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Abstract  
 

The overhead trolley of a gantry crane can be moved in two directions in the plane. The trolley is 
attempting to control the motion of a suspended, rigid-body, distributed mass load, supported by 
a hook, modelled as a lumped mass, in turn connected to the trolley by a light flexible cable. This 
flexible system has six degrees of freedom, four variables describing the flexible, hanging load 
dynamics and two (directly controlled) input variables for the trolley position. The equations of 
motion are developed and the crane model is verified. Then a form of wave-based control 
(WBC) is applied to determine what trolley motion should be used to achieve a reference motion 
of the load, with minimum swing during complex manoeuvres. Despite the trolley’s limited 
control authority over the complex, flexible 3-D dynamics, WBC enables the trolley to achieve 
very good motion control of the load, in a simple, robust and rapid way, using little sensor 
information, with all measurements taken at or close to the trolley.   
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1 Introduction 
  

In a typical problem of crane control, the challenge is to achieve controlled motion of the load, 
simultaneously moving it to follow a desired trajectory while actively controlling the swing. The 
system can be described as under-actuated: only the trolley is directly controlled, and it must 
indirectly control the swinging load at the far end of the cable. Performance can be measured under 
various headings, including minimization of sway during motion or on arrival at target, tracking 
desired motion paths, accurate repositioning payloads in target within the shortest possible time, 
maximum repetition rate, and safety (Abdel-Rahman et al., 2003). Even with no external 
disturbances, the trolley motion can cause significant payload pendulation, especially when the 
dynamics are more complex. Also cranes are inherently lightly damped (Todd et al., 1997). Finally, 
the load can change significantly, in ways which the controller may not know in advance. All these 
factors add to the control challenge.  

Experienced crane drivers can acquire considerable skill, both in steering a load along a desired 
trajectory and in damping the swinging, especially on arrival at target. The trajectory might require 
guiding a heavy load safely around or between obstacles, within a factory, on a building site, or 
between a dock and a ship’s hold. But developing the driving skills takes time and is expensive. 
Also even highly trained drivers can make mistakes. Furthermore drivers will typically err on the 
side of safety at the cost of longer manoeuvre times. Often drivers will also rely on at least one 
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assistant (a person) to guide the load, especially for final positioning. One view of improving 
automatic control, therefore, is to try to understand what experienced crane drivers do intuitively, 
defining when to accelerate and to decelerate, and for planar trolleys, where and when to change 
direction and how quickly. But fully understanding what a human operator does is far from easy, 
and implementing this in a robust automatic control system is a further challenge. 

This paper is about automating the process of moving the gantry of a crane to control the motion 
of a load when the load is dynamically complex. Specifically the paper is about a technique to solve 
this challenge based on the idea of mechanical waves. The technique is shown to have many 
advantages over existing approaches, including robustness to changes in the system dynamics, 
known or unknown; ease of implementation; and general applicability. 

The reference inputs are requested motions to the system, that is, desired controlled motions of 
the load. These inputs could be desired crane positions or velocities over time. (Specifying one, of 
course, implicitly specifies the other.) Here it is assumed that the reference inputs are position 
control requests for the load motion over time. Often the problem is one of getting the load to track 
a desired trajectory. Many papers measure performance by the tracking ability of their control 
strategies (Sun et al., 2013, Kim and Singhose, 2010, Manning et al., 2010, Neupert et al., 2010, 
Forest et al., 2001, Vaughan et al., 2011).  
In published work to date, the load and cable dynamics are frequently modelled as a simple or (at 
most) a double pendulum system moving in a plane. Abdel-Rahman et al. (2003) in a crane review 
article report that “most control strategies for this class of crane assume a planar gantry crane, 
utilize planar, linear models, and assume that the crane path, external forces, and control effort are 
all planar”. The simple pendulum model considerably simplifies the dynamics, giving a swing 
frequency which is independent of the load mass. The simplification is not always appropriate 
however. Some researchers have recently modelled the loads as 3-D pendula to which various 
control techniques have been applied. However they generally assume a single, lumped-mass, load 
(Al-Garni et al., 1995, Sun et al., 2013, August et al., 2010, Yang and Yang, 2006, Antić et al., 
2012, Cheng-Yuan, et al, 2006, Maghsoudi et al., 2012, Chen et al., 2005, Schulze and Chang, 
2010, Zhong, 2011). The most dynamically advanced developments in crane controllers in 3-D 
assume point mass loads, or at most, a rod-like body hanging from the trolley. 
Some papers report work on controlling double-pendulum cranes (Kim and Singhose, 2006, Kim 
and Singhose, 2010, Masoud and Nayfeh, 2003, Sawodny et al., 2002, Manning et al., 2010, Tanaka 
and Kouno, 1998, Cheng-jun et al., 2009, Singhose and Towel, 1998, Kenison and Singhose, 1999, 
Dan and Li, 2008) but their simulations or experiments are planar rather than spatial. Manning et al. 
(2010), for example, present a dynamic model of bridge cranes with distributed-mass loads as a 
planar double pendulum. This work is an example of the use of input shapers. In general, the input 
shaper design depends on knowing the natural frequencies of the flexible system to be controlled. 
See Kenison and Singhose (1999) for example. 

The authors found no research which considered the control of a 3D double-pendulum crane 
involving rigid body dynamics, so this aspect of the work is considered novel. Also novel is the 
application of wave ideas to this control problem, although it had previously been applied to a 
simple, one-degree of freedom gantry crane leading to a robust control performance (O’Connor, 
2003). In this work it is shown that “wave-based control”, or WBC, can be applied successfully to 
controlling more complex dynamical systems in 3-D, such as controlling the double-pendulum load, 
retaining many of the advantages that WBC demonstrated in controlling simpler systems.  

The paper treats the load as a distributed mass, with translational and swing rotational inertia 
effects about two axes. Furthermore, this distributed load is assumed to be hanging from a hook of 
significant mass, about which the load is free to swing. The hook in turn is modeled as a lumped 
mass, so that its 3-D translational inertia effects can be taken into account. The trolley is taken to 
move in the horizontal plane, with motion controllers for two perpendicular axes. Three simplifying 
assumptions or restrictions are made. Firstly, the effects of cable hoisting are not considered. 
Secondly, the mass of the cable is assumed to be negligible. Thirdly, spin rotation of the load (as 
opposed to swinging in either planar direction) is neglected. (The authors are confident that WBC 



can easily be adapted to work without these assumptions, but the present paper assumes them to 
make the flexible dynamics more manageable.) The entire system has 6 degrees of freedom, four of 
which are determined by the system dynamics and two of which are controlled, input variables. 
Figure 1 shows a schematic of the system model and the variables used as coordinates in the 
dynamic model. 
As a control technique, WBC has been successfully applied to various flexible mechanical systems. 
It sees the actuator motion (in this case the motion of the trolley) as launching a disturbance, or 
mechanical wave, into the flexible system, while responding to waves coming back from the 
system, usually trying to absorb them (O’Connor, 2003, O’Connor, 2007, O’Connor et al., 2009, 
O’Connor and Fumagalli, 2009, O'Connor and McKeown, 2008, McKeown, 2009). This launching 
and absorbing are considered to be happening simultaneously. These notional motion waves have 
DC components (or net displacement components), which, on passing thought the flexible system, 
from actuator to tip and back again, leave behind the desired net displacement, while 
simultaneously controlling vibrations. The control system decides on the launch wave net 
displacement, usually setting it to half the reference displacement. The returning motion wave from 
the system is measured and is added to the launch wave, and this combination forms the input to the 
trolley motion controllers.  

The returning-wave component has two important effects. Firstly, it causes the trolley to absorb 
the vibration (that is, reduce the load swing) both during the manoeuvre and on arrival at the final 
position. Secondly, in the absence of significant external, disturbing forces, the net motion 
associated with the absorbing motion will exactly equal the net motion of the launch wave, so that it 
makes up the second half of the reference displacement. It will be shown that this fairly simple idea 
produces rapid, robust control, which is easy to implement, of low order, and which does not 
depend on having a precise system model, or ideal actuator response, or position sensing at the load. 
 

2 3-D model of system dynamics 
 

Figure 1 represents the entire physical system as modeled, including trolley, rails, cable, hook 
and hanging rigid body payload. 



 
Fig.1: Representation of the 3D double pendulum gantry crane 

The trolley can move in both x and y directions simultaneously, so that it can follow an arbitrary 
path in the X-Y plane in response to input signals to the trolley position sub-controllers. The 
reference system with coordinates X1Y1Z1 is attached to the trolley, with Z1 vertically downwards. 
The hook is connected to the trolley by a light, flexible cable, with the cable mass considered 
negligible in comparison with that of the hook and the load. The hook is modeled as a point mass 
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(m1), the kinetic energy of which is therefore purely translational. Also since cable hoisting is 
ignored, the cable length is taken as a constant, l1, so the exact position of the hook can be 
determined by the angle of the cable in space. This angle is measured by two variables, θ1x and θ1y, 
which are the projections of the cable onto the X-Z plane and Y-Z planes respectively. A second 
reference frame with coordinates system X2Y2Z2, parallel to the first, has its origin at the hook, and is 
used to describe the swing rotation of the load, again using two angles, θ2x and θ2y, which are 
projections of the load angle onto  the X-Z and Y-Z planes respectively.  
The instantaneous location of hook with respect to an inertial (space) coordinate system is given by  

 {

𝑥𝐻 = 𝑥𝑇 + 𝑙1 sin 𝜃1𝑥

𝑦𝐻 = 𝑦𝑇 + 𝑙1 cos 𝜃1𝑥 sin 𝜃1𝑦

𝑧𝐻 = 𝑙1 cos 𝜃1𝑥 cos 𝜃1𝑦

 (1) 

where xT and yT are the trolley’s position in the inertial reference frame. The position of the mass 
centre, G, of the swinging load is given by 

 

{
 
 

 
 𝑥𝐺 = 𝑥𝑇 + 𝑙1 sin 𝜃1𝑥 +

𝑙2

2
sin 𝜃2𝑥

𝑦𝐺 = 𝑦𝑇 + 𝑙1 cos 𝜃1𝑥 sin 𝜃1𝑦 +
𝑙2

2
cos 𝜃2𝑥 sin 𝜃2𝑦

𝑧𝐺 = 𝑙1 cos 𝜃1𝑥 cos 𝜃1𝑦 +
𝑙2

2
cos 𝜃2𝑥 cos 𝜃2𝑦

 (2)  

The equations of motion are obtained from Lagrange’s equation  

 𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) − (

𝜕𝐿

𝜕𝑞𝑖
) = 0 (3) 

The generalized coordinates, 𝑞𝑖, are here taken as the four independent variables 𝜃1𝑥 ,𝜃1𝑦 ,𝜃2𝑥 
and 𝜃2𝑦. The trolley position variables xT and yT are considered as input variables, used to control 
the attached flexible system, so four equations of motion are required. If m1 is the mass of the hook 
and m2 the mass of the load, total potential energy is 
 
𝑈 = 𝑚1𝑔𝑙1(1 − cos 𝜃1𝑥 cos 𝜃1𝑦) + 𝑚2𝑔 [𝑙1(1 − cos 𝜃1𝑥 cos 𝜃1𝑦) +

𝑙2

2
(1 − cos 𝜃2𝑥 cos 𝜃2𝑦)](4) 

 
where 𝑔 is the acceleration due to gravity. The total kinetic energy may describe as 
 

 𝑇 =
1

2
𝑚1�⃑�𝐻. �⃑�𝐻 +

1

2
𝑚2�⃑�𝐺 . �⃑�𝐺 +

1

2
�̃�. [𝐼𝐺]�̃� (5) 

 
where �⃑�𝐻 is the hook velocity, �⃑�𝐺  is the velocity of point G, and ~  is the total angular velocity of 
the load. The linear velocities are the derivatives of Eq.(1) and Eq.(2), which may be expressed in 
the form 
 

 �⃑�𝐻:

{
 

 
�̇�𝐻 = �̇�𝑇 + 𝑙1 �̇�1𝑥cos 𝜃1𝑥

�̇�𝐻 = �̇�𝑇 − 𝑙1�̇�1𝑥 sin 𝜃1𝑥 sin 𝜃1𝑦 + 𝑙1�̇�1𝑦 cos 𝜃1𝑥 cos 𝜃1𝑦

�̇�𝐻 = −𝑙1 �̇�1𝑥sin 𝜃1𝑥 cos 𝜃1𝑦 −𝑙1 �̇�1𝑦cos 𝜃1𝑥 sin 𝜃1𝑦

 (6) 

 

 �⃑�𝐺:

{
 
 

 
 �̇�𝐺 = �̇�𝐻 +

𝑙2

2
�̇�2𝑥cos 𝜃2𝑥

�̇�𝐺 = �̇�𝐻 −
𝑙2

2
�̇�2𝑥 sin 𝜃2𝑥 sin 𝜃2𝑦 +

𝑙2

2
�̇�2𝑦 cos 𝜃2𝑥 cos 𝜃2𝑦

�̇�𝐺 = �̇�𝐻 −
𝑙2

2
�̇�2𝑥sin 𝜃2𝑥 cos 𝜃2𝑦 −

𝑙2

2
�̇�2𝑦cos 𝜃2𝑥 sin 𝜃2𝑦

 (7) 

 
To quantify the rotational kinetic energy of the load requires its angular velocity �̃� and moment 

of inertia tensor, [𝐼𝐺], to be expressed in a common coordinate system. The load inertia tensor is 



most conveniently expressed using a coordinate system X2cY2cZ2c fixed to the load and along its 
principal axes, so that  
 

 [𝐼𝐺] = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]

𝑋2𝑐𝑌2𝑐𝑍2𝑐

 (8) 

 
If so, �̃� should also be expressed in the same coordinate system. As shown in Fig.2, the 

coordinate system X2aY2aZ2a moves through two rotations about the main axes to become aligned to 
the load body axis X2cY2cZ2c. The angular velocity (�̃�) according to Fig. 2 is defined as 

 �̃� = −�̇�2𝑦𝑖̂2𝑏 + �̇�2𝑥𝑗2̂𝑐 (9) 
 

 
Fig.2: Representation of successive rotations to reach the body coordinates of the hanging load  

 
 
The transformation from X2bY2bZ2b to X2cY2cZ2c or 𝑇2𝑏→2𝑐 is  
 

 𝑇(2𝑏→2𝑐) = [
cos 𝜃2𝑥 0 −sin 𝜃2𝑥
0 1 0

sin 𝜃2𝑥 0 cos 𝜃2𝑥

] (10) 

 
So finally �̃� can be expressed in X2cY2cZ2c as 
 

 �̃� = [

−�̇�2𝑦 cos 𝜃2𝑥

�̇�2𝑥
−�̇�2𝑦 sin 𝜃2𝑥

]

𝑋2𝑐𝑌2𝑐𝑍2𝑐

  (11) 

 
The rotational kinetic energy of the hanging load, 𝑇𝜔, is then expressible as  
 

Y2b  

θ2y, �̇�2𝑦 

θ2y 

θ2y 

X2a 
X2b 

Y2a  

Z2b  Z2a  

X2b 

Z2b  

Y2b  

Z2c 

o o 
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G 

a          b  
 

b          c 
 

X2c 

θ2x , �̇�2𝑥 



 𝑇𝜔 =
1

2
�̃�. [𝐼𝐺]�̃� =

1

2
𝐼𝑥𝑥(�̇�2𝑦)

2 (cos 𝜃2𝑥)
2 +

1

2
𝐼𝑦𝑦(�̇�2𝑥)

2 +
1

2
𝐼𝑧𝑧(�̇�2𝑦)

2 (sin 𝜃2𝑥)
2 (12) 

 
Substituting Eqs. (6), (7) and (12) into Eq.(5) gives the total kinetic energy of system. Then this 

T from Eq. (5) minus U from Eq. (4) gives the Lagrangian, L=T-U to be used in Eq. (3), with qi 
equal, in turn, to each of the four angles 𝜃1𝑥, 𝜃1𝑦, 𝜃2𝑥 and 𝜃2𝑦, giving four equations of motion, 
which after simplification become  
 
(𝑚1𝑙1

2 +𝑚2𝑙1
2)�̈�1𝑥 + (𝑚1 +𝑚2)𝑙1�̈�𝑇 cos 𝜃1𝑥 − (𝑚1 +𝑚2)𝑙1�̈�𝑇 sin 𝜃1𝑥 sin 𝜃1𝑦 + (𝑚1 +

𝑚2) 𝑙1
2(�̇�1𝑦)

2 cos 𝜃1𝑥 sin 𝜃1𝑥 +
1

2
𝑚2𝑙1𝑙2�̈�2𝑥 cos 𝜃1𝑥 cos 𝜃2𝑥 −

1

2
𝑚2𝑙1𝑙2(�̇�2𝑥)

2 cos 𝜃1𝑥 sin 𝜃2𝑥 +
1

2
𝑚2𝑙1𝑙2�̈�2𝑥 sin 𝜃1𝑥 sin 𝜃2𝑥 cos(𝜃1𝑦 − 𝜃2𝑦) +

1

2
𝑚2𝑙1𝑙2 {(�̇�2𝑥)

2 + (�̇�2𝑦)
2} sin 𝜃1𝑥 cos 𝜃2𝑥 cos(𝜃2𝑦 −

𝜃1𝑦) +
1

2
𝑚2𝑙1𝑙2�̈�2𝑦 sin 𝜃1𝑥 cos 𝜃2𝑥 sin(𝜃2𝑦 − 𝜃1𝑦) + 𝑚2𝑙1𝑙2�̇�2𝑥�̇�2𝑦 sin 𝜃1𝑥 sin 𝜃2𝑥 sin(𝜃1𝑦 −

𝜃2𝑦) + (𝑚1 +𝑚2)𝑔𝑙1 sin 𝜃1𝑥 cos 𝜃1𝑦 = 0  (13) 
 
(𝑚1 +𝑚2)𝑙1

2 (cos 𝜃1𝑥)
2 �̈�1𝑦 − 2(𝑚1 +𝑚2)𝑙1

2�̇�1𝑥�̇�1𝑦 sin 𝜃1𝑥 cos 𝜃1𝑥 + (𝑚1 +

𝑚2)𝑙1�̈�𝑇 cos 𝜃1𝑥 cos 𝜃1𝑦 +
1

2
𝑚2𝑙1𝑙2�̈�2𝑦 cos 𝜃1𝑥 cos 𝜃2𝑥 cos(𝜃1𝑦 − 𝜃2𝑦) +

1

2
𝑚2𝑙1𝑙2{(�̇�2𝑥)

2
+

(�̇�2𝑦)
2
cos 𝜃1𝑥 cos 𝜃2𝑥 sin(𝜃1𝑦 − 𝜃2𝑦) +

1

2
𝑚2𝑙1𝑙2�̈�2𝑥 cos 𝜃1𝑥 sin 𝜃2𝑥 sin(𝜃1𝑦 −

𝜃2𝑦) −𝑚2𝑙1𝑙2�̇�2𝑥�̇�2𝑦 cos 𝜃1𝑥 sin 𝜃2𝑥 cos(𝜃1𝑦 − 𝜃2𝑦) + (𝑚1 +𝑚2)𝑔𝑙1 sin 𝜃1𝑦 cos 𝜃1𝑥 = 0 
  (14) 
 
(𝑚2

𝑙2
2

4
+ 𝐼𝑦𝑦) �̈�2𝑥 +

1

2
𝑚2𝑙2�̈�𝑇 cos 𝜃2𝑥 −

1

2
𝑚2𝑙2�̈�𝑇 sin 𝜃2𝑥 sin 𝜃2𝑦 +

1

2
𝑚2𝑙1𝑙2�̈�1𝑥 cos 𝜃1𝑥 cos 𝜃2𝑥 −

1

2
𝑚2𝑙1𝑙2(�̇�1𝑥)

2 sin 𝜃1𝑥 cos 𝜃2𝑥 +
1

2
𝑚2𝑙1𝑙2�̈�1𝑥 sin 𝜃1𝑥 sin 𝜃2𝑥 cos(𝜃1𝑦 − 𝜃2𝑦) +

1

2
𝑚2𝑙1𝑙2{(�̇�1𝑥)

2
+

(�̇�1𝑦)
2
}cos 𝜃1𝑥 sin 𝜃2𝑥 cos(𝜃1𝑦 − 𝜃2𝑦) +

1

2
𝑚2𝑙1𝑙2�̈�1𝑦 cos 𝜃1𝑥 sin 𝜃2𝑥 sin(𝜃1𝑦 − 𝜃2𝑦) −

𝑚2𝑙1𝑙2�̇�1𝑦�̇�1𝑥 sin 𝜃1𝑥 sin 𝜃2𝑥 sin(𝜃1𝑦 − 𝜃2𝑦) + 𝑚2
𝑙2
2

4
(�̇�2𝑦)

2
cos 𝜃2𝑥 sin 𝜃2𝑥 + (𝐼𝑥𝑥 −

𝐼𝑧𝑧) (�̇�2𝑦)
2
cos 𝜃2𝑥 sin 𝜃2𝑥 +𝑚2𝑔

𝑙2

2
sin 𝜃2𝑥 cos 𝜃2𝑦 = 0 (15) 

 
(𝑚2

𝑙2
2

4
(cos 𝜃2𝑥)

2 + 𝐼𝑥𝑥 (cos 𝜃2𝑥)
2 + 𝐼𝑧𝑧 (sin 𝜃2𝑥)

2) �̈�2𝑦 −𝑚2
𝑙2
2

2
�̇�2𝑥�̇�2𝑦 cos 𝜃2𝑥 sin 𝜃2𝑥 +

1

2
𝑚2𝑙2�̈�𝑇 cos 𝜃2𝑥 cos 𝜃2𝑦 +

1

2
𝑚2𝑙1𝑙2�̈�1𝑥 sin 𝜃1𝑥 cos 𝜃2𝑥 sin(𝜃2𝑦 − 𝜃1𝑦) +

1

2
𝑚2𝑙1𝑙2 {(�̇�1𝑥)

2
+

(�̇�1𝑦)
2
} cos 𝜃1𝑥 cos 𝜃2𝑥 sin(𝜃2𝑦 − 𝜃1𝑦) +

1

2
𝑚2𝑙1𝑙2�̈�1𝑦 cos 𝜃1𝑥 cos 𝜃2𝑥 cos(𝜃1𝑦 − 𝜃2𝑦) −

𝑚2𝑙1𝑙2�̇�1𝑥�̇�1𝑦 sin 𝜃1𝑥 cos 𝜃2𝑥 cos(𝜃2𝑦 − 𝜃1𝑦) + (𝐼𝑧𝑧 − 𝐼𝑥𝑥)�̇�2𝑥�̇�2𝑦 sin(2𝜃2𝑥) +

𝑚2
𝑙2

2
𝑔 cos 𝜃2𝑥 sin 𝜃2𝑦 = 0  (16) 

 
These four, highly coupled, equations of motion capture the full system dynamics. In the 

modeling, no small-angle approximations were made to keep the model accurate even for large 
swing angles. These four equations can be integrated numerically from given initial conditions to 
describe the time evolution of the system. The trolley motion components are considered as inputs, 
defining �̈�𝑇 and �̈�𝑇 in these equations. As an example, Fig. 3 shows the behavior of the system for 
an arbitrary planar movement of the trolley with no damping or control action. The chosen system 
parameters (which can be arbitrarily chosen) are given in Table 1.  

  
 

{Table 1 should be lodged here}  
 



 
Figure 3: Dynamic response of 3D double pendulum gantry crane with 4 degree of freedom  

 
While the input motion of the trolley takes no longer than two seconds, the system keeps 

swinging indefinitely, with multiple frequency components. Alternatively, rather than by trolley 
motion, the system can be set in motion by giving it initial angular displacements and/or velocities, 
with the trolley stationary. If desired this can be done in such a way that the subsequent motion 
corresponds to the mode shapes, at each of four natural frequencies. 
With the crane model behaving as expected, the WBC ideas are now developed and used to control 
the swinging load by controlling the trolley motion. 
 
 

3 Wave-based approach to crane control 
 

From a control perspective, the trolley is a single actuator attempting to control a flexible system 
of relatively complex dynamics. The system is under-actuated, with more degrees of freedom than 
actuators. The actuator does not act directly on the load position and orientation, but must work 
through the intervening flexible dynamics, of cable and hook, to try to achieve a target motion of 
the load. The actuator motion is in two perpendicular directions, the load can swing in 3-D, and the 
motion components are strongly coupled. 

The control method adopted here, wave-based control, is a generic approach, which does not 
depend on having an accurate system model. It uses feedback, but the feedback measurements are 
taken not at the system output (here, the load position and orientation) but at the actuator (the 
trolley, in this case). Thus the actuator and sensing are collocated, with the consequent stability 
advantages. To date WBC has been used successfully to control 1-D rectilinear lumped flexible 
systems, 2-D flexible mass-spring arrays either beam-like or arranged in a grid, laterally flexing 
manipulators, and a simple pendulum gantry crane as already mentioned (O’Connor, 2003).  

In the current case, there are two inputs actuating the trolley motion in two orthogonal directions. 
So the trolley should be given two reference displacements, in the x and y directions, and two 
corresponding returning waves, bx and by, to achieve wave absorption in the two directions under 
WBC. Figure 4 illustrates a version of a general scheme for positioning the trolley, along with the 
payload, to a target position in the plane. 

Here the returning displacement waves are defined and measured as 

 𝑏𝑥 =
1

2
[𝑥𝑇 −

1

𝑍𝑥
∫ 𝐹𝑥 𝑑𝑡
𝑡

0
] (17) 

 𝑏𝑦 =
1

2
[𝑦𝑇 −

1

𝑍𝑦
∫ 𝐹𝑦 𝑑𝑡
𝑡

0
] (18) 



where xT and yT are the trolley position coordinates, Fx and Fy are the horizontal components in the 
x and y directions of the cable force measured at the trolley, and Zx, Zy are impedance terms. 
References O’Connor (2003) and McKeown (2009) outline how such expressions for the returning 
waves can be developed. Here we simply note the following two features.  

First, for rest-to-rest motion, from time t = 0 to some final time t, as the initial and final momenta 
are zero, the force integrals must be zero. So the final values of bx and by will be half the trolley 
displacements, or ½xT and ½yT. Note that this result holds regardless of the values of the 
impedances Zx and Zy. The second observation is that while Fx and Fy are changing, the effect of 
adding bx and by to the trolley’s motion is to make the trolley act as a viscous damper with damping 
coefficient Zx, Zy in response to the cable forces. 

 
The values of impedance are not critical to the control scheme. In this work both impedances 

were set to 

 𝑍 = (𝑚1 +𝑚2)√
𝑔

(𝑙1+𝑙2)
 (19) 

Variations in the values of Z cause small variations in the transient part of the responses. So Z can 
be used as a parameter with which to fine-tune the transient, for example to improve a specific 
performance measure (e.g. rise time, overshoot, or settling time), as appropriate for a given 
application, invariably at the cost of a slight degradation of some other transient performance 
measure (although always retaining the zero steady-state error). 

 
The force components Fx and Fy should ideally correspond to the horizontal components of the 

cable tension, including the dynamic effects of the acceleration of the load mass. For most purposes, 
however, they can be approximated by assuming that the cable tension is equal to the load weight, 
and then Fx and Fy from Fig.1 can be taken as  

 𝐹𝑥 =
−(𝑚1+𝑚2)𝑔 tan𝜃1𝑥

cos𝜃1𝑦
  (20) 

 𝐹𝑦 = −(𝑚1 +𝑚2)𝑔 tan 𝜃1𝑦 (21) 

These approximations were used in obtaining the results below. 
 
 



 
Figure 4: WBC plan for gantry crane with planar-moving trolley 

 
4 Results 

 
In the first manoeuvre the reference is a simple ramp (or constant velocity) displacement of one 

meter in the x-direction, with no motion in the y-direction. Figure 5 depicts the response of both the 
trolley and the centre of mass of the payload, G, under the control system of Fig.4. Also the 
swinging angles of the cable (in both directions) and of the load due to this excitation are displayed 
in radians. The trolley can be seen to settle quickly at the target displacement with an initial 
overshoot of less than 10%. The centre of mass of the hanging load, at 2 meters from the trolley, 
comes to rest rapidly, with little swing as shown by θ1x and θ2x, and with an overshoot of about 
10%. Clearly the suspension swinging dies out soon after the trolley reaches the target. Also shown 
is the returning wave, bx, which provides the swing absorption and settles at half the target 
displacement. (In this case there is no by as all the motion is in the x-direction.)  
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Figure 5: Gantry crane response to a 1-m displacement in x direction using WBC 
 

In the next example, the reference input is a simultaneous combination of a ramp up to 2 meters 
in the x-direction and a ramp of a different slope up to one meter in the y-direction. Figure 6 shows 
the response. The trolley comes to rest gently with no steady-state error while quickly absorbing all 
oscillations. Figure 7 shows how the swing angles of the double pendulum are actively damped. As 
the model has no damping built in, the damping is being achieved entirely by the trolley motion 
which is simultaneously moving the system to the target displacement as seen in Fig. 6. The 
periodic time of the lowest mode of vibration is of the order of 4 seconds. After 10 seconds, that is 
within two and a half times the periodic time after arrival at the target, all oscillations have been 
reduced from the maximum value of about 10 degrees to less than 2 degrees and they are decaying 
steadily. 

 
Figure 6: Response to planar trolley motion under WBC (sub G: mass centre of distributed load) 

 

 
Figure 7: Swing angles for manoeuver of Fig. 6, showing active damping  

 
Figure 8 shows the horizontal force components between trolley and cable for the same 

manoeuvre. The main accelerations and decelerations occur within 4 seconds, and after about 6 
seconds the force amplitudes diminish to less than 3% of the initial peaks. Again WBC is using the 
forces to combine position control and active vibration damping very effectively.  
 



 
Figure 8: Reduction of forces acting on trolley through WBC process 

 
Figure 9 shows the effect of choosing different values of the impedance parameter Z, as the only 

control parameter to be tuned, for the single-input manoeuvre of Fig.5. The reference impedance 
𝑍 = 𝑍𝑒𝑞 is as in Eq. (19), which is the value used to obtain the results presented above. Despite a 
12-fold range in impedance values, the responses are good for all cases, showing a stable response, 
rapid transit and zero steady-state error in the final position. The best choice of Z will depend on the 
priorities in the desired response. For example, perhaps a good compromise between minimum 
overshoot and shortest settling time is when 𝑍𝑥 = (0.75)𝑍𝑒𝑞. For 𝑍𝑥 ≥ 2𝑍𝑒𝑞 the various responses 
become almost indistinguishable (except around the half-way point). More could have been added 
for other values of Zx, but they would have fallen on top of the curves shown. On the other hand for 
low values of impedance, say 𝑍𝑥 < (0.5)𝑍𝑒𝑞, the trolley has a slow transient and slow convergence 
to the target position. 

The robustness of the control response to variations in Z also indirectly illustrates the robustness 
of WBC to changes in the system under control, whether these are known or unknown, whether 
modeled or not. For example, if incorrect values of masses or lengths are assumed in using Eq.(19), 
or these parameter change during operations, the control system still copes well. 

    
Figure 9: Trolley response to 1-meter x-direction input with different Z values in the WBC 

 



In producing these results, the trolley was assumed to have ideal dynamics, that is, that it 
reproduces exactly and immediately the motion requested by the WBC system of Fig.4. However 
the system has also been tested with realistic trolley dynamics, where the trolley response shows 
some dynamic delay in achieving the requested motion. The control system still works well, with 
comparable results to those presented, provided that the steady state trolley error is zero. This 
robustness to the trolley’s dynamic performance can be explained in part because the measurements 
used in the WBC control system, including Eqs.(17,18) come after the trolley (see Fig.4), using the 
values of position, xT, yT, and forces, Fx, Fy, actually achieved and experienced by the trolley. 

Finally, in addition to the point-to-point manoeuvres above, input tracking and obstacle 
avoidance are considered. Figure 10 shows a plan view of a desired input trajectory, and the 
resulting path of the mass centre of the load, G, both under WBC and with no control. As can be 
seen, under WBC the tracking is very satisfactory. 

 
Figure 10: Trajectory tracking, plan view, showing the paths of the mass centre of the load. 

 
5 Conclusion 

 
The double-pendulum, distributed mass, gantry crane model assumed in this work has non-trivial 

dynamics, and represents a considerable advance on the simple pendulum model often used. A 
model was developed to capture these dynamics in three dimensions. The 2-D trolley motion has 
limited control authority over the 3-D suspended system. This paper explores how well a simple 
version of WBC can work to achieve load position control while damping the swinging in 3-D. The 
control strategy does not require details of the system model, and all the required measurements are 
taken at the trolley. The control law has one tuning parameter, a mechanical impedance term, whose 
value is not critical, but can be used to fine-tune the transient response as desired. 

The results illustrate the power, simplicity, effectiveness and robustness of the control approach. 
For point to point manoeuvres in the plane, WBC proves very effective. It also performs well in 
trajectory tracking, often required for obstacle avoidance. 

Future work will extend the approach to cranes with cable hoisting, to tower cranes in which the 
trolley moves on a rotating arm, and to jib or luffing cranes in which the arm rotates in the vertical 
plane. Initial results suggest that the same WBC strategy can be extended successfully to all such 
cases. 
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Table 1: values chosen for the 3D double pendulum system 

m1 (kg) m2 (kg) l1 (m) l2 (m) 
1 50 1 2 

 
 
Figure captions:  

Figure 1: Representation of the 3D double pendulum gantry crane 
Figure 2: Representation of successive rotations to reach the body coordinates of the hanging load  
Figure 3: Dynamic response of 3D double pendulum gantry crane with 4 degree of freedom  
Figure 4: WBC plan for gantry crane with planar-moving trolley 
Figure 5: Gantry crane response to a 1-m displacement in x direction using WBC 
Figure 6: Response to planar trolley motion under WBC (sub G: mass centre of distributed load) 
Figure 7: Swing angles for manoeuver of Fig. 6, showing active damping  
Figure 8: Reduction of forces acting on trolley through WBC process 
Figure 9: Trolley response to 1-meter x-direction input with different Z values in the WBC 
Figure 10: Trajectory tracking, plan view, showing the paths of the mass centre of the load. 
 
 


