
Probabilistic Choice, Reversibility, Loops, and
Miracles

Bill Stoddart1, Pete Bell2

1 University of Teesside, UK
2 Consultant

Abstract. We consider an addition of probabilistic choice to Abrial’s
Generalised Substitution Language (GSL) in a form that accommodates
the backtracking interpretation of nondeterministic choice. Our formu-
lation is introduced as an extension of the Prospective Values formalism
we have developed to describe the results from a backtracking search.
Significant features are that probabilistic choice is governed by feasibil-
ity, and nontermination is strict. The former property allows us to use
probabilistic choice to generate search heuristics. In this paper we are
particularly interested in iteration. By demonstrating sub-conjunctivity
and monotonicity properties of expectations we give the basis for a fixed
point semantics of iterative constructs, and we consider the practical
proof treatment of probabilistic loops. We discuss loop invariants, loops
with probabilistic behaviour, and probabilistic termination in the con-
text of our formalism, which is strict with respect to nontermination.
The formal constructs described are incorporated in a reversal virtual
machine (RVM).
Keywords. B Method, probabilistic choice, prospective values, pGSL,
bunches, backtracking.

1 Introduction

Probabilistic algorithms exist for many applications, with some well known ex-
amples being primality testing (Rabin’s algorithm), Quicksort with random pivot
selection (which has optimum expected performance against a hostile oracle),
Buffon’s algorithm for the evaluation of π, Quantum algorithms such as Shor’s
algorithm, and randomised back-off algorithms for resolving symmetric choice
[12]. This has motivated researchers to add probabilistic choice to formalisms
which underpin formal software development, such as GCL, GSL, and Hoare-He
Designs,

Tractable formulations for doing this have not been easy to find. A major
difficulty has been in the interaction between non-deterministic and probabilistic
forms of choice, and this is seen in all approaches. The semantics of probabilistic
programs was first formulated using measure theoretic approaches by Kozen[10].
A more immediately practical approach based on pGCL (the Guarded Command
Language extended with probabilistic choice) has been developed by He, Morgan,
McIver, Sanders and others[14, 15, 4]. A discursive exposition of this approach is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322324527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

available in the monograph of McIver and Morgan[11]. Hurd[7, 8] has developed
an approach based on a shallow embedding of probabilistic programming con-
cepts in HOL, in which random events are modelled by popping elements from
an assumed infinite series of coin flips, and has worked with Morgan and McIver
on the mechanisation, in HOL, of probabilistic guarded commands. Meinicke and
Hayes [13] have given an extensive account of algebraic properties of probabilis-
tic action systems. The combination of reversibility and probability is addressed
by He Jifeng and J Sanders in [9].

In previous work, we have explored the use of nondeterministic choice within
search procedures, both in the B Formalism and in terms of Hoare and He’s uni-
fying theories [20]. We propose the formalism S � E to represent all the values
expression E might take after executing the program S . By adding probabilistic
choice to our language we obtain an interpretation of the expectation of S � E
as the expected values of “observation” E after conducting “experiment” S . We
exploit reversibility to support backtracking, and in our approach both prob-
abilistic and nondeterministic choice are “governed by feasibility”. By this we
mean that if a choice subsequently leads to an infeasible continuation, execution
will backtrack to the point of choice and try an alternative.

Abrial’s Generalised Substitution Language provides a suitable vehicle for
representing computations based on UTP Designs minus Healthiness Condition
H4, which expresses the Law of the Excluded Miracle. In particular GSL includes
naked guarded commands, able to express miraculous behaviour. In the context
of reversible computations, an infeasible operation will simply cause execution
to engage reverse gear, recommencing forward execution when it encounters an
unexplored choice.

Central to our project is the provision of an execution platform for the con-
structs we investigate in the form of the “Reversible Virtual Machine”.[16] We
propose a programming language with an extended expression syntax which in-
cludes terms of the form S �E ; this yields the value (or bunch of values) E would
take after executing S , but does not change the system state. Operationally it
represents the execution of S , the recording of the value of E , and the restora-
tion of the previous system state by a stepwise reversal of the computation of S .
This method of organising a computation, and in particular stepwise reversibil-
ity, has a thermodynamic significance: the requirements for power consumption
in a computation arise from the damping required to reconcile previously in-
compatible system states, a requirement that is not present if computations are
organised in a stepwise reversible manner. Our reversible execution platform in a
virtual machine implemented on non-reversible technology, and therefore offers
none of the advantages of reversibility in terms of power consumption. However,
reversibility has other advantages which we can exploit, for example in terms of
garbage collection [2] and in providing a number of new programming structures
[20].

The theory of probabilistic programming given here is more fully described
in our paper “A Unification of Probabilistic Choice within a Design-based Model
of Reversible Computation”[17] and in an associated technical report[18]. The

original contributions of the current paper are the re-expression of our theory in
GSL, the establishment of a semantic foundation for probabilistic iterations in
our formalism based on fixed point theory, the practical proof treatment of loops
with probabilistic loop bodies, and consideration of probabilistic loop termina-
tion within a formalism which has a strict approach to probabilistic termination,
and some reflections on the total correctness abstraction in the context of back-
tracking and probabilistic choice. Aspects of our approach which are covered in
our previous report [17] include: the ability to derive a relational model from a
probabilistic program text, the expression of blind nondeterminism within the
same model as demonic nondeterminism, the characterisation of probabilistic re-
finement as containment of convex closures in distribution space, and the linking
of probabilistic and non-probabilistic models via a Galois connection.

The paper is organised as follows. In Section 2 we review our Prospective
Values formalism; in Section 3 we introduce probabilistic choice and review our
previous work on expectations; in section 4 we consider some algebraic properties
of expectations, establishing semi-conjunctivity and monotonicity; in section 5
we establish the basis for a fixed point semantics of iterative constructs; in section
6 we discuss practical proof treatment of loops and probabilistic termination; in
section 7 we draw our conclusions and discuss future work.

2 Backtracking and Prospective Values

In [21] we introduce S � E , to represent the bunch[5, 6] of values that could be
taken by expression E after executing the program S . The binding power of � is
below that of program connectives ([] , −→ etc).

We remind the reader that, in Hehner’s Bunch Theory, a bunch is “the con-
tents of a set”; thus 1, 2 is the bunch of elements which are in the set {1, 2},
and the comma is now an operator, signifying bunch union. The empty bunch
is written as null. We write E : F to express bunch containment, for example
1, 2 : 1, 2, 3. Some simple but important properties are E : E , E ,F = F ,E ,
E : E ,F , null : E .

Operators applied to bunches are lifted. For example if A = 1, 2 and B = 4, 5,
then A + B = 1 + 4, 1 + 5, 2 + 4, 2 + 5.

We define the guarded bunch g −→ S to have the value of S where g holds,
and to equal the null bunch elsewhere.

In our approach we add an improper bunch ⊥, (more strictly an improper
bunch for each type) to represent the value of an expression after a nontermi-
nating computation. For any other bunch E of the same type we have E : ⊥
and ¬ ⊥ : E . The improper bunch has a number of absorptive properties, e.g.
E ,⊥ = ⊥, E +⊥ = ⊥, E ∗ ⊥ = ⊥.

We define the pre-conditioned bunch P ||| E to have the value E where P
holds to be equal to the improper bunch elsewhere.

The bunch comprehension § x • E is the bunch of all values taken by E as s
ranges over its type, where a type is a maximal set.

The short description covers the notations used in this paper. Full details of
our use of Bunch theory are given in [17]1.

We use a large equals = with the same meaning but lower precedence
than =. It is particularly useful because � has a lower precedence than =. We
use [P] to assert that P is true everywhere.

Returning now to the construct S � E , in [21] and [20] we define it in terms
of the predicative semantics of S and prove that it has the properties:

Name Rule Side Cond
Precondition P | S � E = P ||| (S � E)
Skip skip � E = E
Assignment x := F � E = E [F/x]
Guard g =⇒ S � E = g −→ S � E
Choice S [] T � E = S � E ,T � E
Choice from set x :∈ A � E = § a • a ∈ A −→ E [a/x] a \ E
Seq Comp S ; T � E = S � T � E
Local Variable var z .S . end � E = § z • S � E z \ E

These rules provide a semantic description of a sequential programming lan-
guage in a total correctness framework, and for this purpose are of equivalent
expressive power to weakest-precondition calculus or Hoare-He designs. They
also describe the values that will be taken by terms of the form S �E that occur
in the extended expression language of our programs. Note, however, that the
RVM does not support the representation of bunches, and where a term of the
form S � E represents a non-elementary bunch and occurs in an expression, it
must be packaged within set brackets, i.e. as {S � E}.

3 Probabilistic choice and expectations

In [17, 18] we add probabilistic choice to our programming language. In common
with pGSL, pGCL and other formalisms we use S p⊕ T for the operation that
will choose S with probability p and T with probability 1−p. Thus the following
program represents an experiment in which a coin is tossed two times and the
number of heads is recorded in the variable X .

Experiment =̂ X := 0;
X := X + 1 0.5⊕ skip;
X := X + 1 0.5⊕ skip

The expression X has its value assigned according to a random process; it com-
plies with our intuitive understanding of a “random variable”. 2 We reason about

1 Available from http://tees.openrepository.com
2 Though it is not a random variable as formulated in classical probability theory,

where random variables are real valued functions on a sample space, and its random
properties are implied from the probability measure over this space.

expressions that can take random values following some operation in terms of
expectations.

We write the expected value of an expression E after performing a compu-
tation S as E(S � E), defined according to the following rules:
Name Rule Side Cond
Precondition E(P | S � E) = P ||| E(S � E)
Skip E(skip � E) = E
Assignment E(x := F � E) = E [F/x]
Guard E(g =⇒ S � E) = g −→ E(S � E)
Choice E(S [] T � E) = E(S � E),E(T � E)
Choice from set E(x :∈ A � E) = § a • a ∈ A −→ E [a/x] a \ E
Seq Comp E(S ; T � E) = E(S �E(T � E))
Local Variable E(var z .S .end � E) = § z •E(S � E) z \ E
Prob Choice E(S p⊕ T) � E = E(S � E) p + E(T � E) 0 < p < 1

Now that we have generalised our approach to include probability, the use
of expectations limits us to considering real valued expressions. We can also
accommodate vectors of real valued expressions, but the reader may wonder
whether we have reduced our power of expression through limiting our interest
to real values. This is not, however, the case, as we can capture the state of
variables of any type through numerotized predicates. We define | Q〉 =̂ Q −→
1,¬ Q −→ 0, so that the value of | Q〉 will be 1 if Q is true and 0 if Q is false.

Our formulation of expectation is based on a weighted addition. However,
since we allow our programs to contain infeasible operations, we have to be able
to express the effect of a probabilistic choice made between a feasible operation
and an infeasible one. We make the implementation choice, in the case of our
RVM, that when execution backtracks out of a probabilistic choice that has
proved infeasible, it will take the alternative choice, just as it does in the case
of provisional non-deteministic choice. We encapsulate this effect within our
weighted addition. The define the weighted bunch addition E1 p+ E2 where E1

and E2 are bunches and p is an element with 0 ≤ p ≤ 1 by

E1 p + E2 =̂ E1 = null −→ E2 , E2 = null −→ E1 , p ∗ E1 + (1− p) ∗ E2

The body of this key definition consists of the bunch union of three terms.
The definition covers nine cases, these being that each of E1 and E2 could be a
proper non-empty bunch, or null, or ⊥. Where E1 and E2 are non-empty the
first two terms equate to null and thus do not contribute to the result, which
is given by the third term. If either E1 or E2 is null, then, by the absorptive
properties of null, the third term will be null and the result will be given by
the first two terms, at most one of which will be non-null. If either E1 or E2 is
⊥, the third term of will be ⊥ (by the absorptive power of ⊥), and the whole
expression will equate to ⊥.

As an (unsatisfactory) alternative we might have used the rule: E(S p⊕ T)�
E = p∗E(S �E)+(1−p)∗E(T �E) which would be correct in the case of feasible
S and T , but would have the unwanted effect of making our formalism strict
with respect to feasibility, i.e. a possibly infeasible operation would certainly

be infeasible. That is the case in pGSL, but we must reject it as a possible
formulation because its implementation in a programming environment which
includes possibly infeasible commands would require all branches to be tested for
feasibility. We prefer the view that execution will resolve possible infeasibility by
use of a backtracking mechanism, and the rule we adopt makes magic p⊕ skip =
skip. Thus magic is a zero element with respect to our probabilistic choice, just as
it is with respect to nondeterministic choice, and we even have S 0⊕ magic = S ;
thus probabilistic choice, like demonic choice, is governed by feasibility.

A property of our probabilistic choice is that it is strict with respect to
nontermination. We define trm(S) as E(S � null) : null . The idea here is that
the only way the expected value of the null bunch after running S can be larger
than the null bunch is if we cannot guarantee termination of S . As an example
of how this works consider abort =̂ false | skip and let S be the program
abort 0.5⊕ skip Then we have:
E(S � null) = E(abort 0.5⊕ skip � null)
= E(abort � null) 0.5+ E(skip � null)
= E(false | skip � null) 0.5+ null
= E(false | skip � null) = false ||| null
= ⊥

hence
trm(S) = ⊥ : null = false Using the lenient approach to termination of
pGSL or pGCL, the above program would terminate with probability 0.5.

A possible advantage of a strict treatment of nontermination is that use
of an operation outside of its pre-condition would be easier to detect during
the discharge of proof obligations. The disadvantage is that vanishingly small
probabilities of nontermination will dominate our expectations, and we discuss
a case later. He and Sanders[9] have engineered a version of pGCL which is
strict with respect to non-ermination. To do this they introduce angelic choice
and view an operation S as an angelic choice over a set of “fibres”. The fibre at
x0 behaves like S for x = x0 and like abort elsewhere.[9]. We achieve strictness
more simply from the properties of the improper bunch.

If A is a predicate on the state space we use ProbS (A) for the probability
that A is true after executing S , defined as ProbS (A) = E(S� | A〉). Where S is
nondeterministic the result may be a non-elemental bunch, and we will typically
be interested in the minimum probability of obtaining some desired result A.

In addition to the expected value of a random expression we can also know
something about its possible values, as expressed in the following bunch inclu-
sion:
(S p⊕ T � E) : S � E ,T � E
Using this rule we can show, for example (x := 0 p⊕ x := 1 � x) : 0, 1. This
shows why we insist on the difference between S � E and E(S � E) in our
notation, since in this case E(x := 0 x⊕ := 1 � x) = 1/2. This is also a good
point to emphasize that E(S � E) is a composite notation, i.e. it is not evaluated
by first calculating S � E and than applying the expectation operator E. An al-
ternative notation which does not allow this possible misunderstanding to occur

would have been E(S ,E). However, we prefeer a notation that emphasised the
connection between S � E ,representing an actual value of a random expression,
and E(S � E), representing the expected value of the same expression.

In order to make probabilistic choices we require a source of random num-
bers, which must be provided in a computationally reversible manner. We can
do this quite simply, by drawing random numbers from a sufficiently large and
pre-initialised random-number table. As each number is drawn, a pointer is in-
cremented, modulo the size of the table, so that the next number will be drawn
when a random value is next required. The required pointer incrementation is a
reversible computation, but we do not ever reverse it. This ensures that there are
no correlations between the random events generated in different branches of a
backtracking computation. It also means that where S contains random choice,
the bunch S [] S � E may consist of different, and generally more, values than
S � E .

The expectations defined so far are not enough to extract all available infor-
mation on post distributions. For example, if we define S =̂ x := a p⊕ x := b
and T =̂ x := c p⊕ x := d , and we consider the expectations asociated with
S [] T , then we can obtain the post-probability that x = a as equal to 0, p, and
similarly the post-probabilities that x = b, x = c and x = d as equal to 0, 1− p
and 0, p and 0, 1− p respectively. However, this does not enable us to untangle
the two distributions. To resolve this we extend our notion of weighted choice in
an obvious way to equal length sequences of real values, enabling us to calculate:

E(S [] T) � 〈| x = a |, | x = b |〉) = 〈p, 1− p〉, 〈0, 0〉

from which we see that there is a non-deterministic choice that gives a post
distribution for x in which x has probability p to equal a and 1− p to equal b.
The other term in the expectation, that is 〈0, 0〉, shows the presence at least one
other distribution which has zero probability of setting x to a or b.

4 Algebraic properties of our expectation calculus

Predicate transformers in B-GSL are conjunctive. i.e. wp(S ,Q1 ∧ Q2) = wp(S ,Q1) ∧
wp(S ,Q2). I.e. S will establish post condition Q1 ∧ Q2 exactly when it will es-
tablish Q1 and will also establish Q2.

The equivalent property in PV semantics is S � E ,F = (S � E), (S � F).
This correspondence can be illustrated by the use of the conjunctivity prop-

erty in establishing that sequential composition distributes through choice, i.e.
S ; T [] U = (S ; T) [] (S ; U). In wp semantics we establish the equality of
program expressions S and T by showing wp(S ,Q) = wp(T ,Q) for arbitrary
Q , Thus to establish the given distributivity rule we proceed as follows:

wp(S ; T [] U ,Q) =“wp rule for sequential composition”
wp(S ,wp(T [] U ,Q)) =“wp rule for choice”
wp(S ,wp(T ,Q) ∧ wp(U ,Q)) =“wp conjunctivity”
wp(S ,wp(T ,Q)) ∧ wp(S ,wp(U ,Q)) =“wp rule for sequential composition”
wp(S ; T ,Q) ∧ wp(S ; U ,Q) =“wp rule for choice”
wp((S ; T) [] (S ; U),Q)

and hence S ; T [] U = (S ; T) [] (S ; U)

using PV semantics we establish the equality of S and T by showing the
equivalence of their prospective value effect, i.e. that for an arbitrary expression
E defined on the current state, that (S � E) = (T � E). To establish the given
distributivity rule in PV semantics we proceed as follows:

S ; T [] U �Q = “pv rule for sequential composition”
S � (T [] U �Q) = “pv rule for choice”
S � (T �Q , U �Q) = “pv conjunctivity”
(S � T �Q) , (S �U �Q) = “pv rule for sequential composition”
(S ; T �Q), (S ; U �Q) = “pv rule for choice”
(S ; T) [] (S ; U) �Q

and again we establish our result. We notice that the appeal to the respective
conjunctivity properties is made at the same point in both these proofs.

One important property of conjunctivity is that it implies monotonicity,
which is a pre-requisite for establishing a fixed point semantics of loops. We
would formulate the conjunctivity property for expectations as:

E(S � (A,B)) = E(S �A),E(S � B)

Our expectation calculus, however is not conjunctive, or more exactly is only
conjunctive for operations that do not include probabilistic choice. We see we
do not in general have conjunctivity from the following counter example.

Let S =̂ x := 0 0.5+ x := 1 then applying the rules for probabilistic choice
to E(S � x , x + 1) we have

E(S � (x , x + 1)) = 0.5, 1, 1.5

but

E(S � x),E(S � x + 1) = 0.5, 1.5

We can however formulate a sub-conjunctivity property. We follow Hehner
in defining a bunch refinement A v B =̂ B : A.

Theorem 1. Sub-conjunctivity of expectations

E(S � (A,B)) v E(S �A),E(S � B)

Proof
The proof is by structural induction with base cases for skip and assignment

and proofs for each program connective, these making appeals to the inductive
case. Here we give just the base case for assignment and the inductive proof for
probabilistic choice.

For assignment we have:

E(x := E � (A,B)) = “expectation rule for assignment”
(A,B)[E/x] = “distributivity of substitution through bunch union”
A[E/x],B [E/x] = “expectation rule for assignment”
E(x := E �A),E(x := E � B) v “property of bunch refinement”
E(x := E �A),E(x := E � B)

For probabilistic choice with 0 < p < 1 we have:

E(Sp ⊕ T � (A,B)) = “rule for prob choice”
E(S � (A,B)) p + E(T � (A,B)) v “inductive case and property of p+ ”
(E(S � A),E(S � B)) p + (E(T � A),E(T � B)) =
“lifted application of p+ ”
E(S � A) p + E(T � A),E(S � A) p + E(T � B),
E(S � B) p + E(T � A),E(S � B) p + E(T � B) v
“defn of bunch refinement”
E(S � A) p + E(T � A),E(S � B) p + E(T � B) =
“rule for prob choice”
E(Sp ⊕ T � A),E(Sp ⊕ T � B)

Other cases follow in an obvious way. �

We now return to the subject of monotonicity, which fortunately is implied
by sub-conjunctivity.

Theorem 2. Monotonicity of expectations

[A v B]⇒ E(S � A) v E(S � B)

We use the following obvious lemma

Lemma 1. Bunch refinement lemma

[A v B] ⇒ A = A,B

Proof We must prove E(S � A) v E(S � B) under the assumption [A v B]

E(S � A) = “assumption and referential transparency”
E(S � (A,B)) v “semi-conjunctivity of expectations”
E(S � A),E(S � B) v ”defn of bunch refinement”
E(S � B)

�
The monotonicity of expectations will be of use in the next section, when it

allows us to infer the monotonicity of a function used in a fixed point equation to
characterise the transitive opening of an operation, and which we subsequently
use to define the meaning of a while loop in terms of expectation calculus.

5 Expectations and iterative commands

In this section we are concerned with asking whether it makes any mathematical
sense to talk about an expectation of some expression following an iterative
command, and how such commands may be defined in terms of the basic table of
commands for which expectation rules have been given in Section 3. We construct
an argument based on fixed point theory, following the approach Abrial takes
in [1] to justify iterative constructs in a predicate transformer context. We first
define the “transitive opening” of an operation, and examine its expectation
properties. We then use transitive opening as the basis for defining a while loop.

5.1 Expectations and transitive opening

We make use of Abrial’s definition of the transitive opening S∧ of a command
S , defined as:

S∧ =̂ µX .(X ; S) [] skip

In this definition of S∧ in terms of a fixed point equation, the associated cpo
is the lattice of operations, with top element magic and bottom element abort,
and the ordering is reverse refinement. We choose the weakest fixed point to
include infinite behaviour. The corresponding strongest fixed point would give
us S∗, the transitive closure of S .

We first prove the following

Lemma 2. The expectation effect of transitive opening

E(S∧ � E) = µY .E(S � Y),E

Proof From the definition of S∧ we have that S∧ is the least (least refined)
operation that satisfies

S∧ = (S ; S∧) [] skip

Taking expectations (and by referential transparency)

E(S∧ � E) = E((S ; S∧) [] skip � E) =
“expectation rule for choice”
E(S ; S∧ � E),E(skip � E) =
”expectation rules for sequential composition and skip”
E(S � E(S∧ � E)),E

Thus we obtain the following fixed point equation for E(S∧ � E)

E(S∧ � E) = E(S � E(S∧ � E)),E

We have thus transformed a fixed point equation on operations to a fixed
point equation on expectations. Our cpo is now the lattice of bunches of values

that can be taken by expectations , and our order is reverse bunch refinement,
with top element null and bottom element the improper bunch ⊥. Once again,
to include infinite behaviour we take the least solution, giving

E(S∧ � E) = µY .E(S � Y),E

We may assure ourselves that such a fixed point indeed exists by appeal to
Tarski’s fixed point theorem. This states that an equation of the form X = f (X)
will have solutions if the domain of f is a cpo and f is monotonic. in our case
the function f is given by f (Y) = E(S � Y),Y the domain of f is a lattice
(and therefore a cpo) and the monotonicity of f is assured by the monotonicity
property of expectations, proved in the previous section.
�

5.2 WHILE loops

We now take Abrials definition of a while loop and again we will investigate its
effect on expectations, showing that it gives rise to a well defined fixed point, and
that the usual unwinding interpretation of a while loop still holds. We define:

while G do S end = (G =⇒ S)∧; G =⇒ skip

And the following theorem describes the effect of a while loop within the
expectation calculus.

Theorem 3. Fixed point interpretation of post loop expectations.

E(while G do S end � E) = µY . if G then E(S � Y) else E end

Proof We consider the expectation effect of a while loop on an arbitrary
expression.

E(while G do S end � E) = “defn of while loop”
E((G =⇒ S)∧; ¬ G =⇒ skip � E) =
“expectation rule for sequential composition”
E((G =⇒ S)∧ � E(¬ G =⇒ skip � E)) =
“expectation rules for guard and skip”
E((G =⇒ S)∧ � ¬ G −→ E) = “Lemma 2”
µY .E(G =⇒ S � Y),¬ G −→ E = “expectation rule for guard”
µY .G −→ E(S � Y),¬ G −→ E =
“rewriting as a conditional expression”
µY . if G then E(S � Y) else E end

�

Corollary 1. The unwinding interpretation of a loop expressed in terms of ex-
pectations. Writing while G do S end as W we have

E(W � E) = E(if G then S ; W end � E)

Proof
E(W � E) = “from theorem 3”
if G then E(S � E(W � E)) else E end =

“conditional expression rule”
G −→ E(S ; W � E),¬ G −→ skip � E) =
“expectation rule for guard”
E(G =⇒ S ; W � E),E(¬ G =⇒ skip � E) =
“expectation rule for choice”
E(G =⇒ S ; W []¬ G =⇒ skip � E) =
“definition of IF construct”
E(if G then S ; W end � E)

�
We terminate this section with a note on our choice of the weakest fixed

point in our interpretation of loop expectation semantics. This seems intuitively
correct, for the same reason that the weakest fixed point is chosen to describe the
predicate transformer effect of loop semantics, i.e. to include the infinite case.
We now check this intuition for a particular extreme case.

Theorem 3 tells us that E(W � E) is a solution to the equation

E(W � E) = if G then E(S � E(S � E(W � E)) else E end

If we set G to true, and thus make a nonterminating loop, and (for simplicity)
set S to skip, the equation reduces to

E(W � E = E(skip � E(W � E))

which by the rule for skip reduces to

E(W � E = E(W � E)

an equation which conveys no information and thus admits any solution. How-
ever, since we are taking the weakest fixed point as our solution we obtain the
improper bunch as the expected value of an expression following the termination
of this nonterminating loop, and this is what we expect.

6 Practical proof treatment of loops and termination

The preceding section demonstrates that our expectation calculus gives an in-
terpretation of loops which is able to give a mathematical interpretation to the
meaning of the expectation of some expression after executing a loop. As with
other formalisms, however, practical proof treatment of loops is not based di-
rectly on such a treatment, but rather uses a technique in which loop behaviour
is characterised in terms of loop variants and invariants, which capture the pro-
grammers intuition about what the loop is intended to achieve and why it is
sure to terminate.

Treatment of loops and heuristics for finding probabilistic loop invariants
follow the approach described by McIver and Morgan in [11] with the exception

that, due to our strict interpretation of nondeterminism, possibly nonterminating
loops become definitively nonterminating. We consider first an example in which
termination is deterministic but the result achieved is probabilistic and illustrate
the loop invariant method for this case. We then consider two contrasting loops
with different forms of probabilistic termination.

For our first example we have a sequence of Bernoulli trails and we are
interested in the probability distribution of number of successes obtained, i.e.
the classical binomial distribution. The following will be referred to as prog in
subsequent discussion.
r := 0; i := n; / ∗ init ∗ /
while i 6= 0 do

r := r + 1 p⊕ skip; i := i − 1 / ∗ body ∗ /
variant i
invariant c(i , k − r) ∗ pk−r ∗ (1− p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i |

end
We want to show that prog � r follows a binomial b(n, p) distribution, i.e. that
for any k with k ∈ 0..n we have Probprog(r = k) = c(n, k)∗pk ∗ (1−p)n−k . Here
c is the binomial coefficient function defined by c(n, k) = n!/((n − k)! ∗ k !).

The probabilistic loop invariant, found by one of the heuristics proposed in
[11], has the form p∗ | pred |. We consider the computation from some general
point at which r successes have been achieved and i trials remain. At that point
pred is the necessary condition it is still possible to finish with k successes, and
p is the probability that this will occur assuming pred . If the loop invariant can
be preserved the value of Probprog(r = k) is given by E(init � I) where I is the
loop invariant. i.e.
E(r := 0; i := n � c(i , k − r) ∗ pk−r ∗ (1 − p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i |
= c(n, k) ∗ pk ∗ (1− p)i−k∗ | 0 ≤ k ∧ k ≤ i |

The loop preservation rule in our style of presentation is:
| g | ∗I ≡> E(body � I)
where we use ≡> for “everywhere less than or equal to” (the equivalent to
“everywhere implies” when working with numerotized predicates). We also use
<≡ with an obvious similar meaning.

To show the invariant property we reason from the left hand side:
E(body � I) =
E(r := r + 1 p⊕ skip; i := i −1 � c(i , k − r)∗pk−r ∗ (1−p)i−k+r∗ | 0 ≤ k − r ∧
k − r ≤ i |)
= “seq comp and assignment”

E(r := r + 1 p⊕ skip � c(i − 1, k − r) ∗ pk−r ∗ (1 − p)i−1−k+r∗ | 0 ≤ k − r ∧
k − r ≤ i − 1 |)
= “prob choice and assignment”

p ∗ c(i − 1, k − r − 1) ∗ pk−r−1 ∗ (1− p)i−k+r | 0 ≤ k − r − 1 ∧ k − r ≤ i〉
E(x := E �A),E(x := E � B) +

(1− p) ∗ c(i − 1, k − r) ∗ pk−r ∗ (1− p)i−1−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i − 1 |)
= “collecting terms”

c(i − 1, k − r − 1) ∗ pk−r ∗ (1− p)i−k+r | 0 ≤ k − r − 1 ∧ k − r ≤ i |
+

c(i − 1, k − r) ∗ pk−r ∗ (1− p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i − 1〉)
<≡ “comparing numerotized predicates”
(c(i−1, k−r−1)+c(i−1, k−r))∗pk−r ∗(1−p)i−k+r∗ | 0 ≤ k−r ∧ k−r ≤ i〉)
= “Pascal’s Triangle property of binomial coefficients”

c(i , k − r) ∗ pk−r ∗ (1− p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i〉)
<≡ “ since | i 6= 0〉 ≤ 1
| i 6= 0〉 ∗ c(i , k − r) ∗ pk−r ∗ (1− p)i−k+r∗ | 0 ≤ k − r ∧ k − r ≤ i〉)
= | g〉 ∗ I �

In the next two examples we consider loops which illustrate problems both
with our strict approach to nontermination and with the concept of “termination
with probability one”. First we consider a loop for which termination is always
possible and where the probability of termination in the first or first few itera-
tions may be arbitrarily close to one. Nevertheless we will be able to show that
there is a non-zero probability of nontermination of this loop. On termination
the loop will leave a variable i set to the number of iterations performed. We will
be able to derive the probability that i = k , but we will not be able to derive,
via our formalism, a numeric value for the expected value of i . In the second
example we will have a very different situation: a loop that can easily be shown
to terminate with probability one but for which, in practice, it would be very
imprudent to assume that termination would occur in any human time scale.

The first makes use of the binomial trials described above, which we now
assume are packaged in an operation Bin, which inputs a number of trials to be
performed and the probability of success on each trial, and outputs the number
of successful trials.
r ← Pterm1(p) =̂ 0 < p ∧ p < 1 |

k := 1; i := 0;
while k 6= i do

i := i + 1; k ← Bin(i , p)
end

r := i ;
At the ith iteration the program performs i Bernoulli trials and terminates if all
are successful. The probability of termination on the 1st iteration is p. Termina-
tion on the second iteration occurs only if we have nontermination on the first
iteration followed by termination on the second. It has probability (1 − p) ∗ p2.
Probability of termination on the third iteration is (1− p) ∗ (1− p2) ∗ p3 and so
on. It seems we should be able to show, within our formalism, that the expected
number of iterations required for termination is:
E(r ← Pterm1(p) � r) = p + 2 ∗ (1− p) ∗ p2 + 3 ∗ (1− p) ∗ (1− p2)p3 + ..
The reason we cannot do so is that termination is not guaranteed. The proba-
bility of nontermination is given by the infinite product whose ith term is the
probability that termination does not occur at the ith iteration, i.e. P(p) =
(1− p) ∗ (1− p2) ∗ (1− p3).... For p = 1/2 the value of this product has a known
analytic form and its value is given in [3] as approximately 0.288788. As we in-

crease p from 1/2 and approach 1 we can make the probability of termination
on the first iteration as close to 1 as we like. We therefor wonder if there is some
value p0 for p with p0 < 1 but P(p0) = 0. In fact this cannot be the case, and
we will always have a finite probability of nontermination for our loop. As a first
step in showing why this must be so assume some p0 exists with P(p0) = 1 and
let it also be the smallest such value. Then consider p2

0 . We have p2
0 < p0, so

if we can show P(p2
0) = 0 we will have contradicted our assumption that p0 is

the smallest value with this property and thus have shown that no such smallest
value exists. We have:
P(p2

0) = (1− p2
0) ∗ (1− p4

0) ∗ (1− p6
0)... = “since (1− x 2) = (1− x) ∗ (1 + x)”

(1−p0)∗ (1−p2
0)∗ (1−p3

0)...(1+p0)∗ (1+p2
0)∗ (1+p3

0)... = “since P(p0) = 0”
0 ∗ (1 + p0) ∗ (1 + p2

0) ∗ (1 + p3
0)...

This will be zero so long as (1 + p0) ∗ (1 + p2
0) ∗ (1 + p3

0)... has a finite value,
and this will be the case so long as log((1 + p0)(1 + p2

0)(1 + p3
0)...) has a finite

value. Recalling that log(1 + x) = x − x 2/2 + x 3/3.. and noting that therefore
0 < x < 1⇒ log(1 + x) < x we have
log((1 + p0) ∗ (1 + p2

0) ∗ (1 + p3
0)..) = log(1 + p0) + log(1 + p2

0) + log(1 + p3
0)... <

p0 + p2
0 + p3

0 + ... = “standard geometric progression”
p0/(1− p0) which has a finite value for p0 ∈ openinterval(0, 1)
Thus we conclude there is no smallest p such that P(p) > 0. That is not yet
enough to prove that we cannot have p ∈ openinterval(0, 1) ∧ P(p) = 0, but
since P(p) is continuous and monotonic decreasing, the only remaining possi-
bility is that the region for which P(p) > 0 runs up to and includes some p1 ∈
openinterval(0, 1). Then we would have P(p1) > 0 but p ∈ openinterval(p1, 1)⇒
P(p) = 0. However, we can also dispose of this possibility: if such a p1 exists let
p2 = p1 + ε, and we can show in an obvious way that we can choose ε such that
p2
2 < p1.

Having concluded that the operation Pterm1 will always have some finite
probability of nontermination, given by P(p), we return to our expression of the
expected value for the number of loop iterations in Pterm1 but we now include
this term and calculate its effect:
E(r ← (Pterm1(p) � r) = p +2∗(1−p)∗p2+3∗(1−p)∗(1−p2)p3+..+P(p)∗⊥
= “since e ∗ ⊥ = ⊥ for any term e

E(r ← (Pterm1(p) � r) = p + 2 ∗ (1− p) ∗ p2 + 3 ∗ (1− p) ∗ (1− p2)p3 + ..+⊥
= “since e +⊥ = ⊥ for any term e” ⊥

Not surprisingly the absorptive effect of the improper bunch dominates the cal-
culation, however small the term multiplying it might be.

For the second of these two examples we take a loop whose termination is
readily provable by the zero one law, but, with suitable chosen parameters, is
effectively nonterminating on any practical time scale.
r ← Pterm1(p, b) =̂ 0.5 < p ∧ p < 1 ∧ b > 0 |

i := 1 p⊕ i := 1;
while i 6= 0 do

i := i + 1 p⊕ i := i − 1;
if i > b then i := b end

if i < −b then i := −b end
end

r := i ;
The program represents a random walk, biased to move in a upward directions
and with barriers at −b and b. To apply the zero-one law to show termination
with probability 1 we need to show the loop always has some probability of
termination bounded away from zero. Here, such a bound is given by (1 − p)b ,
which is the probability of terminating in b steps when we are at the upper
barrier. Every other position gives a better probability of terminating within
the next b steps, and obviously all such probabilities are less that the overall
probability of termination from any current position.

We have a trivial application of the zero one law for proving the termination of
this loop with probability one and the impossibility of proving termination occurs
with probability one in the previous case, but we also have the following: given
any integer N > 0, however large and some ε ∈ openinterval(0, 1), however small,
we can choose p and b such that the probability of the first loop terminating
within N iterations is greater than 1 − ε (i.e arbitrarily close to 1) and the
probability of the second terminating within N iterations is less that ε (i.e.
arbitrarily close to 0). We conclude from this that we need to supplement a
proof of termination with probability 1 with a proof that termination is highly
likely to occur in some sensible number of iterations given by the contact of the
application. Also we need to be aware that loops which look extremely likely
to terminate may not, in fact, terminate with probability one, and may need
to have termination imposed after some suitable number of iterations, since the
slightest possibility of nontermination of a loop will dominate our calculations.

7 Conclusions and Future Work

We have considered the fixed point semantics and proof treatment of iterative
constructs within an expectation calculus designed to describe reversible com-
putations. To arrive at this calculus from the classical B semantics of sequential
programming we remove the law of the excluded miracle, and in terms of UTP
Designs, this is equivalent to removing healthiness condition H4. We consider
perspective value terms of the form S � E which represent the value expression
E would take if S were to be executed. This has a semantic role, but is also a
term in our extended language of expressions, which is implemented by execut-
ing S , evaluating E , and reversing execution of S to uncompute its effects.
Where S is nondeterminstic, this is captured by S � E yielding a bunch of
possible values and the corresponding execution of S � E executing all possible
branches of the corresponding search tree.

A prospective value calculus allows us to make a smooth transition to an
expectation calculus, but we must treat probabilistic choice in a manner that
suits the execution behaviour of our reversible machine. This requires magic to
be a unit of probabilistic choice, as it is of demonic choice.

Our previous work on expectation gives a relation model and links our
prospective value calculus and our expectation calculus by means of a Galois
Connection.

In the current paper we interpret Abrials definitions for recursive constructs
in terms of our expectation calculus. To provide a fixed point treatment of post
loop expectations we had to establish a monotonicity property for our calculus,
which we derived by first showing that expectations are sub-conjunctive.

We also consider the practical proof treatment of probabilistic iterations,
using the technique of loop variants and invariants, and we show how to look
for an appropriate loop invariant. We consider at some length the problem of
probabilistic termination, giving examples to show that even loop that seems in-
tuitively certain to terminate may retain a residual possibility of nontermination.
Since our approach to termination is strict, we must be on the look our for such
possibilities, as they will swamp any terminating behaviour. One the other hend,
we also note that termination with probability one is not a strong property, and
should be supplemented by knowing how likely termination is after a sensible
number of iterations. We finally consider plans for future work. In our present
approach, nondeterministic choice plays two roles. It can represent provisional
choice, subject to revision by backtracking, or implementor’s choice, which may
be removed during the refinement process. For some problems it may be more
appropriate to replace nondeterministic choice used as provisional choice by a
preferential choice, and make this distinct from implementor’s choice. We have
described a calculus which does this is given in [19]; this also describes in a more
concrete way the execution behaviour of certain structures implemented on the
RVM. At present this calculus does not incorporate probabilistic choice, and
part of our future work will be to perform this additional unification.

References

1. J-R Abrial. The B Book. Cambridge University Press, 1996.
2. H G Baker. The Thermodynamics of Garbage Collection. In Y Bekkers and Cohen

J, editors, Memory Management: Proc IWMM’92, number 637 in Lecture Notes in
Computer Science, 1992.

3. S. R. Finch. Mathematical Constants. Cambridge, 2003.
4. Jifeng He, Karen Seidel, and Annabelle McIver. Probabilistic models for the

guarded command language. Science of Computer Programming, 28(2-3):171–192,
1997.

5. E C R Hehner. Bunch theory: A simple set theory for computer science. Informa-
tion Processing Letters, 12.1 pp26-31, 1981.

6. E C R Hehner. A Practical Theory of Programming. Springer Verlag, 1993. Latest
version available on-line.

7. Joe Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, Computer
Laboratory, University of Cambridge, 2001.

8. Joe Hurd. A Formal Approach to Probabilistic Termination. In TPHOLs 2002,
pages 230–245, 2002.

9. He Jifeng and Sanders J. W. Unifying probability. In S. E. Dunne and W Stoddart,
editors, UTP2006 The First International Symposium on Unifying Theories of
Programming, number 4010 in Lecture Notes in Computer Science, 2006.

10. D Kozen. Semantics of Probabilistic Programs. Journal of Computer and System
Sciences, 22(3):328–350, 1981.

11. Annabel McIver and Carroll Morgan. Abstraction, Refinement And Proof For
Probabilistic Systems. Springer, 2004.

12. Annabelle McIver, Carroll Morgan, and Thai Son Hoang. Probabilistic Termina-
tion in B. In D Bert, J Bowen, S King, and M Walden, editors, ZB2003, number
2651 in Lecture Notes in Computer Science, 2003.

13. L Meinicke and I Hayes. Algebraic reasoning for probabilistic action systems and
while-loops. Acta Informatica, 45(5), 2008.

14. C. Morgan, A. McIver, K. Seidel, and Sanders J. W. Tr-4-95, probabilistic predicate
transformers. Technical report, Oxford University Programming Research Group,
1995.

15. Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate trans-
formers. ACM Transactions on Programming Languages and Systems, 18(3):325–
353, May 1996.

16. W. J. Stoddart. The Reversible Virtual Machine. User and technical manuals, 111
pages, University of Teesside, UK, July 2006.

17. W J Stoddart and F Zeyda. A Unification of Probabilistic Choice within a Design-
based Model of Reversible Computation. Formal Aspect of Computing, 2007. Pub-
lished on line, DOI 10.1007/s00165-007-0048-1.

18. W J Stoddart and F Zeyda. Probabilistic Choice. Technical report, University of
Teesside, UK, 2008. 35 Pages.

19. W J Stoddart, F Zeyda, and S Dunne. Preference and non-deterministic choice. In
A Cavalcanti, D Déharbe, M-C Gaudel, and M Woodcock, editors, ICTAC, volume
6255 of Lecture Notes in Computer Science, pages 137–152. Springer, 2010.

20. W J Stoddart, F Zeyda, and A R Lynas. A Design-based model of reversible
computation. In UTP’06, First International Symposium on Unifying Theories of
Programming, volume 4010 of Lecture Notes in Computer Science, June 2006.

21. F Zeyda, W. J. Stoddart, and S Dunne. A Prospective-value Semantics for the
GSL. In M Henson, S King, S Schneider, and H Treharne, editors, ZB2005, number
3455 in Lecture Notes in Computer Science, 2005.

