not need to distinguish
between the loosely and the tightly coupled scenarios, consigning the choice of
the coupling degree to the developer.
Example 2: In the cloud service examples we described the interaction between
exactly one client and a cloud server. Clearly this is too restrictive, since a server
should be allowed to serve multiple clients. To support a dynamic number of
participants, we describe the protocol using recursive parameterized protocols:

CLOUD(S, c) , ∃C, c′ · C−→S : c〈c′〉 ; (CSd(C, S, c
′) ∗ CLOUD(S, c)).

CSd(C, S, c) , ∃fd : file · (C−→S : c〈fd〉 ; FILTER ; S−→C : c〈ENH(fd)〉).

where the client-server CSd protocol is similar to CSc, except that it is now
parameterized with the communicating entities and corresponding channel. The
client first sends the server a private channel c′, which is then used for the
communication within the CSd protocol. The ∗ between CSd and the recursive
instance of CLOUD servers two purposes. On the one hand, it denotes exclusive
resource usage between the two protocols. On the other hand, it permits a relaxed
implementation of the cloud application, where the server could either (1) serve
one client at a time, or it could (2) serve multiple clients concurrently spawning
a new process once it receives the private channel of some client.
Contributions and outline. The contributions of this paper are as follows:
– An expressive session logic called Mercurius, that is both precise (supports

logical message) and concise (in the style of session types) for modelling
multi-party protocols. Through its support for relaxed protocols, Mercurius of-
fers wider communication design choices than the current state of the art.

– A deductive verification system which embeds Mercurius for automatically
checking protocol conformance and safe implementation. This system copes
with both distributed as well as tightly coupled systems.

– A projection mechanism for each communicating party such that each party
follows its local specification. This enables modular verification, where each
party is verified independently from the other communication participants.

– A projection mechanism for each communication channel w.r.t. a party. The
verifier is instructed to manipulate channel specifications, exploiting thus the
possibility to delegate the communication to third parties in a natural way,
without breaking locality and without the need of additional communication
primitives, except for the usual send/receive, open/close.
After formalizing the global protocol in Sec. 2, we describe the projection

rules in Sec. 3, and then embed the logic into a verification system in Sec. 4.

2 Global Protocols

We now formalize Mercurius, whose syntax is depicted in Fig. 1a. We first de-
scribe the communication model, and then list down the elements of the protocol
and discuss their properties.

Communication model. To support a wide range of communication inter-
faces, the current session logic is designed for a permissive communication model,
where:
– The transfer of a message dissolves asynchronously, that is to say that send-

ing is non-blocking while receiving is blocking.
– The communication interface of choice manipulates linear FIFO channels in

the style of [3] (i.e. a message is delivered without interference from other
participants: the receiver is able to determine who the sender is without any
ambiguity).

– For simplicity, the communication assumes unbounded buffers.
Transmission. As described in Sec. 1, a transmission S−→R : c〈v ·∆〉 involves
a sender S and a receiver R transmitting a message v expressed in logical form
∆ over a buffered channel c. To access the components of a transmission we

define the following auxiliary functions: send(S−→R : c〈v ·∆〉) def
= S, recv(S−→R :

c〈v ·∆〉) def
= R, chan(S−→R : c〈v ·∆〉) def

= c and msg(S−→R : c〈v ·∆〉) def
= v ·∆. We

shall often quantify over the existing transmissions using the literal i. Transmis-
sions are irreflexive, send(i) 6= recv(i). We define a function TR(G) which de-
composes a given protocol G to collect a set of all its constituent transmissions,
and a function TRfst(G) to return the set of all possible first transmissionsg.

Two messages are said to be disjoint, denoted by v1 ·∆1#v2 ·∆2, if UNSAT(∆1∧
[v1/v2]∆2). We next abuse the set membership symbol, ∈, to denote the follow-
ings (and, correspondingly, /∈ to denote their negation):

(∈transm.) i ∈ G ⇔ i ∈ TR(G)
(∈channel) c ∈ i ⇔ chan(i) = c

(∈channel) c ∈ G ⇔ ∃i ∈ G · c ∈ i

(∈party) P ∈ i ⇔ send(i) = P or recv(i) = P

(∈party) P ∈ G ⇔ ∃i ∈ G · P ∈ i

The parallel composition of global protocols forms a commutative monoid
(G, ∗, emp) with emp as identity element, while disjunction and sequence form
semigroups, (G,∨) and (G, ;), with the former also satisfying commutativity. emp
acts as the left identity element for sequential composition:
(G1 ; G2) ; G3 ≡ G1 ; (G2 ; G3)
(G1 ∗ G2) ∗ G3 ≡ G1 ∗ (G2 ∗ G3)

(G1 ∨ G2) ∨ G3 ≡ G1 ∨ (G2 ∨ G3)

G1 ∗ G2 ≡ G2 ∗ G1
G1 ∨ G2 ≡ G2 ∨ G1

G ∗ emp ≡ G

emp ; G ≡ G

Sequential composition is not commutative, unless it satisfies certain disjointness
properties:
G1 ; G2 ≡ G2 ; G1 when ∀c1∈G1, c2∈G2 ⇒ c1 6=c2 and ∀P1∈G1, P2∈G2 ⇒ P1 6=P2.

The equivalence of protocols could be reduced to that of graph isomorphism,
by interpreting the protocol as a graph whose vertexes are actions (message
sending or receiving), and whose directed edges are transmissions from a sending
to a receiving action. For lack of space and since these proofs are not of interest
for the current work, we treat the above equivalences as axioms.

2.1 Well-Formedness

Concurrency. The ∗ operator offers support for arbitrary-ordered (concurrent)
transmissions, where the order of their completion is not important for the final
outcome.

Definition 1 (Well-Formed Concurrency) A protocol specification, G1 ∗ G2,
is said to be well-formed w.r.t. ∗ if and only if ∀c∈G1 ⇒ c/∈G2, and vice versa.

This restriction avoids non-determinism of concurrent communications over the
same channel.

Choice. The ∨ operator is essential for the expressiveness of Mercurius, but its
usage must be carefully controlled:

Definition 2 (Well-Formed Choice) A disjunctive protocol specification, G1∨
G2, is said to be well-formed with respect to ∨ if and only if all of the following
conditions hold, where T1 and T2 account for all first transmissions of G1 and G2,
respectively, namely T1=TRfst(G1) and T2=TRfst(G2):

(a) (same first channel) ∀i1, i2 ∈ T1 ∪ T2 ⇒ chan(i1) = chan(i2);
(b) (same first sender) ∀i1, i2 ∈ T1 ∪ T2 ⇒ send(i1) = send(i2);
(c) (same first receiver) ∀i1, i2 ∈ T1 ∪ T2 ⇒ recv(i1) = recv(i2);
(d) (mutually exclusive “first” messages)

∀i1, i2 ∈ T1 ∪ T2 ⇒ msg(i1)#msg(i2) ∨ i1=i2;
(e) (same pattern) Except for the parties in T1 and T2, the rest of the participants

must have a uniform local view of the communications across all disjuncts
(to avoid informing all the participants of the choice being made).

(f) (recursive well-formedness) G1 and G2 are well-formed with respect to ∨.

Definition 3 (Well-Formed Protocol) A protocol G is said to be well-formed,
if and only if G contains only well-formed concurrent transmissions, and well-
formed choices.

To ensure the correctness of our approach, Mercurius disregards as unsound
any usage of ∗ or ∨ which is not well-formed.

3 Local Projection

Based on the communication interface, but also on the verifier’s requirements,
the projection of the global protocol to local specifications goes through a cou-
ple of automatic projection phases before being used by the verification process.
This way, the projections of phase one (we call them per-party projections) de-
scribe how each party is contributing to the communication. More granularly,
the projections in the second phase (called per-channel projections) describe how
each communication channel is used by their respective communicating parties.
Projection Overview and Protocol Refinement.
Example 3: Consider the following protocol between some parties C1, C2 and P,
communicating via channels c1 and c2:

G , C1−→P : c1〈v·∆1〉; C2−→P : c2〈v·∆2〉; C2−→P : c2〈v·∆3〉; C1−→P : c1〈v·∆4〉.
We visually represent the protocol G using sequence diagrams, as per Fig. 5,

where the arrows show the direction of transmission, and its labels show the en-
gaged channel and/or the transmitted message. The per-party projection (mid-
dle diagram) only highlights the view of party P, and the per-channel projection

(rightmost diagram) highlights the views of channels c1 and c2, respectively,
w.r.t. party P (ignoring the dashed arrows for now).

C1 P C2

c1(Δ1)

P

c1(Δ4)

c2(Δ2)

c2(Δ3)

c1(Δ1)

c1(Δ4)

c2(Δ2)

c2(Δ3)

Δ1

Δ4

Δ2

Δ3

+ ξ(1) - ξ(1)

+ ξ(3)- ξ(3)

c1 c2

Per-party
projection

Per-channel
projection

Fig. 5: A visual representation of protocol G (left sequenced diagram) projected
onto party P (middle diagram), and then projected over channel c1 and c2,
respectively (right diagram).

The specification of channel c1 features only the transmissions over this chan-
nel, loosing thus the information that ∆1 should be transmitted before ∆2. Sim-
ilarly for channel c2, ∆3 should be transmitted before ∆4. To support such
fine granularity, namely the per-channel specification, without breaking the se-
quence of transmissions when a party is engaging multiple channels, we propose
the usage of a fencing mechanism. The fencing mechanism enforces a party to
respect the correct order of transmissions across multiple channels (fences are
represented by dashed arrows in the rightmost diagram of Fig. 5).

A fence is introduced w.r.t. a set of parties and a channel, say {C1, P} and
c1 for the first transmission of G, and must be proved to hold, locally, before P

can engage channel c2 and before C1 can engage any other channel. Generally,
a fence is denoted by ξ({P∗}, c, n), and is uniquely identified by the id n. We
employ a refinement mechanism which introduces fences after each transmission
of a global protocol, and assume from now on that each global protocol is refined.
The details of this refinement are trivial, and therefore omitted. For the ongoing
example, protocol G is refined to:

C1−→P : c1〈v·∆1〉; ξ({C1, P}, c1, 1); C2−→P : c2〈v·∆2〉; ξ({C2, P}, c2, 2);
C2−→P : c2〈v·∆3〉; ξ({C2, P}, c2, 3); C1−→P : c1〈v·∆4〉; ξ({C1, P}, c1, 4).

Projection Language. Fig. 6 describes the two kinds of specification mentioned
above. The per party specification language is depicted in Fig. 6a. Here, each
send and receive specification refers to the communication instrument c along
with a message v described by a formula ∆. The congruence of all the compound
terms described in Sec. 2 holds for the projected languages as well, with the
exception of sequential commutativity since the disjointness conditions for the
latter do not hold (e.g. either the peer or the channel are implicitly the same for
the entire projected specification). To note that, for brevity of this presentation,
we denote the fences in the endpoint specification by the shorter notation ξ(n)

since the party and the channel are implicit. Moreover, to note the notation for

fence assumption, ⊕ ξ(n), and that for fence guard, 	 ξ(n), where the former is
assumed to hold, and the latter needs to be proved to hold.

Local protocol
Send/Receive/Transmission
HO variable
Concurrency
Choice
Sequence
Exists
Fence
Inaction

Υ ::=
c!v ·∆ | c?v ·∆
| V
| Υ∗Υ
| Υ∨Υ
| Υ;Υ
| ∃c∗, v∗ · Υ
| ξ({P}, c, n)
| emp

(a) Per party

L ::=
!v ·∆ | ?v ·∆
| V

| L∨L
| L;L
| ∃v∗ · L
| ⊕ ξ(n) | 	 ξ(n)
| emp

(b) Per channel

Fig. 6: Mercurius: The Projection Language

Automatic projection. Using different projection granularities should not per-
mit event re-orderings (modulo ∗ composed events).

Proposition 1 (Projection Fidelity) The projection to a decomposed speci-
fication, such as global protocol to per party, or per party to per channel, does
not alter the communication pattern specified before the projection.

To support the above proposition, we have designed a set of structural projec-
tion rules, described in Fig. 7. The rules Fig. 7a, describing per party projection
rules, are standard, with the exception of disjunction and fences. As opposed to
MPST, which projects the choice constructs to branching and selection, respec-
tively, Mercurius maintains the disjunction through all the projection phases.
It is able to do that since it relies on the verification system to reason about the
underlying conditional constructs, verifying them against the disjunctive speci-
fication: sending expects a disjunctive abstract state, while receiving is creating
a disjunctive abstract state. As expected, the per channel projection rules, Fig.
7b, strips the channel information from the per party specifications, since it will
be implicitly available.

The projection of fences is a bit more subtle, and it obeys the following rules
for per party and per channel projection, respectively:

(ξ({P∗}, c, n))�P :=

{
ξ({P}, c, n) if P ∈ {P∗}
emp otherwise

(ξ({P}, c0, n))�c :=

{
⊕ ξ(n) if c=c0
	 ξ(n) if c 6=c0

Inserting a fence guard 	 ξ(n) between adjacent transmissions on different chan-
nels on the same party ensures that the order of transmissions is accurately
inherited from the corresponding per party specification across different chan-
nels. Fences are assumed to hold ⊕ ξ(n), after consuming the transmission which
introduced this fence.

Example 4: To emphasize the behavior of fences we consider the following se-
quence of receiving events captured by a per party specification, say (G)�P:

(S−→R : c〈∆〉)�P :=

c!v ·∆ if P=S

c?v ·∆ if P=R

emp otherwise
(G1∗G2)�P := (G1)�P ∗ (G2)�P
(G1∨G2)�P := (G1)�P ∨ (G2)�P
(G1; G2)�P := (G1)�P ; (G2)�P
(∃P∗0 , c∗, v∗ · G)�P := ∃c∗, v∗ · (G)�P
(emp)�P := emp

(a) global spec → per party spec

(c0!v ·∆)�c :=

{
!v ·∆ if c=c0
emp otherwise

(c0?v ·∆)�c :=

{
?v ·∆ if c=c0
emp otherwise

(Υ1∗Υ2)�c :=

{
(Υj)�c if c∈Υj, j=1, 2
emp otherwise

(Υ1∨Υ2)�c := (Υ1)�c ∨ (Υ2)�c
(Υ1;Υ2)�c := (Υ1)�c ; (Υ2)�c
(∃c∗0 , v∗ · Υ)�c := ∃v∗ · (Υ)�c
(emp)�c := emp

(b) per party spec → per endpoint spec

Fig. 7: Projection rules

(G)�P : c1?v ·∆1 ; ξ({P}, c1, 1) ; c2?v ·∆2 ; ξ({P}, c2, 2) ; c2?v ·∆3 ; ξ({P}, c2, 3) ; c1?v ·∆4

(G)�P,c1 : ?v ·∆1 ; ⊕ ξ(1) ; emp ; 	 ξ(2) ; emp ; 	 ξ(3) ; ?v ·∆4

(G)�P,c2 : emp ; 	 ξ(1) ; ?v ·∆2 ; ⊕ ξ(2) ; ?v ·∆3 ; ⊕ ξ(3) ; emp

The above local specification snapshot highlights how local fidelity is secured:
the events marked with red boxes are guarded by their immediately preceding
events, since they are handled by different channels. A subsequent refinement
removes redundant guards, grayed in the example above, since adjacent same
channel events need to guard only the last event on the considered channel.

Given the congruence of global protocols and local specifications, the projec-
tion is an isomorphism (closed under all operators). Specifically, given two pro-
tocols G1 and G2, with P1..Pn∈G1 such that ∀P∈G1 ⇒ P∈{P1..Pn}, and ∀P∈G2 ⇒
P∈{P1..Pn}, and ∀P∈{P1..Pn} ⇒ P∈G2, and with c1..cm∈G1 such that ∀c∈G1 ⇒
c∈{c1..cm}, and ∀c∈G2 ⇒ c∈{c1..cm}, and ∀c∈{c1..cm} ⇒ c∈G2 the following
isomorphism holds:

G1≡G2⇔{(G1)�Pj}j=1..n≡{(G2)�Pj}j=1..n

G1≡G2⇔{(G1)�Pj,ck}j=1..n,k=1..m≡{(G2)�Pj,ck}j=1..n,k=1..m

4 Verification of C-like Programs

The user provides the global protocol which is then automatically refined ac-
cording to the methodology described in Sec. 3. The refined protocol is then
automatically projected onto a per party specification, followed by a per channel
endpoint basis. Using such a modular approach where we provide a specification
for each channel endpoint adds natural support for delegation, where a channel
(as well as its specification) could be delegated to a third party in the style of
binary session logic [14]. These communication specifications are made available
in the program abstract state using a combination of ghost assertions and release
lemmas (detailed in the subsequent). The verification could then automatically
check whether a certain implementation follows the global protocol, after it had
first bounded the program elements (processes and channel endpoints) to the
logical ones (parties and channels).

Program P ::= datat∗ meth∗

Data Struct. datat ::= struct d { (t f)∗ }
Method Definitions meth ::= t mn ((t v)∗) requires Φ, ensures Φ {e}
Types t ::= d | τ τ ::= int | bool | float | void
Expressions e ::= NULL | kτ | v | new d(v∗) | t v; e | v.f | mn(v∗) | skip

| v:=e | v.f :=e | e; e | e‖e | if (b) e else e | return e
| open() with (c, P∗) | close(v) | receive(v) | send(v, e)

Boolean Expressions b ::= e==e | !(b) | b&b | b|b
where kτ is a type τ constant, v is a program variable, f denotes a field

Fig. 8: A Core Imperative Language

Language. Fig. 8 depicts the syntax of a core language with support for com-
munication primitives, where a program contains data and method definitions.
Each method is decorated with a set of pre-/postconditions meant to guide the
verification process. All of the program constructs are standard, with the excep-
tion of open() with (c, P∗), which binds a logical channel c and parties P∗ to the
channel reference returned by open().

Concurrent Separation Logics. Due to its expressive power and elegant
proofs, we choose to integrate our session logic on top of concurrent separa-
tion logic. Separation logic is an attractive extension of Hoare logic in which
assertions are interpreted w.r.t. some relevant portion of the heap. Spatial con-
junction, the core operator of separation logic, P∗Q divides the heap between two
disjoint heaps described by assertions P and Q, respectively. The main benefit of
this approach is the local reasoning: the specifications of a program code need
only mention the portion of the resources which it uses, the rest are assumed
unchanged. The details of the model and the semantics of the state assertions
can be found in [12].

Verification. To check whether a user program follows the stipulated communi-
cation scenario, a traditional analysis would need to reason about the behaviour
of a program using the operational semantics of the primitives’ implementation.
Since our goal is to emphasize on the benefits of implementing a protocol guided
communication, rather than deciding the correctness of the primitives machinery,
we adopt a specification strategy using abstract predicates [37,17] to describe
the behavior of the program’s primitives. Provided that the primitives respect
their abstract specification, developers could then choose alternative communi-
cation libraries, without the need to re-construct the correctness proof of their
underlying program.

The verification process follows the traditional forward verification rules,
where the pre-conditions are checked for each method call, and if the check
succeeds it adds their corresponding postcondition to the poststate. The ver-
ification of the method definition starts by assuming its precondition as the
initial abstract state, and then inspects whether the postcondition holds after
progressively checking each of the method’s body instructions.

[OPEN]

{init(c)} open() with (c, P∗) {opened(c, P∗, res)}

[CLOSE]

{ empty(c, ~c)} close(~c) { emp }

[SEND]

I , Peer(P) ∗ opened(c, P∗, ~c) ∧ P∈P∗

{C(c, P, !v · V(v);L)∗V(x)∗I} send(~c, x) {C(c, P, L)∗I}
[RECV]

I , Peer(P) ∗ opened(c, P∗, ~c) ∧ P∈P∗

{C(c, P, ?v · V(v);L)∗I} recv(~c) {C(c, P, L)∗V(res)∗I}

(a) Annotated communication primitives.

G({P1..Pn}, c∗) ⇒ Party(P1, c
∗, (G)�P1) ∗ ... ∗ Party(Pn, c

∗, (G)�Pn) ∗ initall(c∗).
Party(P, {c1..cm}, (G)�P)⇒C(c1, P, (G)�P,c1) ∗ ... ∗ C(cm, P, (G)�P,cm) ∗ bind(P, {c1..cm}).
initall({c1..cm}) ⇒ init(c1) ∗ ... ∗ init(cm).

(b) Splitting lemmas

C(c, P1, emp) ∗ ... ∗ C(c, Pn, emp)\∗ opened(c, {P1..Pn}, ~c) ⇒ empty(c, ~c)
C(c1, P, emp) ∗ ... ∗ C(cm, P, emp)\∗ bind(P, {c1..cm}) ⇒ Party(P, c∗, emp)

(c) Joining simpagation rules

C(c, P,⊕ ξ(n); L) ⇒ C(c, P, L)∧ ξ(n)

C(c, P,	 ξ(n); L)∧ ξ(n) ⇒ C(c, P, L)

(d) Lemmas to handle fences

Fig. 9: Communication primitives

Abstract Specification. We define a set of abstract predicates to support ses-
sion specification of different granularity. Some of these predicates have been
progressively introduced across the paper, but for brevity we have omitted cer-
tain details. We resume their presentation here with more details:

Party(P, c∗,Υ)
associates a local protocol projection Υ to its
corresponding party P and the set of channels c∗ used by P

to communicate with its peers;

Peer(P)
flow-sensitively tracks the executing party, since the
execution of parties can either be in parallel or
sequentialized;

C(c, P, L)
associates an endpoint specification L to its corresponding
party P and channel c;

initall(c∗)/
init(c)

hold only when the specifications corresponding to logical
channels c∗/c are available (have been released into the
abstract program state - Fig. 9b);

bind(P, c∗) binds a party P to all the channels c∗ it uses;

opened(c, P∗, ~c)
binds a program channel ~c to a logical one c and to the
peers sharing ~c;

empty(c, ~c)
holds only when all the transmissions on ~c have been
consumed (Fig. 9c).

To cater for each verification phase, the session specifications with the re-
quired granularity are made available in the program’s abstract state via the
lemmas in Fig. 9.

Channel endpoint creation and closing described by the [OPEN] and [CLOSE]
triples in Fig. 9, have mirrored specification: open associates the specification
of a channel c to its corresponding program endpoint ~c. The keyword res is a
dedicated ghost variable denoting the result returned by open in this particular
case, and the result of evaluating the underlying expression in the general case.
close regards the closing of a channel endpoint as safe only when all the parties
have finished their communication w.r.t. the closing endpoint.

To support send and receive operations, we decorate the corresponding meth-
ods with dual generic specifications. The precondition of [SEND] ensures that
indeed a send operation is expected, !v · V(v), with the transmitted message v

being described using a higher-order relation over v, namely V(v). To ensure
memory safety, the verifier also checks whether the program state indeed owns
the message to be transmitted and that it adheres to the properties described
by the freshly discovered relation, V(x). Dually, [RECV] ensures that the receiv-
ing state gains the ownership of the transmitted message. Both specifications
guarantee that the transmission is consumed by the expected party, Peer(P).

The proof obligations generated by this verifier are discharged to a Separation
Logic solver in the form of enatailment checks, detailed in the subseqent.

Entailment. Traditionally, the logical entailment between formalae written in
the symbolic heap fragment of separation logic is expressed as follows: ∆a `
∆c ∗∆r, where ∆r comprises those residual resources described by ∆a, but not
by ∆c. Intuitively, a valid entailment suggests that the resource models described
by ∆a are sufficient to conclude the availability of those described by ∆c.

Since the proposed logic is tailored to support reasoning about communica-
tion primitives with generic protocol specifications, the entailment should also be
able to interpret and instantiate such generic specifications. Therefore we equip

[ENT-CHAN−MATCH]

∆a⇒c1=c2 C(c1, P1, La) ` C(c2, P2, Lc) ; S1

S2 = {πe
i | πe

i∈S1 and SAT(∆a∧πe
i) and SAT(∆c∧πe

i)}
∨

πe∈S2
(∆a ∧ πe) ` ∆c ; S

C(v1, P, La) ∗∆a ` C(v2, P, Lc) ∗∆c ; S

[ENT-SEND]

[v1/v2]∆c ` ∆a ; S′ S={πe
i |πe

i∈S′}
!v1 ·∆a `!v2 ·∆c ; S

[ENT-RECV]

∆a ` [v1/v2]∆c ; S′ S={πe
i |πe

i∈S′}
?v1 ·∆a `?v2 ·∆c ; S

[ENT-SEQ]

�a ` �c ; S1 La ` Lc ; S2 where � :=?v ·∆ | !v ·∆
�a;La ` �c;Lc ; {emp∧π1∧π2 | π1∈S1 and π2∈S2}

[ENT-RHS−PVAR]

S={emp∧V=La}
La ` V ; S

[ENT-CHAN]

P1=P2 La ` Lc ; S′ S={πe
i |πe

i∈S′}
C(c, P1, La) ` C(c, P2, Lc) ; S

[ENT-LHS−OR]

Li; La ` Lc ; Si S = {
∨

i ∆i | ∆i∈Si}
(
∨

i Li); La ` Lc ; S

[ENT-RHS−OR]

La ` Li; Lc ; Si S =
⋃
Si

La ` (
∨

i Li); Lc ; S

[ENT-LHS−HO−VAR]

V /∈ fv(∆c) SAT(∆c) fresh w S={emp∧V(w)=[w/v]∆c}
V(v) ` ∆c ; S

[ENT-RHS−HO−VAR]

V /∈ fv(∆a) ∆a ` ∆c ; S′ fresh w S={emp∧V(w)=[w/v]∆i|∆i∈S′}
∆a ` V(v) ∗∆c ; S

Fig. 10: Selected entailment rules: πe is a shorthand for emp∧π, fv(∆) returns
all free variables in ∆, and fresh denotes a fresh variable.

the entailment checker to reason about formulae which contain second-order
variables. Consequently, the proposed entailment is designed to support the in-
stantiation of such variables. However, the instantiation might not be unique, so
we collect the candidate instantiations in a set of residual states. The entailment
has thus the following form: ∆a ` ∆c ; S, where S is the set of possible resid-
ual states. Note that S is derived and its size should be of at least 1 in order to
consider the entailment as valid. The entailment rules needed to accommodate
session reasoning are given in Fig. 10. Other rules used for the manipulation of
general resource predicates are adapted from Separation Logic [38].

To note also how [ENT-RECV] and [ENT-SEND] are soundly designed to be
the dual of each other: while the former checks for covariant subsumption of
the communication models, the latter enforces contravarinat subsumption since
the information should only flow from a stronger constraint towards a weaker
one. Considering the example below, a context expecting to read an integer
greater than or equal to 1 could engage a channel designed with a more relaxed
specification (i). However, a context expecting to transmit an integer greater

than or equal to 1 should only be allowed to engage a more specialized channel,
such as one which designed to transmit solely 1 (ii).

(i) (ii)
v1≥1 ` [v1/v2]v2≥0

ENT-RECV
?v1 · v1≥1 `?v2 · v2≥0

ENT-CHAN
C(c, P, ?v1 · v1≥1) ` C(c, P, ?v2 · v2≥0)

[v1/v2]v2=1 ` v1≥1
ENT-SEND

!v1 · v1≥1 `!v2 · v2=1
ENT-CHAN

C(c, P, !v1 · v1≥1) ` C(c, P, !v2 · v2=1)

Soundness. The soundness of our verification rules is defined with respect to
the operational semantics of [13] by proving progress and preservation. For lack
of space we omit the soundness statement and its corresponding proofs, but their
full details can be found in [13].

5 Implementation

We have implemented Mercurius in OCaml and attached it to a well estab-
lished software verifier [12] for C-like languages. Even though this prototype
implementation was build to tackle C-like programs, its design may be used to
handle other languages as well, provided that this languages support communi-
cation primitives in the style of send/receive/open/close.

Moreover, the implementation is highly modular treating the communication
primitives as function definitions annotated with generic specifications. On the
one hand, thanks to the support for higher order variables, the send/receive
functions exhibit a polymorphic behavior being used to transmit different types
of values and different kinds of resources. On the other hand, the abstract be-
havior of the communication primitives may be changed by simply changing its
abstract specification rather than changing the verifier’s behavior. Using lemmas
to handle the auxiliary predicates allows us to support changes to the logic by
simply introducing new lemmas or changing the existing ones, lifting thus the
burden of changing the underlying verifier. The prototype comprises about 6K
lines of OCaml code, excluding the communication primitives (30 lines) and lem-
mas (103 lines), considered specifications and given as input files to the verifier.

We run the verifier to check the cloud service discussed in Sec. 1 for protocol
conformance and communication safety. The results are depicted in Table 1. We
checked the client-sever protocol against different implementations of the server,
which are either purely sequential (Server-seq[1-3]) or contain some parallelism
(Server-par[1-3]). No verification time took more than 8 seconds, despite the
high number of generated proofs. The reason why the solver needs to handle so
many proofs is that for each implementation, the verifier needs to re-check for
well-formedness all the specifications and predicates decorating the program, as
well as those within the configuration files for the primitives and lemmas.

Moreover we experimented both with the version of the cloud service which
handles only one client (CS), as well as the one which supports multiple clients
(CLOUD) sequentially (Server-seq) or in parallel (Server-par). For the (CLOUD) pro-
tocol, we picked only the implementation of the CS which communicates with the
helpers concurrently, namely Server-par1. The verification worked seamlessly in
both cases, without the need to tweak the specification in any way irrespective

of the underlying implementation.
We also report our results on verifying a simple calculator adopted from [39].

As opposed to [39] though, Mercurius is unable to handle a memoizing cal-
culator, since our lightweight approach did not instrument the global protocol
to assert anything about how the communication affects the local state of each
party. The changes in local states are only reflected by the generic specifications
of the communication primitives (not by the protocol itself) indicating what is
released into or consumed from the local state.

Lastly, we also report our results w.r.t. the “Rock, Paper, Scissors” protocol
adopted from [15]. In [15] the authors claim that this kind of protocol and its
logical pitfalls are common when building smart contracts - a form of distributed
programs often engaged in cryptocurrency transactions. The logical bugs men-
tioned in [15], such as imprecise payments and inaccessible resources, may be
avoided with a rigorous verification system. More examples and their detailed
proofs can be found online [1], where the interested reader can also test Mer-
curius with her own protocols.
Example 5: In the subsequent we show how the specification of party P from
example 4, guides the verification process to identify a buggy implementation:

//C(c1, P, ?v ·∆1;⊕ ξ(1);	 ξ(3); ?v ·∆4) ∗ C(c2, P,	 ξ(1); ?v ·∆2;⊕ ξ(2); ?v ·∆3;⊕ ξ(3))
1 x = receive(c1);

//C(c1, P,⊕ ξ(1);	 ξ(3); ?v ·∆4) ∗ C(c2, P,	 ξ(1); ?v ·∆2;⊕ ξ(2); ?v ·∆3;⊕ ξ(3)) ∗∆1

//============ fire assume lemma to release ξ(1)============

//C(c1, P,	 ξ(3); ?v ·∆4) ∗ C(c2, P,	 ξ(1); ?v ·∆2;⊕ ξ(2); ?v ·∆3;⊕ ξ(3)) ∗∆1 ∗ ξ(1)

//============ fire guard lemma on ξ(1)============

//C(c1, P,	 ξ(3); ?v ·∆4) ∗ C(c2, P, ?v ·∆2;⊕ ξ(2); ?v ·∆3;⊕ ξ(3)) ∗∆1 ∗ ξ(1)

2 y = receive(c2);

//C(c1, P,	 ξ(3); ?v ·∆4) ∗ C(c2, P,⊕ ξ(2); ?v ·∆3;⊕ ξ(3)) ∗∆1 ∗ ξ(1) ∗∆2

//============ fire assume lemma to release ξ(2)============

//C(c1, P,	 ξ(3); ?v ·∆4) ∗ C(c2, P, ?v ·∆3;⊕ ξ(3)) ∗∆1 ∗ ξ(1) ∗∆2 ∗ ξ(2)

//FAIL to verify the next receive on c1 since ξ(3) is not available

3 t = receive(c1);

5 z = receive(c2);

where program’s statements are numbered 1-4, and the program’s abstract state
is prefixed by //. A correct implementation expects lines 3 and 4 to be swapped
such that fence ξ(3) required by c1 is available in the program’s abstract state.
ξ(3) is only released in the after the second receive on c2 is consumed.

6 Related Work

Behavioral Types. The behavioral types specify the expected interaction pat-
tern of communicating entities. Most of seminal works develop type systems on
the π-calculus [26] for deadlock [27]and livelock [25] detection. However, these
system do not account for communication protocols, nor do they express mes-
sages in a logical form. To improve on the latter, Igarashi and Kobayashi propose

Component LOC Proofs. Verification time (sec)

Multimedia Cloud Service (CS) - 29 lines of spec

Client 2 958 1.1
Server-seq1 23 3987 6.7
Server-seq2 23 3987 6.7
Server-seq3 23 3987 6.7
Server-par1 38 3162 7.1
Server-par2 38 3345 7.2
Server-par3 34 3848 7.0

Multimedia Cloud Service (CLOUD) - 32 lines of spec

Client 3 1342 1.4
Server-seq 40 4569 7.7
Server-par 45 4348 7.9

Simple Calculator - 6 lines of spec

Client 3 575 0.8
Server-seq 4 1534 1.6
Server-par 7 933 1.4

“Rock, Paper, Scissors” - 11 lines of spec

Client 2 728 1.0
Server-seq 6 2252 2.3
Server-par 8 1774 3.0

Table 1: Evaluation of Mercurius

an abstraction of the behavior of pi-calculus processes as generic types [24]. How-
ever, the generic type system finally throws away the information about base
values such as integers, as opposed to our proposal which uses the messages’
logical description to guide the verification of the implementation.

The session types [22,23] proposed by Honda et. al are probably the most
intensely studied refinement of the behavioral type systems, since they offer the
means of writing formal communication protocols in a concise and user-friendly
manner. Extensions of session types add support for: exception handling [9,8],
multithreaded functional languages [33,30,36], for MPI [31], for OO languages
[16,18], and, similar to our approach, for C-like languages [34]. However, none of
these approaches exploit the possibility of expressing messages in a more pre-
cise manner, since the type system constraints the messages to be abstracted to
just types. Expressing the messages in logical form could uncover implementa-
tion bugs that would otherwise easily bypass a simple type check. Works such
as [6,42,29,11] draw a correspondence between linear logic and different session
types, while [40,4] combine session types with dependet type. While these works
have the potential to exploit their results in linear logic, they solely tackle the
type and numerical properties of the exchanged data. Our proposal goes beyond
numerical properties to resources sharing.

Closer to our goal, Caires and Seco [7] propose behavioral separation for disci-
plining the interference of higher-order programs in the presence of concurrency,
sharing and aliasing. Behavioural separation types build upon the knowledge
of behavioural type theories, behavioral-spatial types [5], and separation logic.

More recently, [2] also promotes non-determinism and shared channels in an
extension of linear logic-based session types. Even though these works permit
inter-party resource sharing, they do not explore the idea of relaxed protocols
in the sense described in this paper, where ∗ permits intra-party concurrency,
adding thus less constraints over the underlying protocol implementation.
Concurrent Logics for Message Passing. The idea of coupling together
the model theory of concurrent separation logic with that of Communicating
Sequential Processes [20] is studied in [21]. The processes are modeled by us-
ing trace semantics, drawing an analogy between channels and heap cells, and
distinguishing between separation in space from separation in time. Our pro-
posal shares the same idea of distinguishing between separation in space and
separation in time, by using the ∗ and ; operators, respectively. However, their
model relies on process algebras, while we propose an expressive logic based on
separation logic able to also tackle memory management.

Heap-Hop [41,32] is a sound proof system for copyless message passing man-
aged by contracts. The system is integrated within a static analyzer which checks
whether messages are safely transmitted. Similar with our proposal, this work is
also based on separation logic. As opposed to ours, its communication model is
limited to solely two party communication.

IronFleet [19], embedded in Dafny [28], supports the verification of large sys-
tem focusing on their liveness and safety properties, and going as far as being
able to tackle consensus protocols. However, though important, their verifica-
tion efforts are not reusable, using highly specialized primitives and predicates
to express each verified system. We propose a lighter, yet more generic, verifi-
cation mechanisms, where the same communication primitives and predicates
can be reused for most of the verification scenarios. Moreover, our specification
language is designed to be accessible to less specialized system designers and
developers, while still offering safety guarantees.

Designed concurrently with out logic, DISEL [39] is a domain specific lan-
guage for describing, implementing and verifying distributed systems. The pro-
tocols are described in DISEL using state-transition systems, as opposed to the
more concise protocols of session types. The authors have also exploited the
benefits of separation logic for providing strong safety guarantees, embeddeding
their proofs in Coq. On contrast, we promote automated verification, where in-
stead of using mechanized proofs, we rely on our verifier to automatically find
the proof or correctness or to identify bugs.

7 Discussions and Final Remarks

We have designed a multi-party session logic that goes beyond the traditional
type checking system, by embedding the communication protocols as guiding
tools for verification systems. We have shown how the messages can be described
in the more precise and expressive logical form, without sacrificing the concise-
ness of type approaches. We have shown how to write relaxed protocols that of-
fer wider design choices for the implementation of protocols. Moreover, we have

shown how a lightweight specification system in the style of session types can be
embedded into a deductive verification system to offer stronger correctness and
safety guarantees than those offered by type-checking. Moreover, automation is
achieved without sacrificing modularity. [13,1] discuss deadlock checking, dele-
gation and recursion in Mercurius.

As part of future work, we investigate how to improve the expressiveness
further such that Mercurius is able to handle more distributed properties, such
as consensus. Moreover, we intend to extend this work to other less mainstream,
yet important communication models, such as those using non-linear channels.
We also intend to go beyond the current limits of our well-formed disjunctions.

References

1. Mercurius. http://loris-5.d2.comp.nus.edu.sg/Mercurius
2. Balzer, S., Pfenning, F.: Manifest Sharing with Session Types. PACMPL 1(ICFP)

(2017)
3. Bettini, L., Coppo, M., DAntoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,

N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In: CONCUR.
pp. 418–433. Springer (2008)

4. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A Theory of Design-by-Contract
for Distributed Multiparty Interactions. In: CONCUR. vol. 6269. Springer (2010)

5. Caires, L.: Spatial-Behavioral Types for Concurrency and Resource Control in
Distributed Systems. Theoretical Computer Science 402(2-3), 120–141 (2008)

6. Caires, L., Pfenning, F.: Session Types As Intuitionistic Linear Propositions. In:
CONCUR. pp. 222–236. Springer-Verlag, Berlin, Heidelberg (2010)

7. Caires, L., Seco, J.C.: The Type Discipline of Behavioral Separation. In: ACM
SIGPLAN Notices. pp. 275–286. ACM (2013)

8. Capecchi, S., Giachino, E., Yoshida, N.: Global Escape in Multiparty Sessions.
MSCS 26, 156–295 (2014)

9. Carbone, M., Honda, K., Yoshida, N.: Structured Interactional Exceptions in Ses-
sion Types. In: CONCUR. pp. 402–417. Springer (2008)

10. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: Multiparty Asynchronous
Global Programming. SIGPLAN Not. 48(1), 263–274 (Jan 2013)

11. Carbone, M., Montesi, F., Schrmann, C., Yoshida, N.: Multiparty Session Types
as Coherence Proofs. In: CONCUR. vol. 42, pp. 412–426 (2015)

12. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated Verification of Shape,
Size and Bag Properties via User-defined Predicates in Separation Logic. Sci. Com-
put. Program. 77(9), 1006–1036 (Aug 2012)

13. Costea, A.: A Session Logic for Relaxed Communication Protocols. PhD disserta-
tion, School of Computing, National University of Singapore (2017)

14. Craciun, F., Kiss, T., Costea, A.: Towards a Session Logic for Communication
Protocols. In: ICECCS. pp. 140–149 (2015)

15. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab. In:
FC. pp. 79–94. Springer (2016)

16. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: ECOOP. pp. 328–352. Springer-Verlag (2006)

17. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current Abstract Predicates. In: ECOOP. pp. 504–528. Springer-Verlag (2010)

http://loris-5.d2.comp.nus.edu.sg/Mercurius

18. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular
Session Types for Distributed Object-oriented Programming. In: POPL. pp. 299–
312 (2010)

19. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: Proving Practical Distributed Systems Correct. In:
SOSP. pp. 1–17 (2015)

20. Hoare, C.A.R.: Communicating Sequential Processes. In: The origin of concurrent
programming, pp. 413–443. Springer (1978)

21. Hoare, T., O’Hearn, P.: Separation Logic Semantics for Communicating Processes.
Electronic Notes in Theoretical Computer Science 212, 3–25 (2008)

22. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: ESOP (1998)

23. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types.
Journal of the ACM 63, 1–67 (2016)

24. Igarashi, A., Kobayashi, N.: A Generic Type System for the Pi-Calculus. Theoret-
ical Computer Science 311(1), 121 – 163 (2004)

25. Kobayashi, N.: Type Systems for Concurrent Processes: From Deadlock-freedom to
Livelock-freedom, Time-boundedness. In: IFIP TCS. pp. 365–389. Springer (2000)

26. Kobayashi, N.: A Type System for Lock-free Processes. IC 177(2) (2002)
27. Kobayashi, N., Laneve, C.: Deadlock Analysis of Unbounded Process Networks. IC

252, 48–70 (2017)
28. Leino, K.R.M., Müller, P.: A Basis for Verifying Multi-Threaded Programs. In:

ESOP. pp. 378–393. Springer (2009)
29. Lindley, S., Morris, J.G.: A Semantics for Propositions as Sessions. In: ESOP. pp.

560–584. Springer (2015)
30. Lindley, S., Morris, J.G.: Embedding Session Types in Haskell. In: Proceedings of

the 9th International Symposium on Haskell. pp. 133–145. ACM (2016)
31. Lopez, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconcelos, V.T.,

Yoshida, N.: Protocol-Based Verification of Message-Passing Parallel Programs. In:
OOPSLA’15. ACM (2015)

32. tienne Lozes, Villard, J.: Shared Contract-Obedient Channels. Science of Computer
Programming (2015)

33. Neubauer, M., Thiemann, P.: An Implementation of Session Types. In: PADL. pp.
56–70. Springer (2004)

34. Ng, N., Yoshida, N., Honda, K.: Multiparty Session C: Safe Parallel Programming
with Message Optimisation. In: TOOLS 2012. LNCS, vol. 7304. Springer (2012)

35. Nielson, F., Nielson, H.R.: From CML to its Process Algebra. Theoretical Com-
puter Science 155(1), 179–219 (1996)

36. Orchard, D., Yoshida, N.: Effects As Sessions, Sessions As Effects. In: POPL. pp.
568–581. ACM, New York, NY, USA (2016)

37. Parkinson, M., Bierman, G.: Separation Logic and Abstraction. In: ACM SIG-
PLAN Notices. pp. 247–258. ACM (2005)

38. Reynolds, J.C.: Separation Logic: A Logic For Shared Mutable Data Structures.
In: LICS. pp. 55–74 (2002)

39. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and Proving with Distributed
Protocols. POPL 2, 28:1–28:30 (2018)

40. Toninho, B., Caires, L., Pfenning, F.: Dependent Session Types Via Intuitionistic
Linear Type Theory. In: PPDP. pp. 161–172. ACM (2011)

41. Villard, J., Lozes, E., Calcagno, C.: Proving Copyless Message Passing. In: APLAS.
pp. 194–209. Springer (2009)

42. Wadler, P.: Propositions As Sessions. In: ICFP. pp. 273–286. ACM (2012)

	Automated Modular Verification for Relaxed Communication Protocols
	Introduction
	Global Protocols
	Well-Formedness

	Local Projection
	Verification of C-like Programs
	Implementation
	Related Work
	Discussions and Final Remarks

