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Abstract. Android malware has become a serious threat in our dai-
ly digital life, and thus there is a pressing need to effectively detect or
defend against them. Recent techniques have relied on the extraction of
lightweight syntactic features that are suitable for machine learning clas-
sification, but despite of their promising results, the features they extract
are often too simple to characterise Android applications, and thus may
be insufficient when used to detect Android malware. In this paper, we
propose CDGDroid, an effective approach for Android malware detection
based on deep learning. We use the semantics graph representations, that
is, control flow graph, data flow graph, and their possible combination-
s, as the features to characterise Android applications. We encode the
graphs into matrices, and use them to train the classification model via
Convolutional Neural Network (CNN). We have conducted some exper-
iments on Marvin, Drebin, VirusShare and ContagioDump datasets to
evaluate our approach and have identified that the classification model
taking the horizontal combination of CFG and DFG as features offers the
best performance in terms of accuracy among all combinations. We have
also conducted experiments to compare our approach against Yeganeh
Safaei et al.’s approach, Allix et al.’s approach, Drebin and many anti-
virus tools gathered in VirusTotal, and the experimental results have
confirmed that our classification model gives a better performance than
the others.

1 Introduction

According to a report from IDC [1], Android is the most popular platform for
mobile devices, with almost 85% of the market share in the first quarter of
2017. Unfortunately, the increasing adoption of Android comes with the grow-
ing prevalence of Android malware. A report from security firm G DATA [2]
shows that a new instance of Android malware pops up nearly every 10 seconds.
Consequently, Android malware has become a serious threat for our daily life,
and thus there is a pressing need to effectively mitigate or defend against them.
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To protect legitimate users from the threat, many approaches and tools to
detect Android malware have been proposed over the past decade. These ap-
proaches can be summarised into two categories, namely, the approach based
on program analysis techniques and the approach based on machine learning
techniques. The first approach aims to identify the malicious code patterns in
Android applications, through either static analysis [3-5] or dynamic analysis [6—
8]. But the high overhead and the rapid evolution of Android malware make this
approach no longer effective. Recently, various machine learning techniques like
support vector machine, decision tree and deep learning have been proposed for
detecting Android malware [9-14]. This approach constructs a learning-based
classification model through a (big) dataset. The key of this approach is to seek
out an appropriate feature set, such as permissions, APIs, and opcodes. However,
despite of their promising results, the features that are considered by most exist-
ing work based on machine learning are often too simple to characterise Android
applications (e.g., lack of either control flow information or data flow informa-
tion) or non-robust (e.g., prone to suffering from the poisoning attack) [15], and
thus may be insufficient to help detect Android malware.

In this paper, we propose CDGDroid, an effective approach to detecting An-
droid malware based on deep learning. Different from most existing work based
on machine learning, we use two classic semantic representations of programs in
program analysis techniques, namely, control flow graphs and data flow graphs,
as the features to characterise Android applications. Generally, graphs offer a
natural way to model the sequence of activities that occur in a program. Hence
they serve as amenable data-structures for detecting malware through identi-
fying suspicious activity sequences. In particular, a control flow graph reflects
what a program intends to behave (e.g., opcodes) as well as how it behaves
(e.g., possible execution paths), such that malware behaviour patterns can be
captured easily by this feature. For example, Geinimi samples share the similar
control flow graphs. On the other hand, a data flow graph represents the data
dependancies between a number of operations, and thus can help in detecting
malware involving sensitive or network data, like HippoSMS and RogueSppush
that send and block SMS message in the background.

Our approach consists of two phases: the first phase aims to learn a classi-
fication model from an existing dataset; and the second phase uses this model
to detect new, unseen malicious and normal applications. In detail, we extract
control flow graphs and data flow graphs in the instruction level from applica-
tions, which are collected through static analysis on the smali files (i.e., Dalvik
executions) in applications. Both intra-procedural analysis and inter-procedural
analysis are considered for these two graphs. We then encode control flow graph-
s and data flow graphs into matrices, where only the opcodes are preserved.
Meanwhile, their possible combination modes of control flow graph and data
flow graph are considered as well: two graphs are combined either via the matrix
addition (called the vertical mode) or via the matrix extension (called the hori-
zontal mode). Finally, the encoded matrices are fed into the classification model
for training or testing. We use a convolutional neural network (CNN for short),



a new frontier in machine learning that has successfully been applied to analyse
visual imagery (i.e., matrix data), to build our model.

Several experiments have been conducted to evaluate our approach. We first
conduct 10-fold cross validation experiments to see the effectiveness of CFG and
DFG in malware detection. We have found that the classification model with the
horizontal combination of CFG and DFG as features performs the best, with the
F1 score (a measure of a test’s accuracy, see Section 3.1) 98.722%. We also run
our model on datasets consisting of new, unknown samples. The experimental
results have shown that our classification model is capable of detecting some
fresh malware. Finally, we also conduct some experiments to compare our ap-
proach with Yeganeh Safaei et al.’s approach [14], Allix et al.’s approach [12],
Drebin [16] and most of anti-virus tools gathered in VirusTotal [17]. The results
have confirmed that our classification model has a better performance in terms
of accuracy than the others.

In summary, our contributions are as follows:

— We have proposed an approach to detecting Android malware based on deep
learning, using two classic semantic representations in program analysis tech-
niques, namely, control flow graph and data flow graph.

— We have conducted several experiments, which demonstrate that our ap-
proach is viable and effective to detect Android malware, and has a better
performance than a number of existing anti-virus tools in terms of accuracy.

The remainder of this paper is organised as follows. Section 2 describes our
approach, followed by the experimental results in Section 3. Section 4 presents
the related work, followed by some concluding remarks in Section 5.

2 Approach

In this section, we present our approach CDGDroid, an effective approach to de-
tecting Android malware based on deep learning, using control flow graph (CFG
for short) and data flow graph (DFG for short). Figure 1 shows the framework
of our approach, which consists of two phases: the training phase (marked by ar-
rows with solid line) and the testing phase (marked by arrows with broken line).
The training phase aims to train a classification model from an existing dataset
containing normal applications and malware samples, and the testing phase uses
the trained model to detect malware from new, unseen Android applications.
In detail, we first use Apktool [18] to disassemble the applications in the given
dataset and collect the smali files from each application. We then perform static
analysis on these smali files to extract CFGs and DFGs, which are further en-
coded into matrices with known categories, yielding a training data set. Based
on this training set, we train a classification model via CNN. Next, we perform
the similar analysis on unseen Android applications to extract their feature ma-
trices and then use the trained model to learn their categories. To conclude, our
approach involves three tasks: (i) graph extracting; (i¢) graph encoding; (4i%)
model training. In what follows, we depict each task of our approach in detail.
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Fig. 1. Framework of Our Approach

2.1 Graph Extracting

This section is devoted to CFG and DFG extraction from an application in the
instruction level, which consists of three steps: pre-processing, CFG extraction,
and DFG extraction.

Pre-Processing. Android applications are distributed in markets in the
form of APK. An APK is a compressed archive of Dalvik bytecode for execution,
resources, assets, certificates, and an XML manifest file. Among them, the Dalvik
bytecode for execution, namely, the file named classes.dex®, will be extracted for
further analysis.

For ease of extracting CFGs and DFGs, we leverage the disassembler Ap-
ktool [18] to disassemble the dex files. After disassembling, the dex files are
converted to smali files, which give us the readable code in the smali language.
We use smali code, instead of Java code, is because the disassembling is lossless
in that the smali files support the full functionality of the original dex files.

CFG Extracting. There are several tools for generating CFGs for smali
files, such as androguard and Smali-CFGs. Unfortunately, the CFGs generated
by these existing tools are either lack of inter-procedural control flow, or not
suitable for further analysis for us (e.g., it is not easy to analyse CFG in the
xgmml or PNG format). Therefore we implement CDGDroid with the CFG
extracting based on the smali files.

To begin with, we give a definition of graph, which is used to describe both
CFG and DFG.

Definition 1. A graph G is a quadruple (N, E, S, F), where N is a finite set of
nodes, E C N x N is a finite set of edges, S C N 1is the set of starting nodes,
and F' C N is the set of exiting nodes.

5 There may be several additional dez files with the name “classesi.dex” in large
APKs.



Generally, a smali file contains the definition of a separate class, either a
general class or an inner class, in the Java source code. So we construct the
CFGs method by method for each smali file.

To do this, we first identify all the instructions in a method, yielding a graph
cfg with the instructions as nodes and the first instruction as the starting node.
This is different from existing tools, which take blocks (i.e., a straight-line piece
of code without any jump instructions or jump targets) as basic nodes. Next, we
complete this graph cfg by connecting the control flows (e.g., a jump instruction
and its targets) and identifying all the exiting nodes (i.e., the reachable nodes
without any out edges).

For inter-procedural analysis, we first construct a function call graph fcg
by identifying the instructions starting with “invoke” or “execute”®. Based on
this graph, we then connect the calling node with the start node of the callee
method’s CFG as well as the exiting nodes of the callee method’s CFG with the
successors of the calling node.

DFG Extracting. The DFG extracting is based on the CFG we extracted
above. It is known that Dalvik is a register-based virtual machine, where most
of the values are moved from memory into registers for access. So we will con-
sider for DFG the data dependence relations between instructions via registers,
including parameter registers.

Our construction of DFG is based on a variant of classic reaching definition
analysis on smali, which is shown in Algorithm 1. This algorithm takes the
CFG of a function f as input and then returns the reaching definition mapping
D, which records the entry definitions (i.e., in) and the exit definitions (i.e.,
out) for each instruction. Note that, due to the inter-procedural analysis, we
also take the initial definitions of parameters (i.e., instructions starting with
“ parameter”) into account (Line 5).

Next, we extract the def-use relations as the edges of DFG, that is, if an
instruction ¢ uses a register r, whose value may come from the definition in the
instruction j, then there is an edge from i to j. Algorithm 2 gives the detail
of extracting. This algorithm takes the CFG of a function f as input and then
returns the DFG for f, where Algorithm 1 is invoked to gather the def-use
relations.

Similar to the CFG extracting, we also take the inter-procedural analysis
into account via the function call graph fcg. In more detail, we connect the
instructions that involved the definitions of arguments in the calling node with
the start nodes of the callee method’s DFG as well as the exiting nodes of the
callee method’s DFG with the special successor of the calling node (i.e., an
instruction starting with “move-result”) if it exists.

2.2 Graph Encoding

It is straightforward to represent a graph as a matrix, such as the adjacency ma-
trix. For a (simple) method, the adjacency matrix of the CFG is fine, but it could

5 For simplicity, Java reflection, callbacks and multi-threading are not considered at
present.



Algorithm 1 Reaching Definition Algorithm RD(cfg)

Input: CFG cfg of a target function f
Output: the reaching definition mapping D

1: for each node n € cfg.N do

2:  D(n).in =0 and D(n).out =0

3: end for

4: for each starting node e € ¢fg.S do

5:  enqueue e in g and add the initial definition of each parameter p; into D(e).in
6: end for

7: while ¢ # () do

8: n = dequeue ¢

9:  if n is a definition with r then

10: D(n).out = {(r: n)} U (D(n).in —{(r:.)})

11:  else

12: D(n).out = D(n).in

13: end if

14:  for all nodes s in successors(n) do
15: (oi,ou) = D(s) and D(s).in = D(s).in U D(n).out
16: if D(s).in # oi and s not in ¢ then
17: enqueue s into ¢
18: end if
19:  end for

20: end while
21: return D

Algorithm 2 DFG Extracting Algorithm DFG(cfg)

Input: CFG cfg of a target function

Output: DFG dfg of the function

1: D = RD(cfy)

2: dfg.N = ¢fg.N, dfg.E =0, dfg.S = 0 and dfg.F =0
3: for each node n € ¢fg.N do

4:  for each register r used by n do

5: for each definition d of r in D(n).in do
6: dfg.E = dfg.E U {(d,n)}

T if d is the initial definition of a parameter then
8: dfg.S = dfg.SU{n}

9: end if

10: if n is the exiting node then

11: dfg.F = dfg.F U {d}

12: end if

13: end for

14:  end for

15: end for

16: return dfyg




be very large for an application, even a small one. This is mainly due to the large
number of nodes. Similar to existing work [14], we abstract each instruction as
its opcode, for example, the instruction “invoke-virtual v0, Ljava/lang/Object;-
>toString();” is abstracted as “invoke-virtual”. In particular, we consider all the
222 opcodes in total listed in Android Dalvik-bytecode list [19].

In more detail, given a CFG (or DFG) g, we encode it into a matrix A
with size 222 x 222 as follows: for each edge (n1,n2) € g.FE, we add the element
Alop(n1)][op(nz2)] by 1, where A is initialised as a zero matrix with size 222 x 222
and op(n) returns the opcode of the node n. Similarly, we accumulatively add all
the encoded matrices of CFGs (resp. DFG) extracted from an application as its
CFG matrix (resp. DFG matrix), denoted as A.p (resp. Agpy). Moreover, due
to the sparseness, we also add the matrix encoded from the control-flow (resp.
data-flow) edges connected by the inter-procedural analysis (i.e., the function
call graph feg) into Acpy (resp. Aggy). The resulting matrix is denoted as A,
(resp. Asdfg), so as to differentiate from the matrix Aq, (resp. Aqgpy) above.

We also consider the combination of CFG and DFG. Firstly, as a program
dependence graph, we combines these two graphs together into a graph. So the
first mode, called the wvertical one, is to combine these two graphs together via
the matrix addition (denoted as A.py + Agyy), that is, the vertical combination
of Apy and Agpy is a matrix A such that for each i € [1,222] and j € [1,222]

Alillj] = Acgglil[d] + Aagy[i][J]

Secondly, we also would like to use them as different features, just like multi-
views [20]. So the second mode, called the horizontal one, combines them via
the matrix extension (denoted as A¢p, @ Aqggy). The resulting matrix A is of size
444 x 222 7 instead, and satisfies that for each i € [1,444] and j € [1,222]

. Auglillj if1<q< 222
Alil[5] = {Adj;g [[i][j]222} [/] otherwise

2.3 Model Training

CNN is a new frontier in machine learning that has successfully been applied to
analyse visual imagery (i.e., matrix data). So we use CNN to train our model.
In detail, we use the Sequential container to build our network model, which
consists of 4 main layers, namely, a convolution layer with a reshape, a pooling
layer and two fully connected layers, and uses the negative log likelihood criterion
to compute a gradient. Note that, the reshape prior to convolution is used to
reduce the number of parameters and thus save the training time. Figure 2 shows
the structure of our network model.

3 Experiments

In this section, we conduct a series of experiments to evaluate our approach.
Firstly, we conduct a set of cross-validation experiments to see the effectiveness

7 The alternative extension with size 222 x 444 is fine as well.
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Fig. 2. Framework of Our Approach

of CFG and DFG in malware detection. Secondly, to test our approach’s ability
to detect unknown samples, we run our model on a dataset consisting of fresh
samples. Finally, we also conduct some experiments to compare our approach
with some existing Android malware detecting tools.

3.1 Dataset and Evaluative Criteria

We collect the samples mainly from four datasets, namely, Marvin [21], Drebin [16],
VirusShare [22], and ContagioDump [23]. The Marvin dataset contains a train-
ing set (with 50501 benign samples and 7406 malware samples) and a testing
set (with 25495 benign samples and 3166 malware samples). The other three
datasets, Drebin, VirusShare and ContagioDump®, contain only malware sam-
ples, with 5560, 11080 and 1150 samples, respectively. We also collect 1771 ap-
plications from Mi App Store [24], which pass the detecting of most anti-virus
tools gathered in VirusTotal [17] and thus are considered as benign samples.

To quantitatively validate the experimental results, we use the following per-
formance measures. Accuracy is the most intuitive performance measure and it
is simply a ratio of correctly predicted observation to the total observations.
Precision is the ratio of correctly predicted positive observations to the total
predicted positive observations, and Recall is the ratio of correctly predicted
positive observations to all observations in actual class. F'1 score is the weighted
average of Precision and Recall, that is, (2- Precision- Recall) /( Precision+ Recall).
AUC is the area under ROC curve, which is (arguably) the best way to sum-
marize its performance in a single number. Intuitively, the higher the measures
above, the better the classifier.

8 Only the malware samples whose creation dates are in 2018 are collected.



3.2 Experiments on Different Features

In this section, we first conduct experiments to evaluate how CFG and DFG
contribute to the effectiveness of malware detection. We then run experiments
to see how the combination modes affect the malware detection.

CFG and DFG. We separately use the feature matrices Acrg, Ascrg, Adgg
and A,qfy to train the classification model on the dataset consisting of the train-
ing set of Marvin, Drebin and VirusShare, where 10-fold cross validation is
employed. In addition, we also consider traditional CFGs ¥ based on blocks and
encode them into matrices (called as A;.f,) in a similar way, where all the blocks
without jumps are abstracted as a special node. More specifically, only nodes in-
volving “control” are preserved in Ayqfy, yielding a matrix with size 32 x 32 (i.e.,
31 “control” opcodes and 1 special node for the other nodes). The experimental
results are given in Table 1.

Table 1. Results on Different Feature Matrices

lFeature‘Precision‘Accuracy‘ Recall ‘Fl Score‘AUC‘

Acsy 99.833% | 99.400% |94.691%| 97.195% |0.999
Aserg | 100.000% | 99.194% [92.704%| 96.214% |0.999
Adsg 99.869% | 99.613% |96.620%| 98.218% |0.999
Asarg | 99.835% | 99.470% [95.370%| 97.552% |0.999
Asesy 99.842% | 95.568% |59.981%| 74.941% |0.993

The results show that all the features are effective in detecting malware, with
accuracy larger than 95.5%, precision larger than 99.8%, and AUC larger than
0.99. Compared with CFG, the feature DFG performs better, both for intra-
procedural analysis (1.053% higher in F1 score) and inter-procedural analysis
(1.391% higher in FI score). A possible reason is that DFGs are built on CFGs
such that DFGs would, in some sense, contain some “control flow” information.
Rather surprisingly, the graphs with inter-procedural analysis perform worse
than the ones without. More specifically, the F1 score of Az, is 1.020% higher
than the one of Ag.fy, although the precision of A, is better than the one of
Agepg; and Aggg is 0.683% better than Agqpy in term of F1 score. There are two
possible reasons behind this: (1) the ignoring of callbacks and multi-threading
makes the function call graphs incomplete; (2) accumulating the matrices ex-
tracted from inter-procedural analysis and the ones from intra-procedural anal-
ysis together might have lost the differences between them, thus make against
the model.

In addition, we have found that the AUC of Ay is 0.993, which is pretty
high, and thus also demonstrates that “control flow” information is capable of
facilitating detect malware. Moreover, the precision and the accuracy of Aqcp,

9 For convenience, we do not consider the inter-procedural analysis for traditional
CFGs, since the instructions for method calling are abstracted as the special node.



are quite close to the ones of A, and Agyy, although the recall and F1 score are
not so high. We may take blocks into account to improve A;.f, as shown in [12],
which is left as future work. As A;.p, is much simpler than A,z and Agp, we
believe that A, can be used as a feature of models on-device.

Combination Modes. In these experiments, we use the feature matrix
Acpg + Agpg and Agpy @ Agpy to train the model on the same dataset as above,
respectively. Note that, as shown in the experiments above, the graphs without
inter-procedural analysis perform better, so we do not consider Ag.f, and Agqpg
here. The experimental results are shown in Table 2.

Table 2. Results on Different Modes

l Feature ‘Precision‘Accuracy‘ Recall ‘Fl Score‘AUC‘

Auy + Aggy] 99.770% | 99.536% 96.020%] 97.859% | 0.999
Ay @ Aggy| 99.903% | 99.721% |97.568%| 98.722% | 0.999

From the results, we can see that the horizontal combination Az © Agpy
performs better than both A.f and Agyy, and thus the horizontal combination
can improve the detection. While the vertical combination A,z + Agpy performs
better than Ay but worse than Ags. That is to say, the vertical combination
may make against the detecting model. Similar to inter-procedural analysis, a
possible reason is that the vertical combination, i.e., adding CFGs and DFGs
together, could lose their differences.

3.3 Experiments on Unknown Samples

To test the viability of the proposed approach to detect unknown samples, we
run our model trained with the feature matrix A.f, ® Agypy respectively on two
datasets: the first one comes from the testing set of Marvin, and the second one
consists of the new malware samples from ContagioDump, whose creation date
is in 2018. The experimental results are shown in Table 3.

Table 3. Results on Other Dataset

l Dataset [Precision[Accuracy[ Recall [Fl Scorel

Marvin 99.649% | 99.822% [98.737%| 99.191%
ContagioDump| 100.000% | 72.870% |72.870%| 84.301%

It can be seen from the results that the proposed CDGDroid is capable of
detecting some fresh malware. In detail, CDGDroid performs on the testing set of
Marvin quite well, with the precision 99.649%, the accuracy 99.822%, the recall
98.737% and the F1I score 99.191%. And for ContagioDump dataset, there are
72.870% malware samples that can be detected by CDGDroid. ContagioDump



comprises only malware samples, so the precision of detection is 100%. Compared
with the testing set of Marvin, the performance of CDGDroid is a little worse.
One main reason is that the samples in ContagioDump are collected later than
the ones in the training set (i.e., Marvin, Drebin and VirusShare), that is, the
samples in ContagioDump are genuinely new.

3.4 Comparison against Malware Detecting Tools

In this section, we present experiments to compare our approach with some
recent tools, namely, Yeganeh Safaei et al.’s approach [14] (based on CNN),
Allix et al.’s approach [12] (using CFG), Drebin [16] (using 8 other features),
and VirusTotal [17] (gathering a variety of anti-virus tools).

DODroid. Yeganeh Safaei et al. [14] recently proposed an Android malware
detection system based on a deep convolutional neural network, using the raw
opcode sequence as features. We dub this system “DODroid” (Deep Opcode).
As both CDGDroid and DODroid use CNN to build the classification model,
we conduct experiments to compare CDGDroid against DODroid. In detail, we
use the same training dataset (i.e., the training set of Marvin) to train both
CDGDroid and DODroid, and then use the same testing dataset (i.e., the testing
set of Marvin) to test these two models. The experimental results are shown in
Table 4.

Table 4. Comparison against DODroid

l Tool ‘Precision‘Accuracy‘ Recall ‘Fl Score‘

CDGDroid| 99.903% | 99.721% (97.568%)| 98.722%
DODroid | 98.396% | 99.067% [93.137%| 95.695%

It can be seen from the results that CDGDroid outperforms DODroid. Re-
gardless of the slight differences of two CNN models, the results also show that
CFG and DFG are more effective than opcodes in malware detection, that is,
control flows and data flows can help in detecting malware.

CSBD. Allix et al. [12] proposed another scalable approach using structural
features, namely textual representations of the CFGs. Here we compare our ap-
proach against the re-implementation of Allix et al.’s approach from [25], where
Random Forest is used to train the classifier and this approach is referred as
CFG-Signature Based Detection (CSBD). So we also refer this approach as CS-
BD here. The experiments are similar to the ones of DODroid. The experimental
results are shown in Table 5.

We can see that CSBD has a better recall, while CDGDroid gets a better
precision. A main reason is that CSBD takes blocks of CFGs as features, while
CDGDroid focuses on control flow and data flow information, plus a simple block
information (i.e, the adjacency information of nodes). In short, CDGDroid gets
a better F1 score than CSBD, so we conclude that CDGDroid performs better
than CSBD.



Table 5. Comparison against CSBD

l Tool [Precision[Accuracy[ Recall [Fl Scorel

CDGDroid| 99.903% | 99.721% (97.568%)| 98.722%
CSBD 92.151% | 99.033% |99.747%| 95.799%

Drebin. Drebin [16] is a lightweight Android malware detecting tool based
on SVM, which uses 8 different types of features, namely, hardware components,
requested permissions, app components, filtered intents, restricted API calls,
used permissions, suspicious APT calls, and network addresses. We also conduct
experiments to compare against Drebin, where we use the re-implementation of
Drebin from [25] as well. The experiments are performed on the malware samples
from Drebin and the benign samples from Marvin and from Mi App Store. Table
6 gives the experimental results.

Table 6. Comparison against Drebin

] Tool [Precision[Accuracy[ Recall [Fl Score[

CDGDroid| 99.781% | 99.870% [98.273%| 99.021%
Drebin | 91.000% | 99.123% [96.000%| 94.000%

The results show that CDGDroid performs better than Drebin, which also
indicates that the features we consider (i.e. CFG and DFG) are quite effective
in malware detection, with respective to the 8 features used in Drebin.

VirusTotal. VirusTotal [17] is a free online malware detecting website, which
gathers a variety of anti-virus tools. For comparison, we design a crawler to
automatically upload the samples in the testing set of Marvin into VirusTotal
for further detecting by those anti-virus tools, which lasts almost one week. The
results are shown in Table 7, where those tools with too few responds from
VirusTotal are filter out.

From the results, we can see that our tool CDGDroid outperforms most
of anti-virus tools. In particular, our tool CDGDroid gets the best accuracy
(99.822%) and the best F'1 score (99.191%). Although there are 3 (resp. 12) tools
having a better precision (resp. recall) than CDGDroid, the gaps of precision
(resp. recall) between CDGDroid and these tools are quite small.

4 Related Work

Over the past decade, there are a lot of research work for Android malware
detection. Here we only review some related and recent ones, namely, graph
based detection and deep learning based detection.

Graph based Detection. Sahs and Khan [9] proposed a machine learning-
based system which extracts features from control flow graphs of applications. Al-



Table 7. Comparison against Anti-Virus Tools in VirusTotal

[ Tool [Precision[Accuracy[ Recall [F1 Score] Tool [Precision[Accuracy[ Recall [F1 Score]
CDGDroid 99.649% 99.822% [98.737%| 99.191% | Kaspersky 98.434% 99.789% [99.683% | 99.050%
Avast 98.509% 99.746% [99.201% | 98.850% DrWeb 96.427% 99.370% [98.025%| 97.220%
Jiangmin 97.682% 99.318% [96.134% | 96.900% Qihoo-360 96.013% 99.490% [97.556% | 96.780%
GData 94.057% 99.252% [99.553% | 96.730% Emsisoft 94.050% 99.250% [99.550% | 96.720%

TrendMicro | 97.900% 99.198% [94.694% | 96.270% Sophos 91.998% 98.956% [99.169% | 95.450%
BitDefender | 94.049% 98.831% [95.431% | 94.740% Alibaba 89.973% 99.121% [98.793% | 94.180%
F-Secure 90.808% 98.480% [96.151% | 93.400% | QuickHeal [ 88.296% 98.433% [99.055% | 93.370%
NOD32 87.182% 98.277% [99.621% | 92.990% Tkarus 86.414% 98.250% [99.743%| 92.600%
Arcabit 89.076% 98.607% [92.393% | 90.700% K7GW 85.283% 98.414% [96.400% | 90.500%
Tencent 83.100% 98.447% |98.843% | 90.290% Comodo 92.557% 97.777% [86.808% | 89.590%
Symantec 92.101% 97.776% [87.198% | 89.580% VBA32 99.960% 97.791% [80.152% | 88.970%

Fortinet 85.522% 97.414% [92.254%| 88.760% AVware 77.629% 97.791% [99.627%| 87.260%
Avira 77.929% 97.528% [96.038% | 86.040% | Antiy-AVL | 89.085% 96.807% [81.067% | 84.890%
AegisLab 76.108% 97.182% [94.857% | 84.450% Microsoft 99.956% 96.990% [72.820% | 84.260%
NANO 70.888% 96.648% [97.934% | 82.240% Cyren 65.584% 95.868% [99.737% | 79.130%
VIPRE 93.002% 95.590% [65.046% | 76.550% F-Prot 78.086% 94.639% [71.920% | 74.880%
McAfee 80.799% 93.392% |53.167% | 64.130% AVG 81.474% 93.337% [51.707%| 63.260%

AhnLab-V3 [ 85.445% 92.747% [49.817%| 62.940% |[McAfee-GW | 92.244% 93.216% [42.424% | 58.120%
TotalDefense| 99.810% 92.399% [33.228% | 49.860%

lix et al. [12] devised several machine learning classifiers that rely on a set of fea-
tures which are textual representations of the control flow graphs of applications.
DroidMiner [10] digs malicious behavioral patterns from a two-level behavioural
graph representation built on control-flow graphs and call graphs. AppContex-
t [26] extracts the contextual information of security-sensitive activities along
with structural information through reduced inter-procedure control-flow graph-
s, and CWLK [25] is a similar approach, which extracts the information through
call graphs and inter-procedural control-flow graphs. DroidOL [13] is an online
machine learning based framework, which extracts features from inter-procedural
control-flow sub-graphs. MKLDroid [20] integrates context-aware multiple views
to detect Android malware, where all views are built from inter-procedural con-
trol flow graphs. However, most of these approaches only consider control flow
properties, leaving data flow properties out of consideration.

Data flow analysis is also adopted in malware detection. Flowdroid [3] and
Amandroid [4] are two state-of-the-art data flow analysis tools for Android. An-
driatsimandefitra and Tong [27] proposed to use system flow graphs, constructed
from the log of an information flow monitor, to characterise malware samples.
DroidSIFT [28] takes a weighted contextual (security-related) API dependency
graph as semantics feature sets and use graph similarity metrics to detect mal-
ware. Droid ADDMiner [11] is a machine learning based system that extracts
features based on data dependency between sensitive APIs. However, all these
tools rely on heavyweight data flow analyses.

There are some approaches that take both control flow and data flow proper-
ties into account. Apposcopy [29] and ASTROID [30] detect Android malware via
signature matching on program graphs, including certain control- and data-flow
properties. CASANDRA [31] extracts features from contextual API dependency
graphs, containing structural information and contextual information. Different
from these approaches, we use deep learning to build our classification model.

Some other graphs are used to detect Android malware as well, such as
function call graphs [32-34], permission event graphs [35], component topology
graph [36].



Deep Learning Based Detection. Droid-Sec [37] and DroidDetector [38]
used the deep belief network (DBN) to build the classification model, taking
required permission, sensitive API and dynamic behaviour as features. Droid-
deep [39] built the model by DBN as well, but used some more features (e.g.,
actions and components). DroidDelver [40] and DroidDeepLearner [41] are an-
other two models built on DBN, where permissions and APIT calls were taken as
features. Mclaughlin [14] designed the detection systems by Convolutional Neu-
ral Network (CNN), using opcode sequences as features. Nix and Zhang [42] and
MalDozer [43] also built the system by CNN, but used system API call sequences
as features. DeepdMalDroid [44] is a deep learning framework (i.e., Stacked Au-
toEncoders) resting on the system call graphs extracted by dynamic analysis
from Android applications. Nauman et al. [45] applied several deep learning
models including fully connected, convolutional and recurrent neural networks
as well as autoencoders and deep belief networks to detect Android malware, us-
ing the eight features proposed in [16]. DeepFlow [46] identified malware directly
from the data flows in the Android application based deep learning.

Most of these approach consider neither control flow nor data flow informa-
tion (except DeepFlow), while our approach takes both control and data flow
graphs into account.

5 Conclusion

In this work, we have proposed an Android malware detection approach based
on CNN; using control flow graph (CFG) and data flow graph (DFG). To eval-
uate the proposed approach, we have carried out some interesting experiments.
Through experiments, we have found that the classification model with the hor-
izontal combination of CFG and DFG as features performs the best. The exper-
imental results have also demonstrated that our classification model is capable
of detecting some fresh malware, and has a better performance than Yeganeh
Safaei et al.’s work, Drebin and most of anti-virus tools gathered in VirusTotal.

As for future work, we may consider a better function call graph to improve
the approach. We can use other program graphs, such as program dependence
graphs, to train the model. We can also leverage N-Gram to extract program
traces with length N as features. More experiments on malware anti-detecting
techniques (i.e., obfuscation techniques) are under consideration.
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