
Abstract— Low Power Wide Area (LPWA) networks have 
been the enabling technology for large-scale sensor and actuator 
networks. Low cost, energy-efficiency and longevity of such 
networks make them perfect candidates for smart city 
applications. LoRa is a new LPWA standard based on spread 
spectrum technology, which is suitable for sensor nodes enabling 
long battery life and bi-directional communication but with low 
data rates. In this paper, we will demonstrate a use-case inspired 
model in which, end-nodes with multiple radio transceivers 
(LoRa/WiFi/BLE) have the option to interconnect via multiple 
networks to improve communications resilience under the 
diverse conditions of a smart city of a billion devices. To 
facilitate this, each node has the ability to switch radio 
communications opportunistically and adaptively, and this is 
based on the application requirements and dynamic radio 
parameters. 
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I. INTRODUCTION

Wireless sensor networks (WSNs) have become a major 
technology for a wide variety of applications ranging from 
medical, to military and environmental monitoring. There 
have been a number of initiatives investigating how such 
technologies can make Cities both more efficient and more 
comfortable for citizens [12]. Consequently, there are a 
number of predictions of how cities will become spaces of a 
billion devices [13]. Therefore, one can envision the 
operation of such devices in the city space. This would be a 
mix of traditional telemetry whereby sensors report data back 
to base stations, which route that data to servers for analytics. 
However, to reduce data complexity and in turn improve 
sensor node lifetimes there is a movement towards more in-
network processing whereby data is processed in the sensor 
network [14]. Here, the computational process involved in 
such applications includes sophisticated sets of logical and 
mathematical functionalities, often implemented in a 
collaborative fashion amongst a large number of sensors and 
may also include actuators. This means that the 
communications network between sensor nodes and base 
stations is augmented with direct communications between 
nodes to collaborate. Hence if we have a billion devices in a 
city, we have considerably much more communications 
between them and sharing the bandwidth begins to reach 
physical limits [15]. Further, typical low-end, low-cost sensor 
devices are retrofitted to cities for convenience and cost-
effectiveness. They are typically equipped with batteries to 
provide power to the processors and, in some cases, sensors. 
Beyond power hungry sensing devices, the transceiver 
electronics is typically the most power hungry component of 
the sensor node. Therefore, in-network processing reduces 
the use of the transceiver therefore maximising the battery 
lifetime and lowering citywide sensor system maintenance.  

In parallel, newer technologies have come to the market to 
reduce battery usage costs. A particular emerging class of 

radio implements a Low-power wide-area network 
(LPWAN), to enable the City of a Billion Devices. LPWANs’ 
long-range transmission with low energy consumption is 
critical to enable the promise of ten-year system lifetime 
providing minimum maintenance. Through their use of 
spread -spectrum technologies LPWA technologies reduce 
the problems that are predicted when many devices use the 
same shared medium concurrently, and interference ensues. 
However, even with this there will be occasions that mean 
such systems will not have clear access to the network. 
Therefore, for extra reliability it is prudent to build an element 
of redundancy into the system and allow it to have alternative 
options with which to choose when the networks are very 
busy. This is highly important where data contributes towards 
an understanding of city operation at the time of an event such 
as a festival or moreover disaster situation.  

There are a number of options to back up the use of LPWA 
technologies, and these are more and more being shipped 
with sensor processor devices. These create a heterogeneous 
wireless network with nodes that have the capability of using  
multiple radio technologies (such as LoRa, BLE, 802.15.4 
and WiFi etc). Therefore to implement the required resilience 
an important question that arises is how should a node select 
the best radio; and within a given radio range, what are the 
most suitable parameters to be used at any given time, given 
environmental conditions and most importantly the varying 
application demands? 
Radio selection has been extensively studied in 
heterogeneous networks [9-11], particularly in cases when 
there is assistance from the network, or when a central 
controller is able to distribute users across networks in order 
to optimize some notion of system performance. However, 
most of the existing work focuses on the radio selection 
among cellular network and some other network such as Wi-
Fi, which are supposed to be conducted at mobile phones. No 
particular efforts have been put on the LPWAN, which is 
believed to the solution to provide massive connections in 
IoT. Additionally, the data features for IoT scenarios are quite 
different from mobile phones. Sensors in LPWANs are more 
critical to energy consumption than mobile phones. For the 
LPWANs with multiple radio technologies, how a sensor 
node can choose the best radio becomes a challenge. 
In order to solve the above concerns, the adaptive radio 
selection algorithm is desired to enable the sensors switching 
their radio opportunistically to minimize the energy 
consumption at each node that guarantees qualities of service 
per node and over the entire network. For a LPWAN at city-
scales, a distributed adaptive radio selection is required to 
make sure the algorithm is easily scalable. The sustainability 
of sensor nodes needs to be guaranteed for the considered 
network. 
In the distributed radio selection algorithm, we focus on an 
agent-centric approach, in which each agent will manage a 
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resource pool, in order to minimize energy consumption at 
sensor nodes. Based on the current network situation, the 
agent will make decisions to select the appropriate radio for 
the nodes covered by itself. No prior information about nodes 
managed by other agents need to be known. This can be 
achieved by using game theory, in which the agent will only 
strive to make the best strategy to minimize energy 
consumption at node level and maximize the throughput 
locally regardless of the nodes managed by other agents. 
Meanwhile, the agent also needs to determine the optimal 
parameters for the selected radio. Taking the LoRa radio as 
an example, parameters such as spreading factor, channel 
frequency, bandwidth, and transmission power need to be 
determined, in order to maximize the network throughput and 
minimize energy consumption at each sensor node and across 
the network citywide. By using such an approach, the energy 
consumption at sensor nodes can be minimized as the strategy 
process is moved from sensor nodes to its agent. At the same 
time, issues with regard to medium sharing begin to reduce. 

II. TESTBED AND PROTOTYPE DEVICE

To better understand how we can build such decision-making 
schemes  we have designed a LoRaBox instrument, which is 
introduced in the next section. This is part of a ‘living lab’ 
experiment whereby a section of London is instrumented with 
100’s of sensing devices that are densely packed across the 
space. 

Figure 1 shows the planned roadmap for multiple radio 
networks in Queen Elizabeth Olympic Park (QEOP) in 
London. The Intel Collaborative Research Institute (ICRI) 
has implemented this shared common research infrastructure 
to deliver various research agenda surrounding billion device 
challenge for future IoT networks, including adaptive 
opportunistic communication.   

Figure 1: Interconnectivity of different networks in Queen Elizabeth 
Olympic Park in London 

The ICRI has deployed a LoRa gateway in ArcelorMittal 
Orbit, which is the highest point in the park, to test and 
understand the performance and coverage of LoRa alongside 
the Public Wifi, 802.15.4 and BLE. Our initial goal is to 
understand how different types of data can be transported 
across the LoRa and Wi-Fi networks according to the 
application requirements of the data source (e.g. some sensor 
devices need higher throughput, thus utilising Wi-Fi for 
transmitting raw data, whereas LoRa is used for transmission 
of meta-data, due to its lower data rate). That will provide us 
with a good understanding of whether to process certain types 
of data in the field or offsite. Further, we investigate how 

different environmental variables such as interference from 
other devices (e.g. cell phones and CCTVs) affect 
performance metrics, e.g. packet loss and signal strength.   

Our second objective is to conduct longitudinal studies to 
understand performance under different loading conditions of 
the network. It is anticipated that volumes of people in the 
park (e.g. during events), weather, interference across 
networks, density of devices and the physical environment 
will all have an impact on the performance of the 
communications available for IoT. We want to understand the 
differences between the theoretical operation of these 
technologies compared to the reality of the installation within 
the park. LoRaBox instrument, which has been designed by 
the ICRI researchers at Imperial College London, will be used 
as the primary tool to demonstrate our research throughout 
this publication.   

LoRaBox 

LoRaBox is a multi-radio testing instrument designed for 
sending and receiving data packets via:  

 LPWA LoRa 
 Bluetooth Low Energy (BLE) 
 Wi-Fi  

LoRaBox is a portable embedded system based on Intel 
Edison compute module, running Yocto Linux and Java SE. 
LoRaBox integrates a LoRa transceiver (Microchip 
RN2483), 2x16 character LCD, rotary encoder switch, a solar 
panel and a 4000 mAh battery. LoRaBox runs an agent-based 
program developed in Java SE.  

LoRaBox captures data via one radio transceiver, processes 
the data, and forwards it over the same radio or other 
transceiver(s). A simple interconnectivity functionality of the 
LoRaBox is capturing BLE beacons and transmitting the data 
over LoRa (ISM 868 MHz) and WiFi.  

Figure 2: BLE sensor (left), LoRaBox (right) 

Figure 2 shows a BLE microclimate sensor based on Intel 
Quark SoC (Curie) on the left and the LoRaBox on the right. 
For the purpose of this document, we will only focus on LoRa 
and WiFi. 
The algorithms integrated in the device allows the instrument: 

1. to switch between different transmission powers
opportunistically depending on the signal strength
and energy requirement



2. dynamically switch the radio parameters (in
particular the Spreading Factor) in order to optimise
the connection quality and data rate.

Other LoRa parameters with major impact include the 
Coding Rate and Bandwidth. Selecting an appropriate 
Channel dynamically is also crucial when avoiding 
interference. However, for the sake of this document and our 
experimentation, we will only focus on spreading factor and 
transmission power.   

III. NETWORK DATA RETRIEVAL

For the purpose of this experiment, our proposed algorithms 
aim to adjust dynamically the above-mentioned parameters in 
order to meet the latency, data rate and energy consumption 
requirements of the application. Our algorithms aim to tune 
the radio communication performance by taking into account 
near real-time measurements of parameters such as RSSI, 
SNR, Airtime and Packet Loss.  
In order to clarify the aforementioned process, Figure 3 
illustrates the sequence in which LoRaBox and Gateway 
interact via EnableIoT cloud platform, including their data 
transmission.  

Figure 3: Sequences of applying algorithms on LPWA LoRa using 
LoRaBox and Intel EnableIoT cloud 

As figure 3 shows, data packets are initially transmitted to the 
LoRa gateway. LoRa gateway extracts the packet’s properties 
including the RSSI, SNR, Channel number, Frequency and 
its spreading factor. Each packet is registered and stored in 
the Intel EnableIoT, which is an IoT analytic dashboard and 
cloud storage. This operation is mainly done in order for the 
LoRaBox to access each received packet using the packet‘s 
unique ID in the cloud, which acts as a database for all the 
received packets. It is worth noting that the process of using 
Wi-Fi for downloading the received packets from the cloud is 
costly in terms of energy consumption and latency. However, 
this process is mainly done for experimental purposes in order 
to create a model for opportunistic communication. 

In the third phase, LoRaBox downloads each packet from the 
cloud registry via the park public Wi-Fi, which covers the 
majority of the locations in the park. LoRaBox identifies and 
analyses the received properties of the packets including the 
RSSI, SNR and the spreading factor. It is worth mentioning 
that the gateway may receive the packets using a different 
spreading factor according to the other packet being received 
simultaneously on a different channel. The gateway used in 
this case is a Kerlink gateway with 8 channels.  

Having analysed the RSSI and SNR of the received packets, 
it will apply the algorithms to adjust the transmission power, 
and spreading factor for the whole network accordingly.  
Since data is pushed to a cloud storage facility, packet 
properties can be viewed on a UI including the locations they 
are sent from. This is particularly useful for experimental 
purposes and initial testing of the device. As Figure 4 shows, 
as packets arrive, the web UI shows the RSSI, SNR and other 
properties of the packets including the data part of the packet 
in both encrypted and Hex forms. In this case we are sending 
temperature and humidity as shown in the top left hand 
corner. 
It is worth noting that all LoRa communications between the 
LoRaBox and LoRa Gateway are taking place using LoRa 
point-to-point mode without acknowledgement, and not 
LoRaWAN. 

Figure 4: LoRaBox web UI 

In order to simplify the opportunistic transmission power 
(Tx) and Spreading Factor (SF) selection, we have narrowed 
down the SF choices in the range of 7-12, and the Tx will be 
0, 4, 7, 10, 14 dBm. That was mainly done to simplify the 
analysis for the algorithms. Our initial experimentation 
showed that packets sent with very close transmission power 
levels often received with the same RSSI or with negligible 
differences. Therefore, by creating a gap of ~4dBm, received 
packets are more diverse in terms of their signal strength. In 
the context of our game theoretic model this makes it easier 
to find a Nash equilibrium. 

As we mentioned earlier Spreading Factor (SF), which is the 
modulation type for spread spectrum, has a major impact on 
time-on-air, RSSI and bandwidth. The higher the SF, the 
higher the receiver sensitivity and the time-on-air will also be 
longer. Therefore, SF is proportional to RSSI and inversely 
proportional to bandwidth and increasing the SF will increase 
the airtime. 

Table 1 shows the relationship between SF, RSSI and time-
on-air for a 100-byte packet sent on 866.40 MHz using coding 
rate 4/5 and 250 KHz bandwidth and 7 dbm transmission 
power using SEMTECH SX1276 LoRa transceiver. 



Table 1: Impact of Spreading factor on Time-on-air and RSSI 

SF Time-on-air (ms) RSSI 
(dBm) 

12 3370 -98
11 1920 -106
10 800 -111
9 441 -114
8 292 -119
7 109 -122
6 70 -124

IV. DECISION MAKING USING GAME THEORY

The proposed game theoretic method is based on our previous 
work [3], 

The goal of the LoRaBox is to minimise the packet loss by 
increasing the transmission (Tx) and therefore RSSI levels 
until there is a maximal chance that all packets are received 
successfully We apply a game theoretic  model to adjust the 
Tx levels without prior knowledge of the application’s power 
and airtime requirements.. In the second phase we use an 
auction that adjusts the node’s lifetime but with knowledge of 
the application’s power and airtime requirements, as well as 
the amount of battery available in the LoRaBox. It is worth 
noting that the LoRaBox’s lifetime is described in the number 
of milliseconds based on its 4000mAh battery, which is 
hardcoded into the application before applying the 
algorithms.  

Figure 5: Schematic description of IDM 

The first phase presents a game between a Defender agent 
who supervises a fixed set of packets that need to be 
delivered, and an attacker agent who attempts to reduce the 
Tx level. The first important factor is the number of packets 
being supervised by the defender with a specific Tx, which is 
a vital aspect of defender’s strategy. The second factor is 
every node’s coefficient of significance, which represents the 
SF and subsequently defines the airtime.  

Figure 5 shows the schematic description of IDM between the 
attacker and defender, in which Tolerance represents the 
minimum packet loss, having known the portion of the 
packets that failed to be delivered.  

The attacker’s Payoff Matrix in figure 5 is a matrix 
populated using Attacker’s Payoff function as below: 

(1) 

AP = Attacker’s Payoff, is = incorrect sum (i.e. the sum of 
significance coefficients of the actually failed packets), ts = 
total sum (i.e. the sum of significance coefficients of all 
packets), t = tolerance, rcn = reward for decreasing the Tx 
level, s = number of packets, cps = cost per packet, a = 
attacks, cpa = cost per attack, tc = tolerance cost [3-4]. 
SEMTECH SX1276 provides the channel RSSI before every 
transmission. We use that as optional factor for estimating the 
SNR level before every transmission. 

Once the matrix is populated with the attacker’s payoff 
values, each node is faced with a challenging task of choosing 
the right action out of a set of predefined actions. Choosing 
the most beneficial action, which maximizes its utility 
regardless of the attacker’s next move, will be the Nash 
Equilibrium of this game. Nash Equilibrium is a set that 
consists of the strategies of all players, called optimal 
strategies, and that leads to a payoff for each player such that 
none of them can unilaterally change their strategy and gain 
higher reward than before [4]. 

Figure 6: schematic description of IPM 

In the second phase the goal of the attacker is to increase the 
Tx and SF levels, whereas the defender is tasked to keep those 
and the packet loss to the minimum. This time however, the 
maximum packet airtime and LoRaBox’s reaming power are 
defined so that the defense strategy needs to be done with the 
least cost. Because the distribution of the  attacks defines the 
attacker’s strategies according to the number of recoveries 
and the number of packets it sends in each round, therefore, 
the number of attacks and recoveries by both players are 
limited to the number of lost and received packets 
respectively. 

(2) 

Function 2 shows the attacker’s payoff where, ta = total 
attacks, rcs = reward for saving power, ac = attack cost, tr = 
total recoveries, rcps = recovery cost per packet, rcs = reward 
for compromised packet, sc = packet cost, cse = lost packet at 
the end and tns = total number of packets [3].  

Phase 2 is applied when choosing SF based on their 
application power requirement at a fixed Tx. In this game 
LoRaBox attempts to minimize the cost (attacker’s payoff) 
imposed on itself by estimating the total cost of each recovery 
based on the airtime and power limitation set by the 
application. LoRaBox can ultimately choose the optimal set 
of Tx and SF for a given SNR, RSSI and Airtime, with the 
least overheads on its resources. For this purpose, the next 
phase uses auction-based techniques for competitive analysis 
of different strategies. 



In this scenario, the LoRaBox firstly conducts multiple 
rounds of auction by advertising the mean value of the cost 
for each round based on the remaining lifetime and maximum 
airtime. It is important to notice that, unlike the IDM, in this 
scenario only maximizing LoRaBox’s utility according to the 
application requirements is of importance. Therefore, from 
the LoRaBox’s point of view, the reward of this auction is 
spending the least time participating in transmissions. 

Figure 7: Auction for advertising a task to cluster-members 

Figure 7 shows an exemplar auction in which the LoRaBox 
estimates the utilities (V,X,Y,Z) of 4 different rounds 
(A,B,C,D) of IPM auctions according to the mean values of 
each round against its remaining power and required airtime. 
LoRaBox will decide which strategy results in higher utility 
(goal of IPM), and in case strategy X will be chosen.  
Applying the auction-based pricing equations in [5-6] to the 
above-mentioned application, results in the following figures 
for the IDM and the IPM models in table 2.  
These figures are based on the number of LoRa transmissions 
for each round of recovery, and the total lifetime of the system 
with regards to the total number of packets. The processing 
times mentioned in this table are based on Java architecture 
of the middleware running on the LoRaBox. [5-6] thoroughly 
describe the processing time and how they are calculated.  

Table 2: Processing times for each recovery 

IDM IPM 
Available Recovery Time 
for each round (Pa) 

10000 2000 

Required Recovery Time 
(Pd) 

500 100 

New Recovery Time (Pt) 500 100 
Query/Response 
Processing Time (Pq) 

1000 200 

Total processing time in 
LoRaBox (Etotal) 

100,000 200,000 

In the software architecture used in the LoRaBox, every task 
is associated with a number of milliseconds it will take to be 
processed. Therefore, each round of new recovery, and the 
number of recoveries done for each application incur specific 
costs. Query/Response times are extra processing it will take 
for the system to initiate each recovery.  
It is worth noting that the actual processing time has been 
defined in millisecond unit. However, for simplicity the 
above figures are normalised by a factor of 3000000. That is 
based on the LoRaBox’s 4000 mAh battery, which is equal to 
the total processing time. 
The rewards gained by the LoRaBox, based on the notations 
given in table 3, can be calculated using the following 
functions: 

  (3)

 This function simply returns how much energy can be 
saved by taking into account the number of previous 
recoveries (n), new recoveries (m) and the total number of 
query/responses (k). 

V. CASE STUDIES

We conducted a number of experiments in order to verify the 
effectiveness of the aforementioned approaches using the 
LoRaBox in the QEOP.   

In our first experiment, we validate how effectively this 
approach contributes towards minimum airtime and packet 
loss with respect to application’s lifetime expectancy. We 
selected 30 points in the QEOP from which the LoRaBox 
transmits 20 packets in 4 different rounds:  

1. Packets transmitted with no opportunistic
algorithms using SF:7 and Tx: 7 dbm for minimum
range (RSSI) and shorter airtime.

2. The same as Round 1 with opportunistic algorithms

3. Packets transmitted with no opportunistic
algorithms SF:12 and Tx: 14 dbm for maximum
range (RSSI) and longer airtime.

4. Same as Round 3 with opportunistic algorithms

Figure 8: Packets transmitted on SF 7 

In the first 2 rounds the application requirement does not 
allow the LoRaBox to exceed 7dbm for the transmission 
power as the lifetime of the system is set to 86,400,000 ms, 
whereas in round 3 and 4, there is no limit for both Tx and 
SF, as the system lifetime is not vital. In other words, rounds 
1 and 2 are targeting minimum airtime, whereas round 3 and 
4 aims for minimum packet loss. As figure 8 shows, data sent 
from almost half of the locations didn’t reach the gateway 
(indicated by NS). The RSSI of the received packets were 
also quite low. In the second phase of each round, we used 
IPM, IDM and auctions to investigate whether they make any 
improvement to the RSSI by adjusting the SF and Tx. 
In round 2, As table 3 shows, 7 more locations (4,12,16,22-
25) which had no signal in round 1, are now reporting good
signals. LoRaBox automatically increased the Tx from 0 (in
round 1) to 7 (in round 2). However, this increase of Tx was
not only meant for the locations, which had no reception in
the first round. In this round LoRaBox polled all SF values
on blind spots sequentially in order to improve the signal.



Table 3:  Packets transmitted on SF 7 with opportunistic algorithms 

In round 4, data were transmitted at highest SF 12 and Tx 14 
dBm. 

Table 4: Packets transmitted on SF 12 without opportunistic algorithms 

Table 5 shows RSSI values of all locations using maximum 
Tx level and highest spreading factor 12.  

Table 5: Packets transmitted on SF12 with opportunistic algorithms 

In the context of game theory, LoRaBox needs to weigh its 
strategies and choose the best option, which maximises or at 
the least maintains its profit (utility) whilst meeting old and 
new applications’ requirements. As Table 5 shows, there is a 
significant drop in RSSI level after applying the algorithms. 
In this stage LoRaBox selects SF 12 and Tx level 10.  

Figure 9: Average improvement in RSSI using both opportunistic 
algorithms 
In this scenario the system settles for this value until a new 
recovery is needed or application’s airtime requirement is 
changed. It is worth mentioning that application cannot 
modify the power requirement at runtime. That is mainly due 
to the fact that previous recovery costs are calculated based 
on the current application requirement. In case of a change in 
power requirements all estimations need to be done again, 
which incur a huge overhead, and currently LoRaBox does 
not have a mechanism to calculate the cost associated with 
that overhead. Therefore, as Figure 9 shows, the game 
approach combined with the auction, contributed to an 
average of between 2-6.5 dBm improvement in packet RSSI, 
based on each SF value. This improvement is based on the 
data given in figure 8 and tables 3-5, comparing RSSI with 
and without opportunistic algorithms. As this figure shows, 
IDM offers a higher improvement, but that is mainly 
regardless of the application lifetime. IPM however seems to 

be offering less improvement since the limit on its Tx 
prevents it from trying higher Tx levels and most of the 
improvement is the result of higher SF. 

VI. CONCLUSION
In this paper we have shown how combining game theory and 
auction-based algorithms can improve opportunistic radio 
communication of LPWA LoRa, which could be used for 
various edge-processing applications, in which time-on-air, 
receiver sensitivity, packet loss and energy consumption can 
be optimised with respect to the application requirements.  
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