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Abstract—Ubiquitous embedded systems are often resource-
constrained. Developing software for these systems should take
into account resources such as memory space. In this paper,
we develop and implement an analysis framework to infer
statically stack usage bounds for assembly-level programs in
abstract Java Bytecode. Our stack bound inference process,
extended from a theoretical framework proposed earlier by
some of the authors, is composed of deductive inference rules
in multiple passes. Based on these rules, a usable tool has
been developed for processing programs to capture the stack
memory needs of each procedure in terms of the symbolic
values of its parameters. The final result contains path-sensitive
information to achieve better precision. The tool invokes a
Presburger solver to perform fixed point analysis for loops and
recursive procedures. Our initial experiments have confirmed
the viability and power of the approach.

Keywords-Memory Inference, Program Analysis, Java Byte-
code, Stack Boundary, Fixpoint Analysis, Tool

I. INTRODUCTION

In the software verification community, the considera-

tion of non-functional issues like resource adequacy and

utilization is gradually gaining more attention. This trend

has been driven by the proliferation of resource-constrained

cyber-physical (embedded) systems, coupled with the high

expectations on reliability and usability from consumers.

Previous work in this area (amongst the real-time and

embedded systems community) have mostly focused on real-

time aspects, with major inroads made in WCET (worst-case

execution time) domain. In this paper, we focus on stack

memory as a constrained resource and analyze the stack

space usage for low-level Java Bytecode-like programs.

Memory models for embedded systems are typically

organized into two main parts: stack and heap. Stack is

efficient for allocating and recovering memory spaces, and is

particularly important for method invocations and transient

data structures. Each method invocation typically reserves a

frame of memory on the stack for holding local variables,

etc. Heap is used for dynamically allocated data structures.

For applications running in environments with very limited

memory, such as smart cards or mobile devices, heap al-

location is not allowed; therefore, stack space becomes the

main concern. For such memory constrained applications, it

is important to be fully aware of the stack space needed by

each computational unit, and further, the whole program.
There are few previous studies for predicting symbolic

memory usage of programs, especially for imperative pro-

grams in the Bytecode level. Works [1], [2] are mostly

aiming to analyze functional programs where the immutable

data structures make such analysis easier to formalize. The

works [3], [4] target at Java-based Bytecode programs,

but their frameworks again assume that Bytecode programs

are compiled from functional programs without mutability

and assignments. Other works, e.g. [5], [6], [7], merely

provide frameworks for checking that memory usage of OO

programs conform to user-supplied memory specifications

either through static verification or runtime checking. How-

ever, user-annotations may be hard to provide and are likely

to be impractical for assembly-level programs.
The previous work [8] by some co-authors of current

paper has proposed a theoretical framework for analyzing

memory usage bounds for low-level programs. It presents

a multi-pass analysis framework to infer stack and heap

bounds for a core assembly-like language. The power of

the framework is that it does not require any annotation in

programs, and further, working on a lower level may produce

a more precise estimation. Our current work is based on this

theoretical framework, but extends it or distinguishes from

it in the following ways:

• We focus on the stack bound analysis and extend the

previous framework for an enriched Java Bytecode-

like language. For completeness, we will present both

inference rules from previous work and newly proposed

inference rules here.

• We focus more on the practicality of the approach

and build a tool for the stack bound inference. The

previous work focuses more on theoretical framework

and does not have a fully workable system (apart from

a preliminary prototype).

• We report challenges encountered during the implemen-

tation and solutions to tackle them. Initial experiments

have further confirmed the viability of the approach.

• We have carried out experiments for many programs

for the real estimations, and exercised our framework

and the tool program.
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The rest of the paper is organized as follows. Section II

introduces the abstract Java Bytecode language used in our

work. Section III presents the analysis framework with three

groups of rules which are used in three stages of the analysis.

In Section IV we discuss some important implementation

issues which are crucial for the tool. Two experiments by

the tool are then illustrated in Section V, Additional related

work is discussed in Section VI, followed by concluding

remarks and future work.

II. THE ABSTRACT JAVA BYTECODE LANGUAGE

Our aim is to tackle the theoretical and practical chal-

lenges in memory bound inference for embedded programs,

and to develop a practical tool for real use. In the work, we

focus on an abstract (i.e., structured) version of Java Byte-

code language, where all basic instructions are performed

by a stack machine with effects on the stack. There is no

concept of registers, and no explicit variables.

To facilitate the analysis and presentation, we include

in the language conditional (with two branches) and while

loop structures. In reality, low-level programs are generally

organized as blocks of instructions and use (conditional)

jumps moving between blocks. This block-level view does

not cause major technical difficulty but may obscure our

exposition. Moreover, it is helpful to recover higher-level

language constructs when analyzing assembly-level codes,

as advocated in [9].

Our language is close to Java Bytecode. In fact, all

programs we have used to test our tool are bytecodes

compiled from Java source but with manually recovered

high-level control structures. In this work, we focus on the

analysis framework and practical tool. A preprocessor for

recovery of control structures from Java Bytecode is under

development.

The syntax of the abstract Java Bytecode language is

given in Figure 1. Compared with the language used in

our previous work [8], the language has now included a set

of common binary operators for arithmetic and comparison

operations, which are indispensable for writing practical and

useful programs with loops and recursive methods.

As shown in Figure 1, a program is composed of a

sequence of method declarations. Each method declaration

(M ) comprises a return type (t), a method name (m), a

list of parameter types(t1, .., tn), and a method boy (E). An

integer l between the signature and the method body denotes

the number of words for storing both parameters and local

values of the method. If l is larger than the space for storing

the parameters, it indicates that the method requires space

for its local values.

Values in the language are typed. For each type, we have

a set of instructions. As said before, there is no explicit

concept of variable. All values are stored in the stack,

and copied explicitly by instructions load and store with

a specification of offsets of the operands from the frame

P ::= M1,M2, . . . ,Mn (Program)

M ::= t m(t1, t2, . . . , tn) l {E} (Method Decs)

E ::= Cmd | Binary | E1; E2 | (Controls)

ifE1 E2 | whileE

Cmd ::= load〈t〉 i | store〈t〉 i | (Commands)

invokem | const〈t〉 k

Binary ::= add〈t〉 | sub〈t〉 | mul〈t〉 | (Bi-Op-Rels)

div〈t〉 | mns〈t〉 |
gt〈t〉 | ge〈t〉 | lt〈t〉 | le〈t〉 | eq〈t〉

t ::= bool | int | float | ref | void | · · · (Types)

Figure 1. Syntax of Abstract Java Bytecode

pointer (FP) which always points to a fixed position of

current frame in the stack. Instruction load copies a value

from the designated location and push it on the top of the

stack (to be determined by the stack pointer, SP), and store
does the inverse action and pops the top. The const〈t〉 k
instruction pushes a constant k of type t onto the stack.

There is a rich set of binary operations (including relation

operations) for each numeric type, where these operations

take (and pop) two values from the stack and pushes the

result back. Here mns〈t〉 is unary minus instruction for

numeric type t which modifies the top element of the stack

(pops the top entry and then pushes the result).

For control structures, there are sequential and condi-

tional, and while loop. The invoke m instruction invokes

the method m. This instruction will create a new frame for

method m, save and set the FP and SP pointers.

The frame of a method invocation is illustrated in Fig 2:

The first two slots (-1, 0) in each frame contain pointers to

the caller’s frame and return address, above them (1..�) are

the space for parameters and local values, and above them

are the space for other temporary values (operands).

Taking a low level language as the target for analysis has

at least two benefits. Firstly, the memory estimation can be

more precise at this level, thus is more useful in practice. On

the contrary, resource usage may be affected by optimizing

compilers which might render memory analysis done at the

source level unsafe to use. Secondly, programs written in a

variety of higher-level languages are usually translated into

to low-level forms before execution. Thus, this study can be

used to serve a wider range of different languages.

A sample program is listed in Figure 3, with necessary

comments as the explanation. We declare here a method

abc, which has one integer parameter, where l = 1 means

no local “variable” except the parameter. The main part of

the method body is an if statement. In the second branch of

the if, there is a recursive invocation to the method itself.

We see many other instructions in the method, including
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return address
prev frame ptr

parameters

local variables

operands
:

:

return address

prev frame ptr

.
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current
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l

n
n+1
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:

:

stack pointer

:

:
:

:
frame pointer

Figure 2. Stack Frames

int abc(int) 1 {
load<int> 1; // push parameter to stack
const<int> 0; // push 0 to stack
ge<int>; // pop and compare top 2 values,

// save the result
if {
load<int> 1; // if parameter <= 0,

// return the parameter
} {
load<int> 1; // push parameter to stack
const<int> 1; // push 1 to stack
sub<int>; // calculate (parameter - 1)
invoke abc; // call abc(parameter - 1)

};
}

Figure 3. A Sample Program

load, store, const, and some binary operations.

Our stack bound inference process aims to compute a safe

and yet precise bound on the stack space required by the safe

execution of programs such as abc. In what follows, we

shall present the theoretical framework and discuss practical

issues when implementing the framework.

III. THEORETICAL FOUNDATION

Now we present the theoretical framework, which is

an adapted and extended version of an earlier framework

reported in [8].

Our stack boundary analysis is based on formal inference

rules designed for predicting symbolic memory usages.

In these rules, we use Presburger arithmetic formulae to

describe states of programs. For method calls and loops, we

may build up recursive predicates to specify memory usage

in the form of constraint abstractions [10]. We resort to an

external tool [11] to calculate fixed points for such constraint

abstractions.

The inference process is divided into three key stages: (i)

frame bound inference, (ii) abstract state inference, and (iii)

stack bound inference. Each stage applies some inference

rules according to program text. A later stage depends

on results from the previous one(s). The first two stages

make intraprocedural analyses while the last one conducts

inter-procedural analysis. The final target of the inference

process is to generate a set of annotations for each method

declaration. Given a method:

t m(t1, . . . , tn) � {. . .}
Here {. . .} denotes method body. The inference will produce

an extended declaration for it, with the form:

t m(t1, . . . , tn) �; φpr;F ; φpo;S {. . .}
where F is method m’s frame bound, φpr its pre-condition,

φpo its post-condition, and S its stack bound.

Each method invocation reserves on stack a frame holding

its parameters and local values until it returns. The stack

may grow or shrink due to pushes/pops by instructions. For

memory usage, there are usually two key metrics for each

code unit: one is net usage between the start and end of

the execution of the unit, the other is usage bound — the

high watermark of memory usage at all points during the

execution. As far as the stack is concerned, we only need

to compute the latter for each method, since net stack usage

at method boundary is always zero due to perfect space

recovery for each call. To compute the stack bound, we keep

the trace of stack usage at every possible program point so

as to choose the maximum one as its high watermark.

As mentioned before, each stage of the analysis is carried

out using a set of inference rules. In the rest part of

this section, we present and discuss each set of the rules,

according to the order of the work performed in analysis.

A. Frame Bound Inference

In first stage, we infer frame bound for each method in

the program. Rules for this are listed in Figure 4. We have

one rule for each basic instruction and control form. The

rule (FBBiOp) describes how to deal with binary operations,

and the rule (FBBiRel) covers all binary relations. Note that

there is no rule for mns since it does not affect the frame

size.

In the invocation, all real parameters, local values and

temporaries for a method are placed in the method’s frame.

During the execution, the frame size may change frequently.

To capture the upper bound of the size, we embed a top

pointer (denoted by an offset) of current frame at each

program point. In this stage we compute recursively all

the frame top pointers and save them in company with the

program code in a structure. This information will be used by

analyses in later stages. In the implementation, we traverse
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k :: t Γ1 = t : Γ

l,Γ �F const〈t〉 k � (|Γ|, const〈t〉k),Γ1, |Γ1| (FBCon)

i ≤ l Γ[i] = t Γ1 = t : Γ

l,Γ �F load〈t〉 i� (|Γ|, load〈t〉i),Γ1, |Γ1|
i ≤ l ≤ |Γ| Γ1 = Γ⊕ (i �→ t) r = |Γ|+ 1

l, t : Γ �F store〈t〉 i� (r, store〈t〉i),Γ1, r

l,Γ �F E1 � A1,Γ1,F1 l,Γ1 �F E2 � A2,Γ2,F2

l,Γ �F E1;E2 � (|Γ|, A1;A2),Γ2,max(F1,F2)

l,Γ �F E1 � A1,Γ1,F1 l ≤ |Γ| |Γ1| = |Γ2|
l,Γ �F E2 � A2,Γ2,F2

F3 = max(F1,F2) Γ3 = Γ1 	 Γ2

l, bool : Γ �F ifE1 E2 � (|Γ|+ 1, ifA1 A2),Γ3,F3

l ≤ |Γ| l,Γ �F E � A, bool : Γ,F
l, bool : Γ �F whileE � (|Γ|+ 1, whileA),Γ,F

t m(t1, . . . , tn) · · · {· · · } ∈ P
Γ = [tn, . . . , t1] + Γ1 l ≤ |Γ1|
Γ2 = t : Γ1 F= max(|Γ|, |Γ2|)

l,Γ �F invokem� (|Γ|, invokem),Γ2,F (FBInv)

l, [�]li=n+1 + [tn, · · · , t1] �F E � A, t : Γ,F |Γ| = l

�F t m(t1, . . . , tn)l{E}� t m(t1, . . . , tn) l;F+ 2 {A}
(FBMthd)

Γ1 = t : Γ r = |Γ|+ 2

l, t : t : Γ �F BiOp〈t〉� (r,BiOp〈t〉),Γ1, r
(FBBiOp)

Γ1 = bool : Γ r = |Γ|+ 2

l, t : t : Γ �F BiRel〈t〉� (r,BiRel〈t〉),Γ1, r
(FBBiRel)

Figure 4. Rules for Frame Bound Inference

the abstract syntax tree (AST) and store all the information

as decorations on the AST nodes.

All rules in this group have the form:

l, Γ �F E � A, Γ1,F
where l indicates size of the local values area in the frame,

and Γ (respectively, Γ1) captures the types of elements in

current frame before (after) the execution of code fragment

E. In addition, F denotes the high watermark of stack frame

size inferred so far for E.

Γ is a list of types, where Γ = [tn, . . . , t1] means there

are n elements in the frame, and the element at the stack

top is of type tn, the one at frame bottom is of type t1. For

each E with stack frame Γ, we embed its current top pointer

p = |Γ| into an intermediate form as A = (p, EA). If E is

not a compound statement, EA is the same as E. Otherwise

we do this for components of E recursively.

The form of A is defined inductively as follows:

A ::= (p, EA) (1)

EA ::= Cmd | A; A | ifA A | whileA

In rules in Figure 4, we use E :: t to state that E is of

type t. Given Γ = [tn, . . . , t1], notation t : Γ cons a type

t to the head of Γ, thus t : Γ = [t, tn, . . . , t1]. Here +
denotes sequence concatenation, |Γ| represents the number

of elements in Γ, and Γ[i] retrieves the ith element of Γ.

Expression Γ ⊕ (i �→ t) returns a sequence similar to Γ but

with its ith element replaced by t. Function max(n1, n2)
returns the maximum of n1 and n2, while function Γ1 �Γ2

computes the least upper bound of types over two sequences

Γ1 and Γ2 which are of the same length.

We elaborate some rules as follows:

Rule (FBCon): The rule says, when k is of type t, after

the execution of const〈t〉 k, the current frame becomes Γ1

with the frame bound |Γ1|. The effect of const〈t〉 k is that

it loads a constant of type t on top of the frame.

Rule (FBInv): From the premise, we know the first n slots

of current frame Γ is [tn, . . . , t1]. These slots just match the

parameters of method m. After the execution of invokem,

all these n slots are popped out. The returning type t is

added on top of frame Γ1. The high water mark after this

instruction is the maximum of |Γ| and |Γ2|
Rule (FBMthd): The rule is the main inference rule which

may invoke all other rules. The premise tells the initial status

of the frame and the conclusion tells it after the execution

of the body of method m. The final frame bound is F + 2,

where 2 denotes the presence of the return address and a

pointer to the previous frame.

Rule (FBBiOp): BiOp represents binary operators like

add, sub, etc. Before the execution, on top of the frame are

two values of type t. The BiOp pops out these two values

and saves the result on top. This rule reflects the effect of

such instructions on the frame.

B. Abstract State Inference

In second stage, we infer an abstract program state (via

strongest post-condition reasoning in an abstract domain) for

each program point. The abstract states used for fixed point

analysis are expressed as Presburger formulae over values

in the stack. The syntax of Presburger formulae is:

φ ::= b | φ ∧ φ | φ ∨ φ | ¬φ |
∃n · φ | ∀n · φ (Presburger Formula)

b ::= true | false | s = s | s < s |
s ≤ s | s > s | s ≥ s (Boolean Expression)

s ::= k | πi | π′
i | k ∗ s | s + s | −s |

max(s, s) | min(s, s) (Arithmetic Expression)

Here k denotes an integer and n denotes logical variable(s).

For recursive methods and loops, we need to build a

constraint abstraction before applying fixed point analysis.

The frame’s top pointers generated in first stage are used

here. Rules for this stage are given in Figure 5.

All rules in this group have the form:

Δ �A A� B,Δ1
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Δ1 = Δ ◦{πi} π′
i = π′

p

Δ �A (p, store〈t〉 i)� (p,Δ, store〈t〉 i), ∃π′
p ·Δ1

Δ1 = Δ ∧ π′
p+1 = π′

i

Δ �A (p, load〈t〉 i),Δ1
(ASLod)

Δ �A A1 � B1,Δ1 Δ1 �A A2 � B2,Δ2

Δ �A (p, A1;A2)� (p,Δ, B1;B2),Δ2

∃π′
p · (Δ ∧ π′

p = 1) �A A1 � B1,Δ1

∃π′
p · (Δ ∧ π′

p = 0) �A A2 � B2,Δ2

Δ �A (p, ifA1 A2)� (p,Δ, ifB1 B2),Δ1 ∨Δ2

∧p−1

i=1
π′

i = πi �A A� B,Δ1 fresh r1, . . . , rp−1

Δa = π′
p = 0 ∧ ∧p−1

i=1
ri = π′

i ∨ π′
p = 1 ∧ α(π′

1 . . . π′
p−1, r1 . . . rp−1)

φrec = {α(π1, . . . , πp−1, r1, . . . , rp−1) = Δ1 ∧Δa}
ρ = [ri �→ π′

i] Δpost = fixpt(φrec)
Δ2 = (∃π′

p ·Δ ∧ π′
p = 0) ∨

((∃π′
p ·Δ ∧ π′

p = 1) ◦{π1..πp−1} ρΔpost)

Δ �A (p, whileA)� (p,Δ, whileBΔ1),Δ2

t m(t1..n)l;φpr;F ;φpo; {· · · } ∈ P fresh r
ρ = [πi �→ π′

p−n+i]
n
i=1 ∪ [π′

l+1 �→ r] Δ ⇒ ρφpr

Δ1 = (∃π′
p−n+1..π

′
p ·Δ ∧ ρφpo) ∧ (π′

p−n+1 = r)

Δ �A (p, invokem), ∃r ·Δ1

Δ =
∧n

i=1
π′

i = πi Δ �A A� B,Δ1

φrec = {m(π1, . . . , πn, π′
l+1) = Δ1}

φpr = prefixpt(φrec) φpo = fixpt(φrec)

�A t m(t1..n)l;F{A}� t m(t1..n)l;φpr;F ;φpo{B}

Δ1 = Δ ◦{πp−1} π′
p−1 = πp−1 + π′

p

Δ �A (p, add〈t〉)� (p,Δ, add〈t〉), ∃π′
pΔ1

(ASAdd)

Δ1 = Δ ◦{πp−1} π′
p−1 = πp−1 − π′

p

Δ �A (p, sub〈t〉)� (p,Δ, sub〈t〉), ∃π′
pΔ1

Δ1 = Δ ◦{πp} π′
p = −πp

Δ �A (p, mns〈t〉)� (p,Δ, mns〈t〉), ∃π′
pΔ1

Δ1 = Δ ◦{πp−1} ((π′
p−1 = 1 ∧ π′

p > πp−1)∨
(π′

p−1 = 0 ∧ π′
p ≤ πp−1))

Δ �A (p, gt〈t〉)� (p,Δ, gt〈t〉), ∃π′
pΔ1

Δ1 = Δ ◦{πp−1} ((π′
p−1 = 1 ∧ π′

p ≥ πp−1)∨
(π′

p−1 = 0 ∧ π′
p < πp−1))

Δ �A (p, ge〈t〉)� (p,Δ, ge〈t〉), ∃π′
pΔ1

Δ1 = Δ ◦{πp−1} ((π′
p−1 = 1 ∧ π′

p < πp−1)∨
(π′

p−1 = 0 ∧ π′
p ≥ πp−1))

Δ �A (p, lt〈t〉)� (p,Δ, lt〈t〉), ∃π′
pΔ1

Δ1 = Δ ◦{πp−1} ((π′
p−1 = 1 ∧ π′

p ≤ πp−1)∨
(π′

p−1 = 0 ∧ π′
p > πp−1))

Δ �A (p, le〈t〉)� (p,Δ, le〈t〉), ∃π′
pΔ1

Δ1 = Δ ◦{πp−1} ((π′
p−1 = 1 ∧ π′

p = πp−1)∨
(π′

p−1 = 0 ∧ (π′
p < πp−1 ∨ π′

p > πp−1)))

Δ �A (p, eq〈t〉)� (p,Δ, eq〈t〉), ∃π′
pΔ1

Figure 5. Rules for Abstract State Inference

Here Δ is a Presburger formula over values in current frame

[πp, . . . , π1] of the stack where each πi is a value at location

i in the frame, and A has the form as defined in (1).

In the rules, we use πi to denote original value in current

frame at location i, and π′
i the latest value at the same

location. We use Δ (resp., Δ1) to represent the abstract

state before (after) the evaluation of A. Note that input A is

an expression annotated with top frame pointers. We obtain

B expressions from the As by inserting the corresponding

abstract state into each program point.

The form of B expressions is inductively defined as:

B ::= (p, Δ, EB) (2)

EB ::= Cmd | B; B | ifB B | whileB Δ1

The fixpt(φ) and prefixpt(φ) in the rules are the fixed

point and pre-fixed point of logic formula φ, respectively.

For example, given a recursive foumula:

rec(n, r) = n ≤ 0 ∧ r = 1 ∨ rec(n − 1, r − 2)

Its fixed point is:

rec(n, r) = (n ≤ 0 ∧ r = 1) ∨ (n > 0 ∧ r = 2n + 1)

Given an existing state Δ (represented by a Presburger

formula) and another Presburger formula φ representing

changes to the state, whereby X = {x1, . . . , xn} is the set

of variables to be updated, the composition operator ◦X is

defined as follows:

Δ ◦X φ =df ∃ r1 . . . rn · ρ2Δ ∧ ρ1φ

where r1, . . . , rn are fresh variables, and

ρ1 = [xi �→ ri]ni=1, and ρ2 = [x′
i �→ ri]ni=1

Here ρ1 and ρ2 are substitutions, and ρ2Δ and ρ1φ represent

the applications of them to Δ and φ, respectively.

For example:

(π′
1 = π1 ∧ π′

5 = π1 + 2) ◦{π1} (π′
1 = π′

5)
≡ ∃r · r = π1 ∧ π′

5 = π1 + 2 ∧ π′
1 = π′

5

Assuming that Δ is π′
1 = π1 ∧ π′

5 = π1 + 2 and the top

frame pointer p = 5, after the execution of store〈int〉 1,

from the rule in Figure 5, we have

∃π′
5, r · r = π1 ∧ π′

5 = π1 + 2 ∧ π′
1 = π′

5

Logically, it is equivalent to π′
1 = π1 + 2. The rule captures

the effect of store instruction: the value (π1+2) on top of

the stack frame (slot 5) is stored into the slot 1.

We elaborate some rules as follows:

Rule (ASLod): Because the stack pointer before load〈t〉 i
is at position p (with respect to the FP), after execution of
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I = Cmd | BiOpRels

a �S (p,Δ, I)� {} (SBBin)

a �S B1 � S1 a �S B2 � S2

a �S (p,Δ, B1;B2)� S1 ∪ S2

a �S B1 � S1 a �S B2 � S2

a �S (p,Δ, ifB1 B2)� S1 ∪ S2

a �S B � S
Srec = {α(π1, . . . , πp−1) = S ∪

enrich(p − 1,Δ1 ∧ π′
p = 1, α(π′

1, . . . , π
′
p−1))}

a �S (p,Δ, whileBΔ1)�
enrich(a,Δ ∧ π′

p = 1,fixpt(Srec))

t m1(t1, . . . , tn)l;φpr;F ;φpo;S{B} r = p − n+ 2
ρ = [πi �→ π′

p−n+i]
n
i=1 S1 = enrich(a,Δ, ρS) + r

a �S (p,Δ, invokem1)� S1

n �S B � S
Srec = {m(π1, . . . , πn) = S ∪ {φpr → F}}

Sμ = fixpt(Srec)

�S t m(t1..n)l;φpr;F ;φpo{B}�
t m(t1..n)l;φpr;F ;φpo;Sμ{B}

Figure 6. Rules for Stack Bound Inference

load, the stack pointer moves one slot up, and value in slot

p+1 (offset from the FP) is equal to the value in slot i after.

Rule (ASAdd): Current frame top is at p, after the

execution, two values at the top are popped out and the

result is put on the top. Thus π′
p−1 is the final result of the

addition where πp−1 and π′
p denotes two values at the top

of the stack before execution.

We treat while loops as a special form of methods.

In the constraint abstraction α(π1, . . . , πp−1, r1, . . . , rp−1),
r1, . . . , rp−1 are used to denote the outputs for input param-

eters π1, . . . , πp−1. This is captured by the abstraction φrec

built from Δ1 (which captures the post-state of A) and Δa

(which captures the effect of conditional prior to termination

or loop).

C. Stack Bound Inference

The frame bound inference limits all effects of primitive

operations to caller’s local frame. We must also analyze

how method invocations affect the stack space. As discussed

earlier, because the space on stack is reclaimed perfectly

when the method returns, the net stack usage is always zero

for each method invocation, thus, we only need to infer stack

bound. Rules for this inference are given in Figure 6.

In the stack bound inference, we use guarded expression

of the form {gi → Bi}n
i=1 in performing path-sensitive

analysis for conditional branches, where each gi is a guard

and the corresponding Bi is the stack size under this guard

(under this condition). A guard gi is expressed in terms of

the parameters of the method, thus the result can give precise

estimations according to actual application scenarios.

All the stack inference rules have the following form:

a �S B � S
where a is the number of current method’s parameters, and

B is the result produced by prior analysis stages (with

the form as defined in previous subsection), which has

two additional components: a top frame pointer, and an

abstract state inserted. The inferred result S, produced by

this group of rules, denotes the high watermark of stack

usage encountered during the execution of B. Function

enrich(a,Δ,S) incorporates path-sensitive guarded formula

S into current abstract state Δ, as follows:

enrich(a,Δ,S) =df {∃πa+1 . . . ·Δ∧g → s | (g → s) ∈ S}
The guarded formulae used in the rules are built from

two operators, namely ∪ (for upper bound) and + (for sum-

mation). Both operators are associative and commutative,

with + distributing over ∪. The guarded formulae can be

simplified by the following normalization rules:

{false → s}� {}
{p1 → s1} ∪ {p2 → s2}� {p1 ∧ p2 → max(s1, s2)} ∪

{p1 ∧ ¬p2 → s1} ∪
{¬p1 ∧ p2 → s2}

{p1 → s1} + {p2 → s2}� {p1 ∧ p2 → s1 + s2}
So the if rule in stack bound inference just means the final

bound of if is the upper bound of its two branches.

In each stage of the inferences, the algorithm adds anno-

tations to each program point recursively so as to exploit the

rules. Finally we can obtain the stack bound estimation for

all the methods declared in the program.

IV. CHALLENGES FOR PRACTICAL IMPLEMENTATION

There is often a huge gap between theory and practice. As

we work on an implementation for the estimation framework

described in Section III, we have to make many design

decisions which would affect the final result of the work.

We show some of the challenging issues and the way we

have chosen to tackle them.

A. Recursion and Loop

The analysis of recursive methods and loops is always

a challenge because we cannot know in general how many

times some code segment will execute before running. This

is why fixed point analysis matters. The aforementioned

rules do not cover all aspects of our programming language.

Especially, there is no explicit rule for recursive function

calls, not to mention mutual recursive function calls.

To make the problem clear, we define first a concept

“simple program”, which is a program satisfying the two

conditions: Firstly, each group of mutual recursive methods

in the program contains only one method, either it is

recursive itself or not. Secondly, in any method, there is
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no invocation to the method itself in a loop. As we can see

before, in the last two inference stages, the rule for loops

is only a special form of the rule for method invocation. In

fact, the two conditions for simple program is actually one:

there are not two or more methods which call one another,

i.e., no real mutual-recursion presents in the program.

For “simple programs”, rules for recursion are natural to

define. The rule for abstract state inference is:

t m(t1..n)l; φpr;F ; φpo; {· · · } ∈ P fresh r
ρ = [πi �→ π′

p−n+i]
n
i=1 ∪ [π′

l+1 �→ r] Δ ⇒ ρφpr

Δ1 = (∃π′
p−n+1..π

′
p · Δ ∧ ρm(π1, . . . , πn, r))

∧ (π′
p−n+1 = r)

Δ �A (p, invokem),∃r · Δ1

We have another rule for self-recursive methods in stack

bound inference. Our tool implemented these two rules, so

it can deal with self-recursive methods correctly.

For mutual recursive cases, these rules are not applicable.

However, this difficulty can still be solved if we sacrifice

some precision. For two methods which call each other, we

can combine them into one new method which contains both

methods’ bodies in different branches of an if statement.

Then we extend the parameter list to accommodate two

original methods, add another parameter indicating which

branch is used, and modify method invocations accordingly.

This new method is self recursive, thus can be handled

by our rules. Because the parameter list is extended, the

final estimation on stack usage would be larger than actual

one. This rule has not been implemented yet in our current

system.

B. Formulae Construction and Simplification

Before starting the work, we do not think that the sim-

plification is crucial to the success of the analysis tool,

because the fixed point calculator can handle any complex

boolean formula, and what we need is just to care about the

formation of the formulae, rather than manipulating them.

However, several problems present that make the formulae

manipulation and simplification indispensable.

1) Introducing Fresh Variables: As mentioned above, our

rules may produce formulae such as

∃π′
2, r · r = π1 ∧ π′

2 = π1 + 2 ∧ π′
1 = π′

2

un-simplified. For a single formula, there is no problem.

However, when we compose a formula from some small

ones, we need to gather all bound variables together. When

a bound variable appears in different sub-formulae, these

formulae can not be put together directly. To handle it

correctly, when we need to add a new sub-formula, we

determine all the bound variables in the new formula, then

replace every occurrence of these variables in the existing

formula to fresh ones, then add the new sub-formula with

the original variable unchanged.

2) Removing Negation, Simplifying Formulae: Another

problem is more challenging. As mentioned above, in the

stack inference, we use guarded expression of the form

{gi → Bi}n
i=1 for path-sensitive analysis of conditional

branches. The inference rules need to find the fixed point of

these guarded forms. However, current external fixed point

calculator can only handle Presburger formulae, thus we

must convert the guarded assertions to Presburger formulae.

Intuitively, we may think that {gi → Bi}n
i=1 can be

transformed directly to
∨n

i=1(gi ∧ Bi). Unfortunately, this

direct transformation is wrong, because in fact, {p1 →
s1}∪{p2 → s2} is equivalent to (p1∧p2 → max(s1, s2))∨
(p1 ∧ ¬p2 → s1) ∨ (¬p1 ∧ p2 → s2). This transformation

introduces negation into the formulae, but the fixed point

calculator can not handle negation directly.

To overcome this problem, we need to know the exact

meaning of the guard condition gi so as to present ¬gi in

an explicit form without negation. Our implementation uses

an “ad hoc” boolean expression simplifier. We do a “two-

step” simplification as follows.

In the first step we simplify the “disjunction” formula.

When an if statement appears in the program, there must

be a comparison instruction before it. According to the rule,

the resulting formula will have the form:

(π′
p = 0 ∧ Δ) ∨ (π′

p = 1 ∧ ¬Δ)

All the “∨”s in formulae are introduced by this construction

step. In each branch of if statement, there is a π′
p = 1 or

π′
p = 0 according to the inference rule. So the formula in

each branch may look like this:

((π′
p = 0 ∧ Δ) ∨ (π′

p = 1 ∧ ¬Δ)) ∧ · · · ∧ (π′
p = 1) ∧ . . .

To simplify formulae of this form, we look for the closest

equation related to π′
p outside the “disjunction” in the

formula. According to the value of π′
p, the formula can be

either Δ or ¬Δ. For above formula, the final result is ¬Δ.

After careful observation, we determine that after the

first step of simplification, the resulting Presburger formula

will be always in the conjunctive normal form, where each

atomic formula is an equation. So in the second step, we try

to solve the equations, in order to remove all unnecessary

variables, and shorten the formula as much as possible. We

reduce variables under each ∃ one by one. For example, after

this simplification, formula ∃r ·π1 = r∧π2 = 3+r becomes

π1 = π2 − 3.

3) Positions of Function Abstraction: The simplifier de-

scribed above is not sufficient for the transformation from

guarded form to Presburger formula. When the function is

recursive, the function abstraction appears in some Bi part

of the guarded form. In this situation, the simplifier cannot

work correctly.

For example, simple treatment may put a function ab-

straction α(π′
1, π

′
2 + 3) with symbols π′

1, π
′
2 in a improper
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Figure 7. Preprocessing

position, and delivers a wrong formula, e.g.,

(∃π′
1, π

′
2 · π′

1 = π1 − 1 ∧ π′
2 = π′

1 − 1) ∧ α(π′
1, π

′
2 + 3)

where bound variables π′
1 and π′

2 in α is not in the scope of

∃. To fix this problem, we added another procedure to seek

the right position for function abstractions.

In fact, a function abstraction is in the right place at the

stage of abstract state inference. Our improved algorithm

marks its place at first and puts the function abstraction in Bi

in stack bound inference. When we convert a guarded form

to Presburger formula, we insert the function abstraction to

its original place with necessary modifications. For example,

if the original formula to handle is:

∃π′
1, π

′
2 · (π′

1 = π1 − 1 ∧ π′
2 = π′

1 − 1 ∧ α(π′
1, π

′
2)).

According to the rules in Figure 6, the guarded form for this

formula will be

(∃π′
1, π

′
2 · π′

1 = π1 − 1 ∧ π′
2 = π′

1 − 1) → α(π′
1, π2) − 3.

After our modified transformation, the right result is

∃π′
1, π

′
2 · (π′

1 = π1 − 1 ∧ π′
2 = π′

1 − 1 ∧ α(π′
1, π

′
2, π3 + 3)).

Here, π3 denotes the return result. The last two α in

the formulae have different meaning. In guarded form, it

represents an arithmetic result, but in the final formula, it

recursively represents the whole abstraction of the formula.

The arithmetic result now is represented by π3.

V. TOOL AND EXPERIMENT

Our tool program is written in C++. We use the Spirit
Framework in boost library for two parsers, one for the

structured Java Bytecode language, and one for logic for-

mulae coming from the fixed point calculator invoked by

our analyzer. The main part of the tool makes the stack

estimation by traversing the AST of programs for several

times, and making the inference for each program point.

The algorithm is divided into two main phases. One is the

preprocessing, the other is the concrete inference for each

method. Of course, we assume programs to analyze are well-

typed, that is guaranteed by the compilers.

A. Preprocessing and Estimation

Any source file written in the structured Java bytecode

language needs to be preprocessed before it is sent to the

analysis algorithm. During parsing, we build also a call

dependency graph for the program, where each strongly

connected component represents a set of mutual recursive

methods for analysis simultaneously. Of course, for “simple

program”, each node contains only one method.

By abstracting these connected components as vertices,

we get a directed acyclic graph (DAG). A topological order

of the DAG determines an inference order which ensures that

inter-procedural analysis can be carried with prior known

properties of called methods. Each of the DAG node is then

parsed into a syntactic tree for subsequent analyses. The

whole process is shown in Figure 7.

After the preprocessing, the analysis stages are carried on

to produce the stack bounds of the program.

We have conducted a number of experiments with the tool

we build. We shall now present two of them to demonstrate

the viability and power of our method.

B. Example 1

We take the program in Figure 3 as the first example.

The program contains one method with a single parameter,

and has the following behavior: when the parameter is less

than one, it returns the value of the parameter; otherwise it

decreases the parameter by one and calls itself again. This

method may be of little practical value, but it does present a

general recursive pattern, where many useful methods work

in the same manner (e.g., the factorial function).

Our tool produces a guarded formula which expresses the

stack usage estimation as follows (We rewrite it to a more

readable form here). The parameter is denoted by π1. The

memory usage is denoted by memg(π1).

memg(π1) = {π1 < 1 → 5}∪{π1 ≥ 1 → memg(π1−1)+3}

The fixed point calculator can not handle guarded formu-

lae, so our tool converts the above formula to Presburger

form. The memory usage is denoted by π2 and the whole

formula is denoted by memp(π1, π2).

memp(π1, π2) = (π1 < 1 ∧ π2 = 5) ∨ ((π1 ≥ 1) ∧
memp(π1 − 1, π2 − 3))

We then get the ideal result from the fixed point calculator:

(π1 ≤ 0 ∧ π2 = 5) ∨ (π1 ≥ 1 ∧ π2 = 3π1 + 5)

This is the fixed point of the recursive Presburger formula

memp(π1, π2), which means: when the actual parameter is

less than or equal to 0, the stack bound is 5; but if the actual

parameter is greater than or equal to 1, the stack bound is

three times of the actual parameter and plus 5.
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int pow(int base, int index) {
if (index <= 0) {
return 1;

} else {
return base * pow(base, index - 1);

}
}
int sum(int from, int to, int index) {

int sum = 0;
for (int i = from; i <= to; i++) {
sum += pow(i, index);

}
return sum;

}
----------------------------------------
int pow (int, int) 2 {

load<int> 2;
const<int> 0;
ge<int>;
if {

const<int> 1;
} {

load<int> 1;
load<int> 1;
load<int> 2;
const<int> 1;
sub<int>;
invoke pow;
mul<int>;

};
}
int sum(int, int, int) 5 {

const<int> 0;
store<int> 4;
load<int> 1;
store<int> 5;
load<int> 5;
load<int> 2;
ge<int>;
while {

load<int> 4;
load<int> 5;
load<int> 3;
invoke pow;
add<int>;
store<int> 4;
const<int> 1;
add<int>;
load<int> 5;
load<int> 2;
ge<int>;

};
load<int> 4;

}

Figure 8. A Larger Program

C. Example 2

Figure 8 shows a bigger program. The high-level code

is shown in the upper part, and the bytecode version is

in the lower part. The program contains two methods: pow

calculates bi where b is the value of parameter base and i
is the value of parameter index. Method sum invokes pow,

and calculates
∑to

j=from ji where i is the value of parameter

index. The Bytecode version is rather lengthy.

For method pow, the final stack space estimation by our

tool is (formatted to mathematical formula):

(π2 ≤ 0 ∧ π3 = 8) ∨ (π2 ≥ 1 ∧ π3 = 5π2 + 8)

where π3 is the stack space estimation and π2 denotes the

second parameter of pow. From the high-level code, we can

see that parameter index affects the memory usage.

For method sum, the final stack space estimation is:

(π3 ≤ 0 ∧ π4 = 10) ∨ (π3 ≥ 1 ∧ π4 = 5π3 + 10)

where π4 is the stack space estimation and π3 denotes the

third parameter of sum. From the high-level code, It is index
which affects the memory usage.

VI. RELATED WORK

Here we discuss some recent related work, except for

those we have mentioned in the introduction section.

The work [12] presents a fully automatic static type-

based analysis for inferring upper bounds on resource usage

for functional programs involving general algebraic data

types and full recursion. The work [13] does a similar

analysis where the stack bounds are given as the max-plus

expressions on the depth of data structures. This analysis is

still for functional programs. The other work [14] presents a

technique to compute symbolic polynomial approximations

of the amount of heap memory required to safely execute a

method without running out of memory, for Java-like imper-

ative programs. The more recent work [15] can determine

upper-bound functions on the use of quantitative resources

for strict, higher-order, polymorphic, recursive functional

programs dealing with possibly-aliased data. As a closely

related work, [16] demonstrates how to use a static analysis

system COSTA to obtain safe symbolic upper bounds on the

resource (heap) usage of a large class of general-purpose

programs written in mainstream programming languages,

such as Java (bytecode). However, it does not study stack

bound.

As a summary, most of the work focuses on the memory

estimation of functional languages, with an exception being

the work [14] which focuses on the heap usage.

VII. CONCLUSION

Resource estimation is very important for cyber-physical

(embedded) systems, because many such systems are highly

resource limited. Existing work in this area have mostly

focused on real-time aspects, especially the WCET (worst-

case execution time) estimation. In this paper, we focus on

the stack memory as a constrained resource and analyze the

stack boundary for low-level Java Bytecode-like programs.
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We define, firstly, an abstract Java Bytecode language

which captures the spirit of low-level languages on stack

machines. All the basic instructions have their effects on a

stack. For abstraction, we include in the language control

structures including conditional branch and while loop.

However, the language is close enough to Java Bytecode,

to rebuild the structural control flow from Java Bytecode

program is straightforward in most cases.

The analysis work is divided into three inference stages,

each of them infers and collects some analysis results.

The inference stages are: Frame Bound Inference which

determines for each method the maximum size of its stack

frame, Abstract State Inference which infers abstract state for

each program point and represents it as a Presburger formula,

Stack Bound Inference which gives the final results. We give

three sets of rules for these inferences, and explain some of

them for better understanding. For implementing the rules,

our tool program traverses the AST of each method, and

makes decorations on AST nodes to record the information

which has been found. After running these analyses in

sequence, we have all the necessary information for the stack

usage bound prediction.

During the development of the tool based on our infer-

ence rules, we have encountered many challenges, and also

found solutions to tackle them. Our initial experiments have

further confirmed the viability of the approach. We show

two examples in the paper for the readers to see how the

symbolic stack boundary the tool will produce in analyzing

programs, and why it is useful.

As ongoing work, we are developing a tool to recover

control structures in Java Bytecode programs; after that our

tool can work directly on Java Bytecode. As the Presburger

formula is not expressive enough, we hope to articulate some

advanced resource analysis techniques into our framework.
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