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Abstract - In this paper, we describe such an environment, 
in which the user can be presented in real-time with an 
alternative range of consequences for a given interaction 
with virtual world objects, thus inducing various 
perceptions of causality. From a systemic perspective, we 
can adopt a pragmatic approach, inspired from Humian 
philosophy, which considers that causal relations are 
established by the user in response to certain event co-
occurrences. To control causal perception in VR, the 
system comprises the following components: a 
visualisation engine, an Event Recognition System 
(together with its specific event formalism that supports 
event modification), and a causal engine as an Event 
Modification System, which selects co-occurring events on 
a rule-based manner. A search process, evaluates 
alternative consequences using semantic and spatio-
contiguity information, such as comparison between 
candidate objects on which the action consequences 
should be applied. A first prototype has been fully 
implemented and is described together with an example 
real-time simulation.  
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1 Introduction 
  Causality is an essential aspect of our common sense 
understanding of the physical world. For that reason, 
causal perception has been considered as one of the main 
phenomena through which we perceive our everyday 
reality. This makes causality an interesting focus of 
experimentation when designing Virtual Reality System, 
including environments whose behaviour departs from our 
everyday experience. Virtual Reality Systems constitute 
one of the best examples of user-centred systems, in which 
subjects’ experience derives from the intertwining of the 
system behaviour and their own. At the centre of user 
experience is the system’s response to his own interaction 
with virtual world objects, which is mediated not only by 
individual objects behaviour, but by the integrated 
response of the environment as a whole. From the user’s 
perspective, such a response is largely interpreted by 
attributing causal relations between user actions and system 
response. Yet, while causality has been widely st1udied in 
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AI [12] and cognitive engineering, very little technical 
work has actually been dedicated to experimenting with the 
user’s perception of causality in interactive settings. For 
instance, most of the multimedia experimental settings for 
investigating causal perception in cognitive psychology 
rely on simple, non-interactive computer animations [16]. 
This opens the possibility of creating  virtual reality 
systems for experimenting with human perception of 
causality. Such systems have both a fundamental and 
practical interest. They can help better understanding of the 
perception of Virtual Reality, they can constitute research 
tools for Cognitive Psychology and finally, their 
technology can support new forms of interactive media, 
including in the Arts and Entertainment. In this paper, we 
describe research into the creation of virtual worlds in 
which causal laws could be modified, on a principled basis, 
so as to create alternative realities. The objective of this 
research is thus to create an experimental environment for 
causality. This takes the form of a virtual world in which 
every event can be intercepted in real-time, so that its 
consequences will be under the control of a “causal 
engine”, rather than of a normal physical simulation. The 
causal engine operates by applying a set of transformation 
operators to the intercepted events, using a method inspired 
from search-based planning. These operators modify the 
effects of the intercepted events prior to their reactivation, 
thus resulting in the occurrence of alternative effects for 
the events considered. This makes it possible to create 
artificial co-occurrences from an original event, such co-
occurrences inducing causal perception in the user. In the 
next sections, after reviewing some relevant conceptions of 
causality, we describe the architecture of our system, and 
the process for event interception and the recognition of 
high-level events. We introduce the search mechanism 
supported by the causal engine. Finally, we illustrate the 
behaviour of the system by detailing an example run. 

2 Event-based causality 
 Causality is one of the best examples of an 
interdisciplinary concept in the field of Cognitive Science. 
There exists an abundant literature on causality in cognitive 
psychology, in Artificial Intelligence [12], and causality is 
still an active topic in contemporary Philosophy [6] [14]. 
This contributes to making causality a complex concept to 
discuss due to the intertwining of different notions derived 
from several research perspectives. Galavotti [6] proposes 
to distinguish “Property Causality” from “Event 
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Causality.” Property Causality refers to population 
variables while Event Causality, also named Token 
Causality, refers to causality between single events. Event 
causality corresponds to common sense causal 
interpretation in the physical world, and is best exemplified 
by work on causal perception, from the historical 
experiments of Michotte [10] to the phenomena studied in 
developmental psychology [4]. Event causality is the kind 
of causality we’ll be referring to in this paper. Further, 
because we’ll be considering “real-time” causal perception, 
we will not discuss explanatory aspects. We will also be 
considering a user facing single events (single-event 
causality) rather than repeated experiments with co-
variation measures [2]. However, an illustration of the 
difficulty of isolating one conception of causality is that 
concepts produced in the study of causal argumentation can 
bear relevance to the study of “physical” event causality, 
for instance co-occurrence, spatio-temporal contiguity, 
mechanistic arguments and the “no alternative” explanation 
[11]. This is why the experimental tool we are developing 
is trying to be as theory neutral as possible, and our 
approach is essentially pragmatic, almost in a Humian 
sense. Our system shall work by supporting the generation 
of non-standard event co-occurrences on a principled basis. 
Another important aspect is that these principles should be 
based on semantic descriptions of events and objects they 
involve, which goes beyond the spatio-temporal variations 
(e.g., gap and delay) traditionally used in the literature on 
causal perception [4]. In the long term, elements of a 
cognitive theory to be tested could be incorporated in those 
principles to support experimentation. Finally, recent 
contributions from philosophy have emphasised the role of 
agency in causality. Although agency has been associated 

both with property causality and event causality [13], it is 
of particular importance in our context, as we wish to test 
causal perception on interactive events initiated by the user. 

3 Event intervention overview 
      The software architecture (Figure 1) shows the 
system’s main operating cycle. It consists of the system 
intercepting events at a regular sampling rate, interpreting 
them at a semantic level, and modifying their default 
consequences, so as to create new co-occurrences in a rule-
based manner. As such, it integrates two main components, 
which are an Event Recognition System and an Event 
Modification System. 

• The Event Recognition System proposes an action 
formalism (Context Event), which is supported by a 
module developed on top of Unreal Engine Native Event 
System. We will refer to this module as the EIS module 
(Event Interception System). The EIS module represents a 
total of 25,000 lines of Unreal-script 

• The Event Modification System provides a series of action 
alteration operators, called Macro-operators (Henceforth 
MOp). Our Causal Engine using a search-based mechanism 
applies those operators. The Causal Engine corresponds to 
30.000 lines of C++ code.  

We are using a state-of-the-art game engine, Unreal 
Tournament 2003, as a real-time visualisation system as 
well as a development environment. The use of game 
engines is now gaining great popularity in non-gaming 
Computing research [7], as these provide sophisticated 
visualisation and interaction features that enable the 
developer to concentrate on the writing of specific research 

 

Figure 1: System Overview 



software. In this context, UT 2003 includes a sophisticated 
event system supporting event interception, which we have 
used as the baseline layer to develop the Event Interception 
System. The EIS constantly intercepts low-level events, 
corresponding to objects’ collision and motion, such as 
hitting, bumping, touching, entering volume. It then 
interprets these events and the objects they involve in terms 
of higher-level actions, called Context Events (CE). The 
CEs instantiated during a time sample are collected and 
then communicated to the Causal Engine via UDP sockets. 
After performing alterations on these events, the Causal 
Engine outputs a set of modified CEs, which are ready to 
be activated and have their effects triggered in the virtual 
world. As an overall result, the transformations operated by 
the causal engine on the CEs, representing actions in 
progress, produce new event co-occurrences in the virtual 
world, which association will induce causal impressions. 
Seen by the user, events occurring in the virtual world, 
including those corresponding to his own interaction with 
objects, generate different effects and consequences than 
those expected in the real physical world. Our system is 
designed to work both on desktop and immersive systems. 
In its immersive configuration, the hardware architecture 
consists of a SAS-Cube™, a four-sided PC-based 
CAVE™-like system powered by an ORAD PC cluster. 
We have extended several aspects of UT-CAVE developed 
at the University of Pittsburgh [7], in particular to support 
stereoscopic displays. Also, this configuration supports 
user interaction with the virtual world objects through a 
tracker-equipped joypad. This enables elementary 3D 
operations such as grasping, dropping and pushing objects. 
Other physical interactions involving motion, such as 
launching or throwing, have been directly associated with 
input keys on the joypad ( figure 2).The detailed behaviour 
of these modules, as well as the working cycle of the whole 
system, are detailed in subsequent sections. The Context 
Event instantiation process is also illustrated and discussed 
in the next section.  

  

4 Event representation       
  In standard event-based virtual environments, 
behaviours tend to be encoded directly from low-level 
events. Event systems are generally derived from the low-
level graphical event systems for collision detection 
(between objects, between objects and volumes). In this 
domain, the UT native event system proposes a large 
collection of events (called Native Events), such as Bump 
(), Landed (), Hitwall (), Encroachedby () etc… 
For each object class and/or states, “Event-Effect” relations 
are embedded in native event procedures (Call-Back 
System) associated to one or many effect procedures. 
When a Native-Event is detected by the visualisation 
engine, its effects’ procedures are immediately instantiated 
and triggered, generating animations or object movements, 
as a response. Moreover, to obtain realistic animations, 
most of the virtual environments are coupled to powerful 
Physics/ Particle engine, as the case of the Karma™ engine 
used by the Unreal™ Engine. The figure 3 below shows an 
example of such hard-coded Event-Effect relations. This 
example describes what would be the behaviour of a Pint 
object (Event Consumer) if hit by another object (Event 
Instigator) using Unreal Physics/Particle Engine primitive: 
I.e. we simulate a glass explosion upon its collision with 
another actor (virtual Object). Such Ad hoc definition of 
causality (Cause-Consequence association) in a virtual 

 
Figure 2: Immersive Visualisation in the SAS-Cube 

 

Figure 3: Cause-Consequence association within standard Event-based system 



environment raises a certain number of problems. Firstly, 
as the “Event-Effect” relations are dispersed in the code, 
their identifications request expertise of the Environment 
and of its platform (Visualisation / Physics engines). 
Secondly, such hard-coded associations cannot support 
dynamic alterations based on principle. As a result, in 
standard Event-based VR systems, Causality is static, basic 
and hardly accessible. The Event Interception System we 
have developed on top of the UT Event-system, proposes 
to correct this lack of formalism and accessibility. Also it 
provides a complete interface between this formalism, 
where causal relations are expressed as Context Events, 
and the UT Visualisation / Physics engines. In our system, 
native low-level engine events are not directly linked to 
effect functions. The EIS module processes occurrences of 
the game engine’s low-level native events, to produce 
intermediate-level events, called Basic Event such as Hit 
(), Push (), Touch (), Press (), Enter (), Exit 

() etc. The instantiation of a BE (Basic Event) is based on 
additional conditions on the event (see Figure 4). For 
instance, the magnitude of the colliding object momentum 
in a colliding event can be used to instantiate a Hit (?obj, 
?surface) from the system-level Bump(?obj, ?surface). 
Basic Events constitute a base from which the derivation of 
higher-level events is possible. In our representation such 
high-level events are expressed as Context Events (CE). 
Context Events provide a proper semantic description of 
events, which clearly identifies actions and their 
consequences and therefore supports manipulation. Such 
high-level events explicitly encode default object 
behaviours in the environment. This module constitutes 
one of the innovative aspects of our approach, . in which an 
ontology for actions serves as a representation layer for the 
virtual world. Typically, a CE is represented using an 

action formalism inspired from those serving similar 
functions in planning and robotics (not withstanding the 
fact that they are used for creating rather than recognising 
actions), such as STRIPS [5], PDDL[11], or the operator 
representation in the SIPE system [15]. These 
representations originally describe operators responsible 
for transforming state of affairs in the world. They tend to 
be organised around pre-conditions, i.e. conditions that 
should be satisfied for them to take place and post-
conditions, i.e. those world changes induced by their 
application. The formalism for CE comprises three main 
fields, which are analogue to the SIPE representation.  

• The first field, called triggers, contains the basic events 
from which the CE can be recognised and which prompts 
instantiation of the corresponding CE. The CE Objects are 
assigned during this operation. For instance, in the figure 
4,  (? Obj1, ?Obj2) references the Pint#1 and 
Table#2 objects, on which the CE condition predicates 
will be operated. 

• The conditions field is a formula testing property of the 
objects involved in such a CE. Conditions are expressed as 
conjunction of dynamic or/and static predicates. Certain 
predicates are targeting or comparing functional, visual, or 
physical object’s states or properties. For instance, in 
Figure 4, the conditions specify physical properties of the 
CE’s objects, namely that ?obj1 and ?obj2 are rigid and 
?obj2 is harder than ?obj1. The triggers and conditions 
fields govern the recognition part of the CE; once these 
fields can be instantiated by the CE recognition 
mechanism, a corresponding CE representation is created. 

• The effects field corresponds to the consequence part of 
the CE and contains the effects to be applied to the objects 
affected by the CE. The effects are effect procedures 
usually generating animations that correspond to Object 

 

 Figure 4: Instantiation of Context Event From Native Event  



properties or state changes. Here, Effects will request the 
CE object: ?Obj1, to explode.  

A CE instance such as Break-on-impact(Pint#12, 

Table#2) should be interpreted as “ Pint#12 is going to 
break upon impact with Table#2 ”. That is why, context 
events are said to be instances of action in progress. In the 
next section, we describe how the combination of search 
and Macro-operators can generate new event-co-
occurrences on a rule-based manner.  

5 Event modification  
      The Causal Engine operates continuously through 
sampling cycles that are initiated by the occurrence of 
actions in the virtual world. Basically, the occurrence of 
events affecting world objects initiates a sampling cycle, 
during which the system recognises potential CEs and 
stores them while inhibiting their effects (it could be said 
that it “freezes” them). The causal engine then transforms 
these “frozen” CE, by altering their effects, before re-
activating them. This re-activation then initiates a new 
sampling cycle. A view of the sampling cycle is presented 
on Figure 5.  

 

Figure 5: The system’s event sampling cycle 

The causal engine determines the modifications to apply to 
the world through a process inspired from search-based 
planning [1], in which the application of specific 
knowledge structures (Macro-Operators) is driven by 
heuristic search. Our causal engine searches forward in a 
best-first fashion by applying, at each iteration, different 
combinations of Macro-Operators. This operation is named 
MOp-Application, it generates new potential world states, 
each of them proposing a set of instantiated 
transformations. As explained in the next section, such 
transformations are weighted, and represented as Modified 
Context Events. MOps are described in terms of the classes 
of transformations they operate on CE’s parameters, 
modifying CE’s objects and/or effects. Examples of MOp 
classes include: 

 

 

• change-object, which substitutes new objects to those 
originally affected by the CE’s effects.  

• change-effects, which modify the effects 
(consequences) of a CE  

• propagate-effects extend the CE’s effects to other 
semantically compatible objects in the environment 

• link-effects, which relate one CE’s effect to another’s 
one 

At the causal engine level, Macro-Operators are specific 
instances of the above classes. The causal engine is 
actually designed to handle multiple MOp-Applications on 
one or more CE, in order to produce complex effects or to 
operate at a global scene level (Figure 6).    

 

Figure 6: Macro-Operator search overview 

The possibility of attributing a causal interpretation to a 
newly formed event co-occurrence is governed by 
cognitive principles (see e.g. [11]), which include spatio-
temporal contiguity, but also semantic relations between 
events and the objects they involve. This is why, when 
modifying CE objects, Macro-Operators will precisely 
make use of both kinds of knowledge. Object compatibility 
functions are associated to each MOp class, which use 
spatial proximity information, as well as semantic 
information such as physical properties, shape, etc.  For 
instance, objects which should break up as an effect of the 
CE could be replaced by similar, “breakable”, objects. To 
accelerate the search, certain MOp class own specific 
evaluator functions. However, it should be noted that a 
individual MOp does not directly encode any specific 
causal relations. These would arise dynamically from the 
modifications induced by the MOp-Applications. As 
mentioned, the overall control mechanism of the causal 
engine consists of a heuristic search algorithm, which 
determines at each step which MOp transformations to 
apply. Further, in order to keep the world changes within 
certain boundaries, each time a particular Mop-Application 
is performed, creating a new world state, a cost function 
reflecting the extent of world transformation is calculated. 
At the end of the Mop-Application process, the search 
module evaluates and compares the heuristic. This 
threshold, experimentally determined, termed as the 
Maximum World Disruption. The search is terminated 
when the evaluation function exceeds this threshold. Then, 
the resulting set of modified context events is sent back to 
the EIS module for effects to be triggered in the 



environment. However, if none of the generated world state 
values are higher than the threshold, this  one is 
decremented by the highest cost. Then, the search routine 
is re-performed starting from a new world state presenting 
this highest value. In this sense, the search algorithm 
behaves as a cost-bound one.   In the following 
simulation, we demonstrate from a single identical event, 
how the causal engine, by considering various values of 
threshold, generates alternative consequences. 

6 Result 
We have developed a test environment, the “Causality 

café”, which recreates a familiar environment in which the 
user can interact with various objects and devices, such as 
glasses, bottles, taps, doors, fridges, etc (totalling around 
300 reactive objects). The interactions with these objects 
are identified within a population of 60 context events 
(such as Start-Fill-Container, Activate-Fluid-

Source, Open-Container, Tilt-Container, etc...). The 
test case we consider is that if a beer Bottle being grasped, 
then thrown by the user at a glass panel of a beer bottle 
refrigerator situated behind the bar. The default physical 
behaviour would consist of the panel breaking on the 
impact (top left on figure 7). However, intercepted by our 
causal engine, this default behaviour could be substituted 
by a large set of alternative consequences. For instance, 
low threshold values would give rise to alternative 

behaviours such as the impact of the bottle breaking 
another glass door. While higher values, usually provokes 
more surprising effects, like breaking bottles inside the 
fridge without actually penetrating the panel or breaking its 
glass. As illustrated in the figure 7, the number of MOp-
Applications is proportional to the threshold. A low-level 
world disruption (low threshold) could force the search to 
exit after only one iteration (right side on the figure 7). 
Whereas high-level world disruption (high threshold) 
considerably increases the number of transformations 
applied, requesting multiple/consecutive MOp-
Applications (a total of three Mop-Applications as shown 
in left side figure 7). At the end of a Mop-Application, the 
extent of world transformation proposed by each Mop 
combinations is evaluated and compared to the threshold. 
The following section details how a Macro-operator’s 
instance measures the relevance of transformations it 
produces, and how that affects the search process.  

As a starting event, when the bottle is colliding the 
glass door, a Bump () event is detected by the UnrealTm 
engine. Using event recognition mechanisms previously 
described, the EIS module generates an instance of the CE 
Break-on-impact with the bottle and panel ID as 
parameters (like Break-on-impact (Panel#1,Bottle#2)). 
This instance is forwarded to the causal engine, when the 
event sample time has elapsed (usually 10-20 ms for only 
one user). The first action of the Causal engine when 

 

 Figure 7: Generation of Co-occurrences by the Causal Engine. 



receiving this CE instance is to generate a restricted list of 
“candidate” objects. This restriction is based on spatio-
contiguity constraints calculated from the position of the 
original CE Objects. This first operation considerably 
reduces search execution time, while limiting the search-
space to objects present in the user’s field of view. The set 
of candidate objects, including the CE’s original objects, 
and the set of Intercepted/Frozen CEs constitute our initial 
world state. In this example, we can list about sixty 
interactive objects, situated in a certain radius around the 
bottle / panel object (i.e. Fridge#1, Fridge#2, 

FridgeDoor#1, FridgeDoor#2, Panel#1, Panel#2, Bottle#4, 
Bottle#5, Bottle #6,etc…) Once an initial world state has 
been defined, the Causal Engine can start the search 
process by generating a first MOp-Application. A set of 
potential new world states is generated. Each new state 
proposes a new set of CE instances, called Modified CE. 
To obtain them, the causal engine has applied a 
combination of MOp instances to the initial world state, 
with different candidate objects each time. This procedure 
is terminated when all candidates have been processed 
once. In our simple example simulation, we use a basic set 
of 4 MOps on a population of candidates varying from 49 
to 60 objects. As each Mop uses at least two objects, the 
MOp-Application will produce between 6 and 8 new world 
states. However, during this generation process, Macro-
operators may associate a heuristic value, called degree of 
relevance (D.O.R) to each Modified CE. The 
transformations produced by a MOp instance are embodied 
in a [Modified CE, D.O.R] structure as highlighted by the 
pseudo-code below.  

 

The degree of relevance of a Modified CE corresponds to 
the multiplication of its semantic compatibility weight and 
its spatio-contiguity weight. The first value is produced by 
the compatibility functions of the Macro-Operators, based 
on the CE semantic constraints, contained in its condition 
fields. The second is a simple function computing and 
normalising the distance between the Frozen CE objects 
and Modified CE objects. Thus, the degree of relevance, 
expressed on a range of 0 to 1.0 can be simply formulised 
as below:  

 

This system provided a fast and principled mechanism to 
qualify the relevance of a transformation proposed by a 
macro-operator, in the frame of the action it is modifying 
(given by the Frozen CE manipulated). A low degree of 
relevance, close to zero, reflects a totally incompatible 
transformation. A high degree, close to one, that reveals a 
fully compatible transformation. For instance, we could 
consider different applications of a same Mop instance 
such as Mop-substitute-action-object, derived from the 

change-object MOp class. As suggested by its 
appellation, this MOp substitutes the object’s instance, 
targeted by the frozen CE effect predicate (Explode 

(Panel#1)), by another object instance from the 
population of candidate objects. Within our example, it will 
first produce transformation instances such as:  

� Trans#1[break-on-impact (Fridge#1,Bottle#2), 0.0)] 

� Trans#2[Break-on-impact Panel#2,Bottle#2), 0.0].  

Then, it will compute the Spatio-Contiguity weight 
regarding the distance of Fridge#1 and Panel#2 to 
Panel#1, which is present in the Frozen CE (i.e. Break-
on-impact (Panel#1,Bottle#2)). The weights output 
would approximately be 0.9 for the fridge#1, parent of the 
Panel#1, and 0.7 for the Panel#2, positioned just beside 
Panel#1. After, the semantic compatibility weight of such 
transformations will be estimated by the Mop compatibility 
function. This function tests the applicability of a CE effect 
predicate on an object instance, considering the semantic 
constraint listed in the particular CE Condition field. It 
returns a normalised value, between 0 and 1.0, reflecting 
the number of predicates satisfied by the object instance 
tested. For instance, the Fridge#1 that only validates the 
rigid property predicate of the break-on-impact CE will 
return a low value, close to zero (0.33). While, the 
Panel#2, that fully satisfies the rigid (?Obj1), 
Fragile(?Obj1) and Harder(?Obj2,?Obj1) predicate, will 
return a value equal to one. As a result, we obtain:  

�  Trans#1[break-on-impact(Fridge#1,Bottle#2),0.297] 

�  Trans#2[break-on-impact(Panel#2,Bottle#2), 0.7] 

The relevance of the Trans#1 evaluated at 0.297 reflects an 
incompatible transformation, whereas the Trans#2 
relevance, which is valued at 0.7, appears clearly 
compatible within the context of the initial Break-On-
Impact event. At the end of a MOp-Application, the search 
module compares the global relevance of each set of 
proposed transformations, to the targeted threshold . A 
cost-function sums the heuristic values specified for each 
solution. The first solution presenting a value closest to or 
superior to the threshold is selected. Consequently, the 
solution represents the optimal set of transformations in 
term of relevance. Thus, from a generic set of event 
modification operators (i.e. MOp), our system will always 
tend to provide an set of compatible transformations, while 
supporting mechanisms to extent or reduce their 
amplitudes.  

7  Conclusion 
      We have presented a system, which supports the 
elicitation of causal impressions through the creation of 
event co-occurrences. The system can produce a vast 
number of modifications to “normal” consequences on a 
range of usual physical actions. These modifications are 
still determined by semantic considerations, hence ensuring 
believable, albeit non-standard, co-occurrences. The 



combination of search and MOp application provides a 
powerful mechanism to generate associations and explore 
the space possible co-occurrences more systematically than 
through any a priori definition of co-occurrences. At the 
same time, there exists control mechanism which enable us 
to biase the search towards specific categories of effects. 
Overall, the system performance is in line with its initial 
design constraints, which imposed a response time in the 
order of 150-200 ms. for the moment, there is no indication 
as to how the system should scale-up to more complex 
environments. However, causal perception can only take 
place within the focus of attention of the user, which 
somehow suggests an upper bound on the environment’s 
complexity. This research was originally driven by the 
creation of virtual reality experiences departing from our 
everyday experience, an approach we have termed 
alternative reality [3]. Moreover, such environments also 
have the potential to support various kinds of scientific 
experiments on causal perception, within a fully immersive 
and interactive setting, and as such could provide new tools 
for cognitive research 
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