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In entertainment applications, artificial intelligence techniques have most often been

used to implement embodied agents or to automatically generate artistic content. A

more recent development concerns using AI to support the user experience through new

AI-based interactivity techniques. This is especially of interest for the development 

of artistic installations based on interactive 3D
worlds.1–4 A major difficulty in developing such
installations is to properly translate the artistic inten-
tion into actual elements of interactivity, which in
turn determine the user experience.

The starting point of this research was to facilitate
the description of high-level behaviors for virtual
worlds that would form part of virtual reality (VR)
art installations. Our underlying hypothesis has been
that AI representations inspired by planning for-
malisms,5 and AI-based simulation derived from
these, could constitute the basis for virtual-world
behavior in these installations.

In our approach to interactivity, the consequences
of user interaction can be dynamically computed to
produce cascaded effects eliciting a specific kind of
user experience. This chain of events is computed from
first principles embedding elements of the artistic brief
(the artist’s initial conceptual description of the inter-
active installation and the intended user experience).
In other words,AI techniques are used for their ability
to represent actions and to compute analogical trans-
formations on them to create a user experience.

System overview and architecture
Our system presents itself as an immersive virtual

environment based on a CAVE-like device, the SAS
Cube. The SAS cube was developed on top of the
Unreal Tournament 2003 game engine, which serves
as the main visualization engine and provides basic
interaction mechanisms.6 The Unreal engine has also
been ported to immersive displays using the latest ver-
sion of the CaveUT software, 5 which supports stereo-
scopic visualization as well as head and hand tracking.

In addition, what makes possible the use of AI
techniques to simulate behavior in virtual worlds is
the exploitation of a specific feature of game engines,
namely the fact that they rely on event-based sys-
tems to represent all kinds of interaction. Event-
based systems originated from the need to discretize
physical interaction to simplify physical calculations:
although the dynamics of moving objects would be
subject to numerical simulation, certain physical
interactions’consequences (for example, glass shat-
tering following impact from a hard object) could be
determined in a discretized system without having
to perform complex mechanical simulations in real
time. Our installation consists of a virtual world in
which we can alter the normal laws of physical
causality by substituting physical actions’ default
effects with new chains of events.

Our approach relies on the system’s recognition of
high-level actions from low-level physical events to
generate semantic representations of the virtual world’s
events as they occur. In other words, from a low-level
set of events such as collisions and contacts between
objects, the system recognizes high-level actions (such
as pushing, breaking, and tilting) that affect world
objects, thereby attributing the same meaning to world
events that the user would. These actions are repre-
sented in the system using a formalism that makes their
consequences explicit. A real-time modification of this
representation will alter an action’s default conse-
quences, thereby affecting the user’s experience and
sense of reality in the virtual environment.

In contrast to the game engine’s native event-based
system, which directly handles event calls at the object
level, our system is based on a centralized event man-
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agement module, called the Causal Engine.
This module constitutes a generic layer
between the game’s physics engine and the
objects interacting in the scene (see figure 1).
The Causal Engine continuously intercepts
event calls from the physics engine and replaces
them with alternative events it computes.

Our alternative causality system is based
on two main components communicating via
UDP (User Datagram Protocol) sockets: an
event-interception system and an action-
modification module. The EIS is in charge
of event interception, analysis, and reactiva-
tion, and the action-modification module
computes action modification prior to the
actions’ reactivation (see figure 2). This
mechanism generates artificial event co-
occurrences in user real time, which, in turn,
influence the user experience.

Virtual reality art and 
alternative causality

VR art has been exploring complex user
experiences in virtual environments. In that
sense, a tradition exists in VR art of construct-
ing alternative worlds—consider, for example,
Char Davies’Osmose VR installation or Mau-
rice Benayoun’s Quarxs (featured in the epony-
mous animation series), invisible creatures that
bend the rules of physics. However, the devel-
opment of VR art installations to date has been
dedicated mostly to the design of virtual
worlds and ad hoc interaction mechanisms.
One challenge for the further development of
VR art would be to develop technologies sup-
porting the definition of world behavior from
first principles. These technologies would
make new experimentations with more ambi-
tious VR installations possible.

The technologies we discuss in this arti-
cle have been used to support interaction in
VR art installations. As an illustration, we
present the first prototype of a VR installa-
tion one of us (Mark Palmer) created. Gyre
and Gimble is a VR artistic project based
upon Lewis Carroll’s Alice stories. Although
Gyre and Gimble draws upon the Alice sto-
ries, we intended not to reproduce their nar-
ratives but to explore the disruption to per-
ception offered within them. In fact, Carroll’s
stories provide a natural starting point for
anybody interested in the consequences of
logic and the creation of alternative realities.
The way that we often encounter this in his
stories is through the mixing, collision, and
invention of games as well as the transfor-
mation of their rules. Carroll’s playfulness
with language presents us with paradoxes

arising out of the situations and conversations
in which Alice finds herself. Take, for exam-
ple, this conversation from Alice’s Adven-
tures in Wonderland and Through the Look-
ing Glass (Penguin Books, 1998):

“When we were little,” the Mock Turtle went
on at last, more calmly, though still sobbing now
and then, “We went to school in the sea. The
master was an old Turtle—we used to call him
Tortoise—”

“Why did you call him Tortoise, if he wasn’t
one?” Alice asked.

“We called him Tortoise because he taught us,”
said the Mock Turtle angrily. “Really you are
very dull!”

This is why his books are always far more
than just the presentation of a plot; they’re
events that unfold, involving the reader in
their own logic. Reacting to this interaction
becomes the primary driver of Gyre and Gim-
ble deliberately distancing itself from the nar-
rative. Rather than becoming a vehicle for
retelling portions of the Alice story, like the
stories themselves, it becomes an “event” and
an occasion that involves users in this dis-
ruptive process. The challenge was to make
a technology based upon gaming that was as
effective as Carroll’s creative subversion of
games. The joint decision to draw from the
scene in Through the Looking Glass in which
Alice discovers that, try as she might to look
at things in a shop, they evade her gaze, was
to provide the opportunity to use spectacle
itself as a means of interaction. Using a com-
bination of center of focus and the viewer’s
distance from the virtual objects under con-
sideration let us employ attention as a means

of interaction. The collision of objects that
then occurred as a result of an object’s desire
to escape constituted, from the system per-
spective, the starting point for the computa-
tion of chains of events (and consequences).

The Gyre and Gimble brief’s environment
is a 3D world reflecting the aesthetics of Sir
John Tenniel’s original illustrations (that is,
using 3D objects with nonphotorealistic ren-
dering). The user, evolving in the environ-
ment as Alice in first-person mode, is a wit-
ness to various objects’ behavior, which she
can also affect by her presence. One room
containing several cabinets and a table makes
up the Gyre and Gimble world. It includes
10 different types of interactive objects, 90
in total, such as candles, candleholders,
clocks, and books, dispersed on shelves, cab-
inets, and the table (see figure 3). The cur-
rent version of the environment supports a
set of 20 actions (such as tilting, breaking,
flying, and burning).

User interaction
The user interacts with the VR art instal-

lation through navigation and by interacting
with objects, as in any virtual environment.
However, as part of the technical implemen-
tation of the artistic brief we described ear-
lier, objects are associated a default behav-
ior, by which they evade the user’s gaze and
escape toward other objects, depending on
the object categories. The user’s gaze trig-
gers objects’ spontaneous movement. Gaze
is measured by the system from the head vec-
tor (with a fair approximation considering
the average distance from the screens), and
its direction is calculated using an approxi-
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Figure 1. Integrating AI-based behavior in the game engine’s event system.
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mation from head-tracking data.
As figure 2 shows, a fixed cone of activa-

tion is associated with the user’s field of view.
Any object intersecting with the cone for
more than a few seconds (randomly from two
to 10) will start moving until it collides with
another object. The object’s motion depends
on its type—some will slide, run, or jump
away—and its speed depends on user-object
distance (the closer they are together, the
quicker the object moves). Simple contex-
tual rules determine directions for escaping
from the user’s field of view. As a result, the
user witnesses a stream of object behaviors,
which interaction prompts but whose precise
logic is not directly accessible to the user.

Another interaction mechanism, which
is more specific to this type of installation,
consists of integrating user trajectories and
navigation patterns to determine the user’s
behavior toward specific parts of the envi-
ronment and the objects they contain. Ulti-

mately, those objects’ behavior will reflect
the user’s behavior through global mecha-
nisms involving degrees of perturbation and
surprise, as the following sections describe.

Objects’ spontaneous motion provokes
collisions between them, which are the start-
ing point from which the AI module gener-
ates an event chain. This chain of events will
induce various forms of causal perception by
the user and constitutes a central aspect of
the interactive user experience. The ampli-
tude of the alteration to causal event chains
is based on semantic properties and analo-
gies between objects and depends on how the
user engages with the environment. This type
of computation can provide a principled mea-
sure of concepts directly related to the user
experience, such as “surprise.”7

The virtual world ontology:
Representing actions and objects

Knowledge representation is an essential

aspect of our approach.8 Our system is based
on ontological representations for both objects
and actions. These ontologies are developed
specifically for the contents of a given virtual
world, although significant subsets can be
reused from one installation to another. The
ontology for actions constitutes a specifica-
tion of the main actions taking place in a given
virtual world. The expression of an action’s
effects corresponds to its post-conditions (that
is, a change in objects’ properties). These
effects are also associated with a visualiza-
tion of the action itself in the form of a 3D
animation of the action. In this way, the action
can be properly staged in the virtual world
without a detailed simulation of all its phases.
This ontology contains both generic and spe-
cific actions. For instance, all objects can fall
or fly, but only objects in certain categories
can break (depending on their physical prop-
erties). In addition, some actions are related
to object functionality (for example, only con-
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Figure 2. An overview of the system architecture. The system is based on a game engine ported to a CAVE-like immersive display.

Figure 3. The first version of the Gyre and Gimble environment and an example of interactive objects. Sir John Tenniel’s original
illustrations inspired the nonphotorealistic rendering.
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tainers can be filled or emptied).
The ontology for objects serves different

purposes:

• to determine which actions objects can
take part in and how those actions will
affect them, and

• to support comparison and analogies
between various world objects.

The object ontology should support efficient
computations to be compatible with a virtual
environment’s real-time requirements. Phys-
ical properties will appear in the precondi-
tions, or triggers, of actions. For instance, an
action such as breaks-on-impact(?object, ?surface)
will test the surface’s hardness. This will
account for various situations, such as a cup
breaking upon impact on a table or a window
breaking when a ball hits it.

Analogical representations play an im-
portant role in generating chains of events
that can induce causal impressions in the vir-
tual world. The production of alternative con-
sequences for actions is largely based on ana-
logical transformations, such as substituting
an effect for another or replacing the action’s
object with another one based on similarity
criteria. We can draw analogies from physi-
cal or functional descriptions: for instance,
the process of liquid evaporating from a con-
tainer can be related to a candle burning.

Objects are represented in the ontology
using a dual structure: one part is dedicated
to the object’s physical properties (such as
size, shape, and hardness) and another to the
object’s functional properties (such as con-
tainer or light source). Both parts include rep-

resentations for predefined states, which are
a key element of the representation (espe-
cially considering that the representation
should support the derivation of action con-
sequences). Predefined states correspond to
an object’s potential state according to its
physical properties and functionality. Physi-
cal states describe high-level properties such
as object orientation or the object’s integrity.
Functional states relate to the object’s telicity:
a candle can be lit or not, a container filled or
empty, and so on. Transitions between states
correspond to specific actions described as part
of the ontology; the actions’ postconditions
correspond to the various object states. States
can also relate the two descriptions: for exam-
ple, the “tilted” positional state for a teacup
would be compatible only with its “empty-
ing” functional state as a fluid container (see
Figure 4). Similarly, a book is readable (func-
tional) only if it’s open (physical). The con-
nection between physical and functional
states enables causal simulation without
requiring complex qualitative simulation or
commonsense reasoning to be implemented
on top of the system.

Alternative reality and the
generation of chains of events

The experience of alternative reality attached
to artistic installations is based on the creation
of chains of events responding to user interac-
tion that induce impressions of causality. The
two main principles for creating chains of
events are the modification of certain actions’
default consequences and the addition of new
effects. Our system uses an ontology of
actions, from whose representations it can gen-

erate alternative effects using the actions’
semantic properties. Planning formalisms
(namely the SIPE formalism5) inspired our
action representations. They associate within
the same representation an intervention in the
form of a situated physical event (the cause)
and its consequences in terms of object modi-
fications (the effects). We’ve termed these rep-
resentations CE (for cause-effect) structures.
As we previously described, CE representa-
tions are continuously produced by “parsing”
the low-level system events corresponding to
physical contact between objects into CE struc-
tures, using the semantic properties of the
objects taking part in those actions.

Figure 5 shows the CE representation for
a projecting (that is, throwing) action Tilt-
Object(?obj1, ?obj2). Its “trigger” part corre-
sponds to the physical event initiating the
action (Hit (?obj1, ?obj2)) and its “effect” part to
the action’s consequences (the fact that the
object tilts upon impact). The “condition”
field corresponds to physical properties char-
acterizing objects taking part in that action
(slender, light, and so on). These properties
are part of the action’s semantics and are nec-
essary conditions to instantiate a CE.

An event chain’s generation is based on
the real-time transformation of CE instances
while their effects are “frozen” by the EIS.
From a formal perspective, these transfor-
mations should modify the contents of a CE
instance to produce new types of events upon
reactivation of the CE’s effects. To do so, the
Causal Engine relies on several features,
which correspond to

• a semantics for the CE representation and
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the objects,
• specific procedures for transformation that

alter the CE instance’s contents, and
• a control mechanism for the set of trans-

formations over the CE.

The first aspect derives from an underly-
ing ontology in which objects are classified
according to dimensions characterizing their
physical properties (for example, soft, light,
free, or solid). These semantic dimensions in
turn determine some actions’ applicability
(as implemented in the “condition” part of a
CE). For instance, only fragile objects can be
the targets of shatter-on-impact CEs, and only
objects of certain shapes can be affected by
a tilt-object CE.

The second aspect is implemented through
the notion of Macro-Operators (MOps)—spe-
cific procedures for performing expression
substitutions within instantiated CE repre-
sentations. MOps are described in terms of the
transformation classes they operate on a CE’s
effects. Examples of MOp classes include

• change-object, which substitutes new objects
for those that the CE originally affected;

• change-effect, which modifies a CE’s effects
(consequences);

• propagate-effect, which extends the CE’s
effects to other semantically compatible
objects in the environment; and

• link-effect, which relates one CE’s effect to
another one’s.

Finally, a control mechanism should
determine which CE to modify and which

modification is most appropriate from a
semantic perspective. The control mecha-
nism will select a set (or a sequence) of
MOps to be applied on the candidate CE.
The criteria for this selection must be seman-
tic ones. As we’ll describe in the next sec-
tion, we based this control mechanism on a
heuristic search algorithm.9

Event transformation
The CE creates chains of events through the

principled modification of actions intercepted
in real time. The basic principle for the
dynamic creation of such event chains relies
on degrees of analogy between default effects
and alternative ones produced as part of event
modification. These modifications are per-
formed by applying a MOp to an intercepted
event. The overall algorithm explores the space
of potential transformations using heuristic
search. It generates a set of possible transfor-
mations, from which it selects the most appro-
priate one in terms of semantic compatibility
and spatial constraints. A global score mea-
suring the level of disruption can control the
search. This concept determines the nature of
the user experience—that is, how much the vir-
tual world departs from the everyday world.

The CE is the main module for creating
causal chains from the transformation of
intercepted actions. It operates through four
steps: initialization, generation, evaluation,
and selection.

Initialization
This first step consists of identifying a pool

of compatible objects to which effects could

be propagated to create a chain of events.
These are initially selected on the basis of
their spatial properties—that is, proximity to
the user or his or her field of vision. This pool
determines the set of objects that the MOp
will manipulate to serve as substitute objects
for the CE effect or to which the CE effect
will be propagated. When the initialization
process is completed, each action represen-
tation will have been altered independently.
However, to avoid conflicts between modi-
fications, the algorithm removes from the
pool objects already involved in an inter-
cepted event.

Generation
Alternative effects are generated by suc-

cessively applying a series of MOps on a
“frozen” CE. The list of MOp classes the
Causal Engine uses is determined offline.
Here, the Causal Engine will successively
execute two MOps: CHANGE-EFFECT and PROPA-
GATE-EFFECT. Typically, a MOp application cre-
ates a new instance of the frozen CE and
modifies its EFFECT section. In our system, an
EFFECT is identified by a type, a state, and an
object’s reference on which the effect will be
applied (see following example). In our
object representation, we define four types
of effects depending on the object properties
they alter: POSITION, MOVEMENT, STRUCTURE, and
FUNCTION. An effect is represented by a tuple:

EFFECT [MOVEMENT, TILTING, Candle#1]

A MOp will change either the EFFECT tuple’s
object (Candle#1) or its effect field (TILTING).
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TRIGGERS:
 Hit(?Obj1, ?Obj2)
CONDITIONS:
 Object?(?Obj1)
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 Slender?(?Obj1)
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EFFECT:
 Tilting (?Obj1, ?Obj2)

CE:
TILT-Object-(?Obj1, ?Obj2)

TYPES:
         [OBJECT
             FINITE-LIGHT-SOURCE]
STATES:
             [ POSITION: [STAND, TILTED]
 MOVEMENT: [SLIDING, ROLLING, TILTING, FLYING, FALLING]
 STRUCTURE: [INTACT, BROKEN]
 FUNCTION: [CONSUMED, BURNING, EXTINGUISHED]

PROPERTIES:
             [ HARDNESS: SOFT
  SHAPE: SLENDER
  DIMENSION: SMALL
  MASS: LIGHT
  ATTACHMENT: FREE]

ID: CANDLE#1

Action Object

Figure 5. The cause-effect (CE) action and its use of objects’ semantic properties.
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MOps access an object’s states to determine
which effects the object supports (see figure
6). For each potential state or for each object
involved in the effect, a MOp creates a pos-
sible modification. For instance, a CHANGE-
EFFECT MOp will produce 10 potential modi-
fications if an object supports 10 different
states (as our candle object does). Similarly,
a PROPAGATE-EFFECT MOp produces a new poten-
tial modification for each object within the
candidate pool (providing these support the
particular effect propagated). Consequently,
if four candles (including the one colliding)
are in the user’s field of view, the list of 10
modifications produced by the previous
MOp will be expanded to reach 40 candidate
modifications.

From the set of candidate modifications,
further MOps can be applied to each modifi-
cation. This process of successive MOp
applications generates a modification space.
The constraints on number of object states

and number of compatible objects determine
the modification space’s branching factor at
each application step. The generation process
is terminated once all relevant MOps have
been applied or the process has exceeded 50
milliseconds. Considering that the number
of modifications can increase exponentially,
this time threshold preserves a response time
compatible with a virtual environment’s
requirements.

At the end of the generation process, the
system has generated a set of candidate mod-
ifications applicable to the “frozen” CE (these
modifications take the form of a partial path
in the search space). To maximize the chance
of causal attribution by the user, these candi-
date modifications should be evaluated for
consistency and relevance in the context of
the original CE.

Evaluation
Each modified CE is associated a value

reflecting its degree of similarity with the ini-
tial CE (measuring the extent of the transfor-
mation). For modifications involving objects
other than the default one, their spatial distri-
bution score is also computed. These scores
are aggregated into a degree of plausibility
for each transformation, represented by a
value normalized between zero and one. The
search algorithm uses this value as a heuris-
tic function to determine the most appropri-
ate transformation. Each modification can be
associated with a triple:

MODIFICATION [[MOVEMENT, TILTING, Candle#1],
[FUNCTION, BURNING, Candle#1],0.8]

The modification cost behaves as a heuris-
tic value reflecting the level of change the
modification introduced. This cost is deter-
mined by means of a “heuristic” comparison
between the original and the modified effects,
reinforced by spatial considerations between
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Figure 6. The application of the CHANGE-EFFECT Macro-Operator (MOp). The book hits the candle while trying to escape the user’s
gaze. Upon impact, the candle should normally tilt forward. However, the system intercepts the action and modifies its default 
consequences using MOp, resulting in the candle being set alight instead.
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the original object position and that of the new
object involved in its modified version:

Modification Cost = 
Plausibility Weight * Proximity Weight

The plausibility weight corresponds to a
modification’s degree of plausibility (which
in our case is equivalent to the extent of
change). A function computes this weight
using a simple matrix associating a heuristic
value to each possible combination (see fig-
ure 7). The values in this figure range from
zero to one, zero indicating that the modified
effect the MOp produced is equal to the orig-
inal effect. A value of one expresses a total
absence of effects, which is considered the less
natural consequence. For instance, a candle
projecting against a wall will remain “stuck”
to it in its position at impact. The smaller the
value, the more plausible (or less disruptive)
the transformation is. For instance, changing
a MOVEMENT effect such as Tilting with another
MOVEMENT effect such as Sliding appears much
less disruptive than replacing Tilting with a FUNC-
TION-type effect such as Burning. The plausibility
matrix was initially established by identifying
analogies between potential consequences of
a sample set of actions. In a subsequent step,
we readjusted the weights associated with the
matrix elements according to feedback from
user experiments, as we explain in the next
section.

However, the spatial contiguity of co-
occurring events also considerably influences
a modification’s plausibility. Because distant
events are less likely to be perceived as cor-
related, we’ve complemented the plausibility
weight by a proximity weight accounting for
the influence of events’ locations. A proxim-
ity weight valued at 0 corresponds to the
original object; a value of 1 represents the
farthest object.

Selection
During this last step, the algorithm uses

the heuristic values computed in the previ-
ous step to select the modification closest to
a predefined cost threshold. This threshold
represents the “global” modification cost the
Causal Engine targets. We refer to this value,
normalized between 0 and 1, as the global
level of disruption. For instance, if we set the
level of disruption at 0.8, the algorithm will
select the modification presenting a cost
around 0.8 and then reactivate it in the envi-
ronment instead of the normal consequences
(for example, a candle will start burning
instead of tilting). In other words, the level
of disruption can be considered as a heuris-
tic threshold used to determine the extent of
transformations, hence affecting the user
experience.

The combination of MOps and heuristic
search provides an original approach that
allows a systematic exploration of a transfor-
mation space. Overall, the system performance
is in line with its initial design constraints,
which imposed a response time in the order of
60–120 ms10 (with a frequency of 20–50 inter-
cepted events per minute). The event recogni-
tion and reactivation process is achieved
between 40 and 60 ms, while the event modi-
fication occurs in a time range of 20–40 ms.

Experiments
To evaluate the system’s capacity to elicit

causal perception, we conducted two exper-
iments involving a total of 60 subjects. For
both experiments, we tested the system in a
desktop configuration. We instructed subjects
to repeat a similar action while our system
exposed them to different consequences
every time. For instance, in our first experi-
ment, users had to drop a glass on a table sup-
porting several objects. The default effect
was for the glass to shatter on impact. The

system generated alternative co-occurrences,
such as another glass on the table shattering,
the table surface cracking, another glass tilt-
ing over and spilling its contents on the table,
or a cardboard menu falling from the table.

For each experiment, we instructed the
subjects to explain the events immediately
after each try. We analyzed transcripts of these
explanations for the occurrence of causal
vocabulary and explanations. These experi-
ments showed that the subjects perceived the
effect substitution as a causal relation in more
than 70 percent of individual tasks. This is
comparable to scores previously reported in
psychological experiments dealing with
causal perception.11 The experiments also led
us to adjust and validate our heuristic search.
However, our current work consists of refin-
ing our plausibility heuristic by introducing
metrics to measure action analogy based on
condition and triggers similarity.

System response and 
user experience

As we explained earlier, the level of dis-
ruption corresponds to the search threshold
for the use of heuristic values. According
to this threshold’s value, the transformation
produced goes from the more natural (0) to
the more artificial (1). Our system dis-
cretizes this value into five disruption lev-
els: NULL, LOW, MEDIUM, HIGH, and VERY-HIGH. In
the Gyre and Gimble world, the system
dynamically updates the level of disruption
to represent the environment’s response to
the user’s perceived behavior toward it. Two
regularly updated parameters represent user
behavior: (User-Objects-Proximity) integrates the
amount of time the user spent in proximity
with certain objects, and (User-Activity) reflects
the user’s exploration of the world. More
specifically, (User-Object-Proximity) is weighted
between 0 and 1 and corresponds to the user’s
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Original
effect type Original-Effect [MOVEMENT, TILTING, Candle#1]

Plausibility (MOVEMENT, FUNCTION) = 0.8

Modified-Effect [FUNCTION, BURNING, Candle#1]

Modified
effect
type

Position (P)
Movement (M)
Structure (S)
Function (F)

Position
(P)

0.2
0.4
0.6
0.3

Movement
(M)

0.4
0.2
0.4
0.2

Structure
(S)

0.8
0.6
0.6
0.8

Function
(F)

0.0
Modified effect = Original effect

(object behaves normally)

1.0
Modified effect = NULL
(object stays “frozen”)

0.2
0.8
0.8
0.2

Figure 7. The Plausibility matrix provides heuristic coefficients based on the difference in type between the original and modified effects.
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average distance from the objects he or she
has activated. This metric reflects the user’s
level of engagement with an object. Depend-
ing on the artistic brief, this can be interpreted
as interest or a threat. (User-Activity) represents
an appreciation of the user’s frequency of
movement and interaction with the world.
Every 10 to 30 seconds, the distance the user
covers and the number of objects he or she
has activated are compiled into a score
between 0 and 1, a value of 0 meaning that
the user has been nearly immobile.

The level of disruption is then frequently
updated using a simple matrix (see figure 8).
Increasing or decreasing it in response to user
behavior creates different user experiences
in terms of emotions reflected in, and by, the
world itself. The user thus indirectly influ-
ences the transformation amplitude through
values for his or her behavior.

This constitutes another example of the
generation of more sophisticated user expe-
rience through AI technologies. In other
artistic installations, the level of disruption
is influenced by metrics involving the
user’s degree of empathy toward artificial
creatures he or she can decide to repulse or
attract.1

A low value for the level-of-disruption
parameter (close to 0.25) tends to result in
minor changes. Indeed, they’re often related
to the propagation of a normal consequence
to spatially close or same-type objects. For
instance, the book-candle collision will also
project (that is, throw) one of the closest sim-
ilar candles. However, a medium level of dis-
ruption (around 0.5) usually extends or sub-
stitutes default consequences to different
objects, as when the book is projected with
the candles around, instead of the original
candle (see figure 9, number 2: Action mod-
ification). Higher levels of disruption (close
to 1.0) affect the type of effects generated 
and the entire population of objects in the
user’s field of view. At this level, an interac-
tion’s consequence becomes hardly pre-
dictable because it depends on the environ-
mental context (that is, the type, state, and
distance of the objects surrounding the ini-
tial event). Here, such a level triggers the
opening of the book while some candles start
burning or tilting (see figure 9, number 3:
Actions reactivation).

This approach’s advantage is its ability to
control the consequences of user interaction
at different levels, using concepts that can be
related to artistic intentions. Most impor-
tantly, these principles also support genera-

tive aspects, where the system enriches the
creative process.

We’ve applied our approach to two
fully implemented artistic installa-

tions from two different artists.1,2 We carried
out evaluation sessions with the artists to

• obtain the artists’ feedback on how the
final installation implemented their early
ideas about interactivity as stated in the
original briefs and

• enable them to experiment with the sys-
tem formalisms to fine-tune the installa-
tion’s behavior.

These sessions helped us focus our future
work into two directions. The first one quite
naturally consists of granting artists better
access to the system’s formalisms through the
development of specific authoring tools. The
second is to investigate more systematically
users’responses to these installations. Recent
research in entertainment theory suggests a
possible approach for such evaluation.

Traditional interactive systems rely on
direct associations between interaction events
and their scripted consequences. This has
some limitations for digital-arts applications,
forcing the specification of all low-level
events when implementing an artistic brief.
Such an approach also has limited flexibility
when it comes to eliciting more complex user
experience, such as reacting to the user’s
global behavior. An AI perspective brings two

major advances. The first is an explicit rep-
resentation layer for high-level actions, which
supports principled modifications of actions’
consequences. These principles are derived
from the high-level specification of system
behavior produced as part of the artistic
briefs. For instance, the Gyre and Gimble sto-
ryboard refers explicitly to causality and
describes various levels of disruption to the
environment’s expected behavior. The other
advantage is that the AI approach’s genera-
tive properties enrich the user experience,
simplifying the authoring process. As VR art
develops,3 the requirements on advanced
interactivity will become more demanding.
Mediating interaction through AI representa-
tions seems a promising research direction,
as several installations that we’ve been sup-
porting suggest.1,2  
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Heuristic search

2. Action modification:
Heuristic search process based on semantic analogy
and spatio-contiguity constraints, using combination

of Macro-Operator (MOp) to modify action

1. Action recognition and inhibition:
• Candle should tilt

                3. Actions reactivation:
• Hit candle still stands
• Book and candles around have been tilted

• Candle starts consuming
• Book is opening

Medium
level of disruption

High
level of disruption

MOp:CHANGE EFFECT

MOp:PROPAGATE EFFECT

Possible modifications

1

0

2

3

User interaction
User’s gaze focuses on book for a few seconds

User experience
Visualization of unexpected consequences

Figure 9. The “level of disruption” is a parameter governing the generation of unrealistic causality.
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