New program constructs and semantics for
reversible computation

Bill Stoddart and Campbell Ritchie
Teesside University UK

Abstract— We review our previously reported programming
constructs for reversible computing which are based on the
classical relational model. We note that, although mathemati-
cally elegant, the description of programming constructs is too
abstract to capture the important concept of preference. To
remedy this we formalise the temporal order of continuations,
giving a richer semantics and yielding a new programming
construct, whose implementation and application are discussed.

I. Introduction

Conceptualising computation as a reversible process
allows us to formulate a simple mathematical semantics
for sequential programming and define new programming
constructs. In previous work [7], [9], [6] we have described
these developments and the Reversible Virtual Machine
(RVM) we use as an implementation platform for our
ideas. Qur approach exploits reversibility to handle back-
tracking and garbage collection. Backtracking is based
on the idea of non-deterministic choice being interpreted
as provisional choice, and the use of guarded commands
which reverse execution when all available guards are false.

In this paper we look at the problem of expressing pref-
erence in choice within a formal semantics. In our previous
work, and in the classical semantics of non-determinism,
choice is described as a commutative connective, with
an underlying model which views operations as relations
between before and after states; choice is modelled as one
before state being linked to two or more after states. This
conceptual model is not rich enough to support a full
description of preferential choice.

We have two motivations for wanting a richer model.
Firstly, preference is important in programming, e.g. for
expressing search heuristics. Secondly, the RVM has a
choice construct implemented in such a way that the
programmer can know which choice will be preferred, i.e.
tried first. Thus we need a semantics of preference so as
properly to describe our virtual machine.

We claim that the idea of preference is closely linked
with that of continuations, where, by the continuation of
a program S invoked within a larger program T, we mean
the effect of the code from T which is executed following
the termination of S. We shall sketch a semantics for the
temporal order of continuations (TOC) which enables us
to capture the idea of preference in choice. We shall also see
how a new programming construct arises from our ideas,
describe its implementation on the RVM and illustrate its
possible application.

11

II. Preliminaries

We discuss programming constructs from both a the-
oretical high level guarded command language, to which
we give the name RB0 ! and from RVM-Forth the postfix
language of the virtual machine to be used as a target for
compilation of RBO code. We begin with a review of some
semantic features of RBO.

Within RBO, commands may be guarded; g — S, pro-
nounced “g guards S”, will execute the program S if the
condition g is true and will reverse execution otherwise.

The command S0 T, pronounced “S choice T” makes a
provisional non-deterministic choice between the execution
of S and T. If execution reverses back to this point, that
choice will be revised and forward execution will start
again with the other operation now selected for execution.

The construct S ¢ E represents the value expression E
would take were it to be evaluated after the execution of
S. It can be used as a term in the expression language
of our executable language RBO0. In operational terms it
represents executing S, evaluating E, making a copy of E
(which may be a data structure of arbitrary complexity)
and then reversing the execution of S. The reverse ex-
ecution uncomputes the original copy of E and reverses
any side effects caused by the execution of S. ¢ is a low
precedence connective, coming just above equivalence =

We give two simple examples. x:=2 ¢ 10+x has the value
20. x:=x+1 ¢ 2#x has the value 2x(x+1).

Because of the presence of non-deterministic choice
there may be more than one execution path through S, in
which case S ¢ E can take multiple values. The set of such
values is written {S ¢ E}. This is also an allowable term in
the expression language of RBO.

When S ¢ E yields multiple values we interpret the
mathematical meaning of these using the Bunch Theory
of E Hehner [3] according to which a bunch is the contents
of a set, e.g. the contents of the set {1,2} is the bunch 1,2.
The comma in the expression 1,2 is an operation, known
as bunch union, rather than merely syntax. We define
a guarded bunch expression g — E as equal to E when
its guard g is true and equal to the empty bunch null
otherwise.

The term S ¢ E plays two distinct roles. It can be a
term in the extended expression language of RB0, and its

1B0 is the name of the run time language of the B formal
development method, [1] which we adapt to reversible programs,
naming the modified run time language RBO.



formal description is the basis of a “prospective value”
semantics for the language, similar in expressive power to
predicate transformer semantics.

We will now give rules for the values taken by terms
of the form S ¢ E over the syntactic constructs of RBO.
In the following, S and T are programs, and E and F are
extended expressions, i.e expressions that may themselves
include terms of the form S ¢ E. We have the following
rules.

For skip. the program which does nothing, we have
skip¢E = E

the value of E after executing skip is just its present value.

For assignment we have
x:=F ¢ E = E[F/x].
Here, the term E[F/x] is the expression E rewritten with
F replacing x. For example:
x:=2 ¢ x+1 = (x+1)[2/x] = 2+1
showing that the value of x+1 after executing x:=2 is 3.

For choice we have

SoT¢E = (S¢E),(T¢E).
The prospective values after executing a choice are the
bunch union of the prospective values associated with
the individual choices. For example: x:=1 0x:=2 ¢ x+10 is
equivalent to 11,12.

For a guarded command we have
g—=5S0E=g—=(S0E).

Here the symbol — is a program guard, being defined

here, and the similar symbol — is the bunch guard,

defined above. The prospective values associated with

g — S are those associated with S if g is true, otherwise

there are no such values.

For sequential composition of programs we have
STOE=S¢TOE.
Note that to make sense of the term S ¢ T ¢ E the diamond
operator has to be right associative, so that
SOTOE =S¢ (TOE).
We can think of this as the value T ¢ E would take were
S to be executed.

The interaction between choice, guards, and sequential
composition which gives us the effect of backtracking is
illustrated by the following simple example. We have a
choice between assigning 1 or 2 to X, followed by a guarded
command that required x to be 2. If x has been set to
1, this command will cause reverse execution, the other
choice will be taken, and the final value of x will be 2.
We do not explicitly describe this reversal of execution,
but rather characterise the contribution of computation
branches that are blocked as being null.

“by seq composition rule”
“by guard rule”
“by skip rule”

xi=10x:=2;x=2—>skip ¢ x
xi=10x:=2 ¢ x=2 — skip ¢ x
x:=10x:=2 ¢ x=2 — (skip ¢ x)

12

x:=10x:=2¢ x=2 =+ X “by choice rule”
(x:=1¢x=2—=x),(x:=2¢x=2—x) = “by assignment rule”
1=2—+1,2=2 —+ 2 = “by definition of bunch guard”
null, 2 = “property of bunch union with the empty bunch”

2

A number of other constructs may be expressed within
the prospective value scheme, including definition of local
variables, choice from a set, and probabilistic choice.
Search may be terminated on a given condition, and in
particular S ¢, E is the first result from a search. For a
complete description see [6]. The implementation of S ¢ E
and its related constructs is discussed in [8].

Conditionals and loop structures are not fundamental
building blocks for our semantics, but are rather expressed
through the use of choice, guard and sequencing com-
mands. For example, for proof analysis we define:

IFgTHENSELSETEND 4 g—S0-g—>T
Indeed this is also an executable definition, though not an
optimal one in our current implementation.

Reversibility of the RVM is implemented using a history
stack. When the value of a variable is assigned in forward
execution, the original value of the variable, the address
of the variable, and the address of code that will restore
the original value, are pushed onto the history stack. In
this way forward execution compiles a simple program
that will perform the corresponding reverse execution.
Program execution is reversed by exchanging the history
stack with the subroutine call stack (where subroutine
return addresses are stored) and “returning” into the
routine whose address was last deposited on the history
stack. Each of the code fragments invoked in this way finds
its arguments on the stack and, having consumed them,
terminates with a return instruction that enters the next
fragment of reverse execution code.

III. Choice, Preference, and Continuations

We are interested in two ways in which the characteri-
sation of choice given above is to some extent inadequate.
Firstly, although it allows us to express a provisional
choice, it does not permit us to formally state which
choice should be tried first. Secondly, the same semantics
of choice is used within the B development method at
a specification level to express “implementer’s choice”.
That is, the choices an implementer is free to make whilst
keeping within the brief of a specification. We can illus-
trate the difference between provisional and implementer’s
choice using the Knight’s Tour chess problem, in which
a program must find a sequence of moves which take a
knight to each square of a chess board, visiting each only
once. The specification of the program does not tell us
which particular tour will be chosen, and we should be
satisfied with any result that is a valid tour. That is
implementer’s choice. During execution of the program,
provisional choices are made for moving the knight, and if
a particular choice leads to an impasse, it will be revised.
Covering the two choices by the same semantics is not
completely unmanageable, but needs careful organisation



of the software development process, since discarding a
possible implementer’s choice (e.g. replacing SO T by S
during the program design process) still leaves us with a
solution, but discarding a possible provisional choice may
result in all solutions being lost. A full discussion is given
in [11].

A. From recording sets of results to recording a temporally
ordered sequence

With the aims of establishing a formal development
method for reversible computation and exploiting re-
versibility to provide backtracking within the run time
language of that method, we seek a semantics that can
express preference and distinguish choices made during the
design process from those made during program execution.

In effect, we are looking for a richer and more discrimi-
nating semantics than that provided by prospective values.
In this regard, we recall that, thinking of S ¢ E as a term
in an executable language, we are discarding information
about the order in which results are recorded during its
evaluation. This order could be retained if we recorded
the results as a sequence. To see how this is achieved on
the RVM and in RBO we first look at the translation into
RVM-Forth of the term {S ¢ E}.

For any RBO program S or expression E let [S] or [E]
respectively be its translation into RVM Forth. Let [E]T
be the RVM Forth expression giving the type of E. Then
we have the following translation schema for any term {S

o EJ.

[IS¢E}] = [E]T { <RUN [S] [E] RUN> }
For example {x:=10x:=2¢ x+10} would translate to:2
INT { <RUN

<CHOICE 1tox [] 2tox CHOICE>

x 10 +
RUN> }

The result of evaluating this term will be the integer set
{11,12}. Within the Forth code, each token in the above
code is associated with an operation, as follows.

INT places a set on the stack which has the same type
as the result. INT is the empty set of integers and acts as
a template for the result set.

{ removes the set INT from the stack and opens a set
construction for a set of the same type.

<RUN has no effect during forward execution, but
converts reverse execution from within S to forward
execution beyond the corresponding RUN>. Note that if
reverse execution gets back to this point from within S all
possible execution paths through S have been explored.

<CHOICE primes the history stack with the address
of the second choice and an operation that will resume
forward execution at this address.

[] separates choices in the choice construct. Code is
compiled to skip over the rest of the choice construct.
Were there to be more than one remaining choice, the

2We have omitted translation schemas for choice, assignment and
arithmetic.

13

history stack would also be primed at this point so that
reverse execution caused forward execution to resume at
the following choice.

CHOICE> marks the end of the choice structure. Code
for each choice, other than the last, is terminated by
a branch to this point, and the Forth compiler, which
operates in a single pass, resolves these branches at this
point.

RUN> adds a copy of the value of E to the set
under construction (the original value found for E will be
uncomputed by reverse execution) and reverses execution
so that any further results can be found. Control will
be passed beyond this point when reverse execution
eventually succeeds in getting back to <RUN, indicating
there are no more provisional choices to be explored.

} terminates the set construction, leaving (a pointer to)
the final value of the set on the stack.

To consider how this schema might be amended so that
the results generated by S are recorded as a sequence, we
look first at the RVM-Forth expression of set extension
and sequence extension. In the postfix notation of RVM-
Forth the set extension {10,20} is written as:

INT{ 10,20, }

The comma in this code is an operation rather than
syntax. It consumes the top stack value and adds it to
the set under construction. This is why we have a comma
after the 20.

A sequence with these same elements and with 10
occurring before 20 is written as:

INT[ 10,20, ]

The comma in this sequence extension expression is an
operation which consumes the top stack item and appends
it to the sequence under construction. The commas for
set and sequence construction are different operations,
recognised as such by the Forth compiler setting a different
“context” at the start of set or sequence extension expres-
sions, resulting in the search for Forth “words” (tokens)
being made on a different sequence of word-lists.

In this spirit we define, within the context of sequence
extension, the operations <RUN and RUN>, similar to
those used for set extensions but operating to construct
a sequence of all values produced by an exhaustive
exploration of S.

For any postfix program .%, leaving a single value of
postfix type T,

T [ <RUN.% RUN> |

will leave the sequence of possible values generated by .5
by following different choices. The sequence will contain
repeated values and the values it records will be held
in the order in which they are generated. The range of
the recorded sequence will be precisely the set of values
generated by

T { <RUN .% RUN>



B. Guarded command language semantics for a language
with preferential and implementer’s choice

We now introduce a guarded command language struc-
ture to exploit the RVM-Forth sequence descriptions
described in the previous section. We then provide a
translation schema from guarded command language to
RVM-Forth to show how the two descriptions are related.

The choice connective 0 which we have used in our
guarded command language so far will no longer be a
primitive of the language. It will be replaced, for the
moment, by two different symbols. S = T will express
preferential choice, representing a command that will
first try S and later try T if the choice of S does not
lead to a solution. S M T will represent implementer’s
choice, used in specifications to express abstraction and
used in the semantics of code where some details of
implementation have been left to the compiler writer. We
also give an unbounded version of implementer’s choice.
var v ¢ S introduces a local variable v which can non-
deterministically take any value from its type and may
be used in S, though not in E. Rather surprisingly, this
construct has a use in describing implementations; if v is
assigned a new value within S before being used in any
expression, the effect of the non-determinism is removed,
and the resulting description serves us as a semantics for
local variables.

For any sequence expression E and program S we define
the “nabla term” SV E over the syntactic structure of
the language as follows:

The rule for skip is:
skip VE E.
For example skip V (x) = (x).

For assignment, recalling that E[F/x] represents a rewrite
of expression E with expression F replacing x

x:=FVE E[F/x]
For example x;:=x+1V (x) = (x+1)

For a guarded command, g — S, the result of g — S
VE will be SVE if g is true, and otherwise will be
an empty sequence, indicating that there are no possible
continuations.
g—=SVE g—=(SVE),-g—= ()

For example x=1 — skip V (x) = x=1 = (x), x#1 = ().
Note that a key difference between the PV semantics of
S ¢ E and the TOC semantics of S V E is that in PV
semantics infeasibility leads to an empty bunch of after
states, and in TOC semantics infeasibility leads to an
empty sequence of continuations.

For preferential choice we capture the idea of preference

through the order given to the possible continuations.
S=TVE (SVE)(TVE)

For example x;:=1=x:=2V {(x) = (1)"(2) = (1,2)

Implementer’s choice is represented as a bunch of possible
sequences.

14

SNTVE (SVE),TVE)
For example x:=1 M x:=2 V (x) = (1),{2) Note, however,
that implementer’s choice is a specification construct,
supposed to be removed from a program during the
development process. Nabla terms with non-deterministic
choice are not executable.

For sequential composition, and noting that V associates
to the right:

S;TVE SVTVE
For example x:=1;,x:=x+1V (x) = x:=1V (x+1) = (2)

Unbounded implementer’s choice yields a (possibly infi-
nite) bunch of continuations.
varveSVE = §ve(SVE)

Here we have the restriction that v must not occur free
in E. This restriction is not imposed by the form of
the definition, since as far as the bunch comprehension
expression is concerned, E is within the scope of v.
However, it becomes clear when we consider that the aim
of these rules is to describe all programs in our language
by giving their TOC effect over the syntactic constructs
of the elemental semantic components of the language
(where we note that conditional statements and loops are
composite constructs). Thus in this rule we are describing
the TOC effect of the language construct varv e S.

We have omitted from these rules the purely specifica-
tion construct of precondition, giving the rule for when a
program S can be used, since its inclusion would require
additional bunch theory concepts.

With these rules we can show that:

x:=10 = x:=20 V (x) = (10,20)
and

x:=10 > x:=20 ; x=20 — skip V (x) = (20)

In the second example, the preferred choice is x:=10.
This subsequently leads to an impassable guard, causing
the choice to be revised. We can think of SV (x) as
representing the sequence of values of x which program
S will offers to following code when forced to backtrack
from succeeding code. We can also think of it as a term
in an extended expression language which will yield that
sequence of values.

A perceptive reviewer asked why preferential choice
sometimes only activates its less preferred option when
forced to backtrack from the first, and sometimes executed
both options. The answer lies in the previous paragraph

- all choices within S are activated where it occurs in the
term S V E.

IV. Example programs and their RVM translations

We give three examples programs which exploit prefer-
ential choice and nabla terms, along with their translations
into Forth.

We first give a schema for translating the RBO term S
V {E).

We again use the brackets [ .. ] to represent the trans-
lation of the program or expression within the brackets



into RVM-Forth, and we represent the postfix expression
giving the type of E as [E]7.The translation is given by:

[SV(E)] = [EI”[ <RUN [S] [E] RUN> ]

Note that although nabla terms are formally defined
for any sequence expression, non-unit sequences occur
only within semantic analysis, so are not candidates for
translation to RVM code.

A. A simple backtracking parser

Our first example program is a backtracking parser for a
simple language of expressions containing only identifiers
and addition and multiply symbols. We use preference to
express precedence. The text to be parsed is taken from the
input stream. Id, Otimes and Oplus attempt to parse an
identifier, a multiply symbol and an addition symbol from
the input stream. If this is possible they update the input
stream pointer, otherwise they enter reverse execution.

We assume an input stream variable instream accessed
as an array, and an input stream pointer i Also a set
id_set containing the set of characters used as the valid
identifiers for our language.

Here are the RBO definitions

Id 2 instream(i) € id_set — i:=i+1
Oplus £ instream(i) = "+’ — i:=i+1
Otimes 2 instraim(i) = "+" — i:=i+1

These are translated to RVM-Forth as

:Id instream i + C@ id-set IN --> i1+ toi;
: Oplus instream i + C@ [CHAR] + = -->il+toi;
: Otimes instream i + C@ [CHAR] *= -->il+toi;

We now consider the parsing operations T and E T
parses expressions that contain no addition symbols, and
E is the complete expression parser. Their RB0 definitions
are.
T
E

> 1>

(Id ; Otimes ; T) > Id
(T;Oplus; E)e=T

These translate to the RVM-Forth as

: T <CHOICE Id Otimes RECURSE [] Id CHOICE> ;
: E <CHOICE T Oplus RECURSE [] T CHOICE> ;

B. Calculation of a probability distribution

As an example of a program that uses a nabla term,
consider the calculation of frequencies of possible scores
obtained by summing the values of three dice. We have an
initialisation to record the scores associated with each of
the 63 possible outcomes as a sequence, and an operation
to interrogate the sequence and tell us the number of
entries in the sequence that correspond to a given score.
We assume a constant die equal to the set 1..6 and a
variable scores which will record the sequence of possible
scores resulting from the 6% possible outcomes that can
arise from throwing three dice. The initialisation code is:

var X;, X,, X, ® scores := (x, :€ die; x, :€ die; x, :€ die V

15

(X +Xy+X5))

This translates to the following Forth operation, which
it is convenient to name Init (the initialisation of an RBO
“abstract machine” being anonymous.)

sInit (--) (2 2)
NULL VALUE x1 NULL VALUE x2 NULL VALUE x3
INT [ <RUN
DIE CHOICE to x1 DIE CHOICE to x2 DIE CHOICE to x3
x1 x2 +x3 +
RUN> ] to scores ;

Or, with optimisation, to

:Init ()
INT [ <RUN
DIE CHOICE DIE CHOICE + DIE CHOICE +
RUN> ] to scores ;

The scores sequence is held as a function which maps
each position in the sequence to its value. The frequency
of a particular score is found by range restricting this
function to the required score, and taking the cardinality
of the resulting set. I> represents range restriction.

f « freq(n) 2 f := card(scores I> n)
This translates to the following definition in the RVM
:freq(n--f)(:n:)scores INT {n, } > CARD;

C. Checking for redundant paths in backtracking search

A more general application of nabla terms is to check
backtracking searches for redundant paths to solutions,
that is to ensure they have only one way of finding each
result. That will indeed be the case if

card({S ¢ E}) = card(S V (E))

V. Related Work

A 1973 paper of M Zelkowitz [10] is the first commu-
nication to propose reversible execution as a means of
controlling backtracking. Zelkowitz added a RETRACE
command to PL1 allowing execution to reverse a given
number of steps or until a certain condition was met. The
feature is illustrated with a tree walking algorithm.

In “A Generalization of Dijkstra’s Calculus” [5] Nelson
discusses backtracking and clairvoyant choice, equivalent
to the provisional choice of our PV semantics but analysed
using weakest pre-conditions. He also introduces a form of
biased choice SB T which will choose S unless there is no
feasible path through S (no path not blocked by a false
guard) in which case it chooses T. This construct differs
from our preferential choice in that it is not concerned with
what happens after S has terminated - it cannot revise
its preference after backtracking from the continuation of
S. Nelson uses his biased choice in the specification of a
simple parsing algorithm, similar to our example but not
executable. The first researcher to suggest that guards and
choice rather than conditionals and loop statements were
the fundamental building blocks of a sequential language



was R Hehner, in an unpublished but well known technical
report, the history of which is given in [4]. Henry Baker
[2] mentions a number of ways of exploiting reversibility
that are related to this work, including speculative and
subjunctive computation. Note that we can consider the
term S ¢ E in a subjunctive sense as the values E might
take were the computation S to be performed.

VI. Conclusions and Future Work

We propose a reversible virtual machine, the RVM,
as a target platform for compiling reversible guarded
command languages. For discussion purposes we adapt
B0, the implementation level language of the B Method,
to give RB0, a reversible guarded command language used
as a vehicle for our discussions.

In this paper we add a preferential choice operator and
a new programming construct that records the sequence
of values an expression can take following a computation,
recorded in the order they will be offered to the compu-
tation’s continuation. This new programming structure, a
nabla Term, is described and illustrated by a program that
calculates a probability distribution. The semantic rules
for nabla Terms give us the required formal description
for preferential choice, whose use is illustrated by a simple
backtracking parser.

Future work includes both theoretical and practical
investigations. Since we now have two semantics, based
on prospective values and the temporal order of continu-
ations, there is an obvious obligation to prove these are
consistent. For use of TOC semantics in program refine-
ment, we need to develop a theory of proof obligations in
the style of the B-Method, and which tell us what needs to
be proved to show an implementation is consistent with
its specification, which may be described at a far more
abstract (and non-executable) level.

Ongoing practical work includes the development of
a compiler for a variant of the theoretical high level
guarded command language RBO0. This language will
include terms of the form SOE and SVE within its syntax
of extended expressions.

Acknowledgements. We thank the referees for their helpful
remarks and careful reading of the paper. We thank
Steve Dunne, Frank Zeyda and Robert Lynas for many
interesting conversations.

References

1]
2]

J-R Abrial. The B Book. Cambridge University Press, 1996.
H G Baker. The Thermodynamics of Garbage Collection. In
Y Bekkers and Cohen J, editors, Memory Management: Proc
IWMM’92, number 637 in Lecture Notes in Computer Science,
1992.

E C R Hehner. A Practical Theory of Programming. Springer
Verlag, 1993. Latest version available on-line.

E. R. Hehner. Retrospective and Prospective for Unifying
Theories of Programming. In S. E. Dunne and W Stoddart,
editors, UTP2006 The First International Symposium on Uni-
fying Theories of Programming, number 4010 in Lecture Notes
in Computer Science, 2006.

(3]

(4]

16

[5] Greg Nelson. A Generalization of Dijkstra’s Calculus. ACM
Transactions on Programming Languages and Systems, Vol 11,
No. 4, 1989.

W J Stoddart and F Zeyda. A Unification of Probabilistic
Choice within a Design-based Model of Reversible Computa-
tion. Formal Aspect of Computing, Published on-line 2007.
Accepted for publication in the Special Issue on Unifying
Theories of Programming, DOI 10.1007/s00165-007-0048-1.

W J Stoddart, F Zeyda, and A R Lynas. A Design-based
model of reversible computation. In UTP’06, First International
Symposium on Unifying Theories of Programming, volume 4010
of Lecture Notes in Computer Science, June 2006.

W J Stoddart, F Zeyda, and A R Lynas. A reversible virtual
machine. In Proceedings of Reversible Computation 2009, 2009.
W J Stoddart, F Zeyda, and A R Lynas. A virtual machine
for supporting reversible probabilistic guarded command lan-
guages. Electronic Notes in Theoretical Computer Science, 253,
2010. DOI information: 10.1016/j.entcs.2010.02.005.

M. V. Zelkowitz. Reversible execution. Commun. ACM, 16(9),
1973.

F Zeyda. Reversible Computations in B. PhD thesis, University
of Teesside, 2007.

[6]

[7]

(8]

[9]

(10]

(11]





