
Event-based Causality in Virtual Reality

Jean-Luc Lugrin, Paolo Libardi, Matthew J. Barnes, Mikael Le Bras
and Marc Cavazza

School of Computing, University of Teesside,TS1 3BA, Middlesbrough,
J-l.lugrin@tees.ac.uk

Abstract - In this paper, we describe such an environment,
in which the user can be presented in real-time with an
alternative range of consequences for a given interaction
with virtual world objects, thus inducing various
perceptions of causality. From a systemic perspective, we
can adopt a pragmatic approach, inspired from Humian
philosophy, which considers that causal relations are
established by the user in response to certain event co-
occurrences. To control causal perception in VR, the
system comprises the following components: a
visualisation engine, an Event Recognition System
(together with its specific event formalism that supports
event modification), and a causal engine as an Event
Modification System, which selects co-occurring events on
a rule-based manner. A search process, evaluates
alternative consequences using semantic and spatio-
contiguity information, such as comparison between
candidate objects on which the action consequences
should be applied. A first prototype has been fully
implemented and is described together with an example
real-time simulation.

Keywords: Modeling and Simulation, Human Factors,
Game Technologies, Interaction Techniques, Intelligent
Virtual Environments, Causality,

1 Introduction
 Causality is an essential aspect of our common sense
understanding of the physical world. For that reason,
causal perception has been considered as one of the main
phenomena through which we perceive our everyday
reality. This makes causality an interesting focus of
experimentation when designing Virtual Reality System,
including environments whose behaviour departs from our
everyday experience. Virtual Reality Systems constitute
one of the best examples of user-centred systems, in which
subjects’ experience derives from the intertwining of the
system behaviour and their own. At the centre of user
experience is the system’s response to his own interaction
with virtual world objects, which is mediated not only by
individual objects behaviour, but by the integrated
response of the environment as a whole. From the user’s
perspective, such a response is largely interpreted by
attributing causal relations between user actions and system
response. Yet, while causality has been widely st1udied in

*0-7803-8566-7/04/$20.00  2004 IEEE.

AI [12] and cognitive engineering, very little technical
work has actually been dedicated to experimenting with the
user’s perception of causality in interactive settings. For
instance, most of the multimedia experimental settings for
investigating causal perception in cognitive psychology
rely on simple, non-interactive computer animations [16].
This opens the possibility of creating virtual reality
systems for experimenting with human perception of
causality. Such systems have both a fundamental and
practical interest. They can help better understanding of the
perception of Virtual Reality, they can constitute research
tools for Cognitive Psychology and finally, their
technology can support new forms of interactive media,
including in the Arts and Entertainment. In this paper, we
describe research into the creation of virtual worlds in
which causal laws could be modified, on a principled basis,
so as to create alternative realities. The objective of this
research is thus to create an experimental environment for
causality. This takes the form of a virtual world in which
every event can be intercepted in real-time, so that its
consequences will be under the control of a “causal
engine”, rather than of a normal physical simulation. The
causal engine operates by applying a set of transformation
operators to the intercepted events, using a method inspired
from search-based planning. These operators modify the
effects of the intercepted events prior to their reactivation,
thus resulting in the occurrence of alternative effects for
the events considered. This makes it possible to create
artificial co-occurrences from an original event, such co-
occurrences inducing causal perception in the user. In the
next sections, after reviewing some relevant conceptions of
causality, we describe the architecture of our system, and
the process for event interception and the recognition of
high-level events. We introduce the search mechanism
supported by the causal engine. Finally, we illustrate the
behaviour of the system by detailing an example run.

2 Event-based causality
 Causality is one of the best examples of an
interdisciplinary concept in the field of Cognitive Science.
There exists an abundant literature on causality in cognitive
psychology, in Artificial Intelligence [12], and causality is
still an active topic in contemporary Philosophy [6] [14].
This contributes to making causality a complex concept to
discuss due to the intertwining of different notions derived
from several research perspectives. Galavotti [6] proposes
to distinguish “Property Causality” from “Event

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322324131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Causality.” Property Causality refers to population
variables while Event Causality, also named Token
Causality, refers to causality between single events. Event
causality corresponds to common sense causal
interpretation in the physical world, and is best exemplified
by work on causal perception, from the historical
experiments of Michotte [10] to the phenomena studied in
developmental psychology [4]. Event causality is the kind
of causality we’ll be referring to in this paper. Further,
because we’ll be considering “real-time” causal perception,
we will not discuss explanatory aspects. We will also be
considering a user facing single events (single-event
causality) rather than repeated experiments with co-
variation measures [2]. However, an illustration of the
difficulty of isolating one conception of causality is that
concepts produced in the study of causal argumentation can
bear relevance to the study of “physical” event causality,
for instance co-occurrence, spatio-temporal contiguity,
mechanistic arguments and the “no alternative” explanation
[11]. This is why the experimental tool we are developing
is trying to be as theory neutral as possible, and our
approach is essentially pragmatic, almost in a Humian
sense. Our system shall work by supporting the generation
of non-standard event co-occurrences on a principled basis.
Another important aspect is that these principles should be
based on semantic descriptions of events and objects they
involve, which goes beyond the spatio-temporal variations
(e.g., gap and delay) traditionally used in the literature on
causal perception [4]. In the long term, elements of a
cognitive theory to be tested could be incorporated in those
principles to support experimentation. Finally, recent
contributions from philosophy have emphasised the role of
agency in causality. Although agency has been associated

both with property causality and event causality [13], it is
of particular importance in our context, as we wish to test
causal perception on interactive events initiated by the user.

3 Event intervention overview
 The software architecture (Figure 1) shows the
system’s main operating cycle. It consists of the system
intercepting events at a regular sampling rate, interpreting
them at a semantic level, and modifying their default
consequences, so as to create new co-occurrences in a rule-
based manner. As such, it integrates two main components,
which are an Event Recognition System and an Event
Modification System.

• The Event Recognition System proposes an action
formalism (Context Event), which is supported by a
module developed on top of Unreal Engine Native Event
System. We will refer to this module as the EIS module
(Event Interception System). The EIS module represents a
total of 25,000 lines of Unreal-script

• The Event Modification System provides a series of action
alteration operators, called Macro-operators (Henceforth
MOp). Our Causal Engine using a search-based mechanism
applies those operators. The Causal Engine corresponds to
30.000 lines of C++ code.

We are using a state-of-the-art game engine, Unreal
Tournament 2003, as a real-time visualisation system as
well as a development environment. The use of game
engines is now gaining great popularity in non-gaming
Computing research [7], as these provide sophisticated
visualisation and interaction features that enable the
developer to concentrate on the writing of specific research

Figure 1: System Overview

software. In this context, UT 2003 includes a sophisticated
event system supporting event interception, which we have
used as the baseline layer to develop the Event Interception
System. The EIS constantly intercepts low-level events,
corresponding to objects’ collision and motion, such as
hitting, bumping, touching, entering volume. It then
interprets these events and the objects they involve in terms
of higher-level actions, called Context Events (CE). The
CEs instantiated during a time sample are collected and
then communicated to the Causal Engine via UDP sockets.
After performing alterations on these events, the Causal
Engine outputs a set of modified CEs, which are ready to
be activated and have their effects triggered in the virtual
world. As an overall result, the transformations operated by
the causal engine on the CEs, representing actions in
progress, produce new event co-occurrences in the virtual
world, which association will induce causal impressions.
Seen by the user, events occurring in the virtual world,
including those corresponding to his own interaction with
objects, generate different effects and consequences than
those expected in the real physical world. Our system is
designed to work both on desktop and immersive systems.
In its immersive configuration, the hardware architecture
consists of a SAS-Cube™, a four-sided PC-based
CAVE™-like system powered by an ORAD PC cluster.
We have extended several aspects of UT-CAVE developed
at the University of Pittsburgh [7], in particular to support
stereoscopic displays. Also, this configuration supports
user interaction with the virtual world objects through a
tracker-equipped joypad. This enables elementary 3D
operations such as grasping, dropping and pushing objects.
Other physical interactions involving motion, such as
launching or throwing, have been directly associated with
input keys on the joypad (figure 2).The detailed behaviour
of these modules, as well as the working cycle of the whole
system, are detailed in subsequent sections. The Context
Event instantiation process is also illustrated and discussed
in the next section.

4 Event representation
 In standard event-based virtual environments,
behaviours tend to be encoded directly from low-level
events. Event systems are generally derived from the low-
level graphical event systems for collision detection
(between objects, between objects and volumes). In this
domain, the UT native event system proposes a large
collection of events (called Native Events), such as Bump
(), Landed (), Hitwall (), Encroachedby () etc…
For each object class and/or states, “Event-Effect” relations
are embedded in native event procedures (Call-Back
System) associated to one or many effect procedures.
When a Native-Event is detected by the visualisation
engine, its effects’ procedures are immediately instantiated
and triggered, generating animations or object movements,
as a response. Moreover, to obtain realistic animations,
most of the virtual environments are coupled to powerful
Physics/ Particle engine, as the case of the Karma™ engine
used by the Unreal™ Engine. The figure 3 below shows an
example of such hard-coded Event-Effect relations. This
example describes what would be the behaviour of a Pint
object (Event Consumer) if hit by another object (Event
Instigator) using Unreal Physics/Particle Engine primitive:
I.e. we simulate a glass explosion upon its collision with
another actor (virtual Object). Such Ad hoc definition of
causality (Cause-Consequence association) in a virtual

Figure 2: Immersive Visualisation in the SAS-Cube

Figure 3: Cause-Consequence association within standard Event-based system

environment raises a certain number of problems. Firstly,
as the “Event-Effect” relations are dispersed in the code,
their identifications request expertise of the Environment
and of its platform (Visualisation / Physics engines).
Secondly, such hard-coded associations cannot support
dynamic alterations based on principle. As a result, in
standard Event-based VR systems, Causality is static, basic
and hardly accessible. The Event Interception System we
have developed on top of the UT Event-system, proposes
to correct this lack of formalism and accessibility. Also it
provides a complete interface between this formalism,
where causal relations are expressed as Context Events,
and the UT Visualisation / Physics engines. In our system,
native low-level engine events are not directly linked to
effect functions. The EIS module processes occurrences of
the game engine’s low-level native events, to produce
intermediate-level events, called Basic Event such as Hit
(), Push (), Touch (), Press (), Enter (), Exit

() etc. The instantiation of a BE (Basic Event) is based on
additional conditions on the event (see Figure 4). For
instance, the magnitude of the colliding object momentum
in a colliding event can be used to instantiate a Hit (?obj,
?surface) from the system-level Bump(?obj, ?surface).
Basic Events constitute a base from which the derivation of
higher-level events is possible. In our representation such
high-level events are expressed as Context Events (CE).
Context Events provide a proper semantic description of
events, which clearly identifies actions and their
consequences and therefore supports manipulation. Such
high-level events explicitly encode default object
behaviours in the environment. This module constitutes
one of the innovative aspects of our approach, . in which an
ontology for actions serves as a representation layer for the
virtual world. Typically, a CE is represented using an

action formalism inspired from those serving similar
functions in planning and robotics (not withstanding the
fact that they are used for creating rather than recognising
actions), such as STRIPS [5], PDDL[11], or the operator
representation in the SIPE system [15]. These
representations originally describe operators responsible
for transforming state of affairs in the world. They tend to
be organised around pre-conditions, i.e. conditions that
should be satisfied for them to take place and post-
conditions, i.e. those world changes induced by their
application. The formalism for CE comprises three main
fields, which are analogue to the SIPE representation.

• The first field, called triggers, contains the basic events
from which the CE can be recognised and which prompts
instantiation of the corresponding CE. The CE Objects are
assigned during this operation. For instance, in the figure
4, (? Obj1, ?Obj2) references the Pint#1 and
Table#2 objects, on which the CE condition predicates
will be operated.

• The conditions field is a formula testing property of the
objects involved in such a CE. Conditions are expressed as
conjunction of dynamic or/and static predicates. Certain
predicates are targeting or comparing functional, visual, or
physical object’s states or properties. For instance, in
Figure 4, the conditions specify physical properties of the
CE’s objects, namely that ?obj1 and ?obj2 are rigid and
?obj2 is harder than ?obj1. The triggers and conditions
fields govern the recognition part of the CE; once these
fields can be instantiated by the CE recognition
mechanism, a corresponding CE representation is created.

• The effects field corresponds to the consequence part of
the CE and contains the effects to be applied to the objects
affected by the CE. The effects are effect procedures
usually generating animations that correspond to Object

 Figure 4: Instantiation of Context Event From Native Event

properties or state changes. Here, Effects will request the
CE object: ?Obj1, to explode.

A CE instance such as Break-on-impact(Pint#12,

Table#2) should be interpreted as “ Pint#12 is going to
break upon impact with Table#2 ”. That is why, context
events are said to be instances of action in progress. In the
next section, we describe how the combination of search
and Macro-operators can generate new event-co-
occurrences on a rule-based manner.

5 Event modification
 The Causal Engine operates continuously through
sampling cycles that are initiated by the occurrence of
actions in the virtual world. Basically, the occurrence of
events affecting world objects initiates a sampling cycle,
during which the system recognises potential CEs and
stores them while inhibiting their effects (it could be said
that it “freezes” them). The causal engine then transforms
these “frozen” CE, by altering their effects, before re-
activating them. This re-activation then initiates a new
sampling cycle. A view of the sampling cycle is presented
on Figure 5.

Figure 5: The system’s event sampling cycle

The causal engine determines the modifications to apply to
the world through a process inspired from search-based
planning [1], in which the application of specific
knowledge structures (Macro-Operators) is driven by
heuristic search. Our causal engine searches forward in a
best-first fashion by applying, at each iteration, different
combinations of Macro-Operators. This operation is named
MOp-Application, it generates new potential world states,
each of them proposing a set of instantiated
transformations. As explained in the next section, such
transformations are weighted, and represented as Modified
Context Events. MOps are described in terms of the classes
of transformations they operate on CE’s parameters,
modifying CE’s objects and/or effects. Examples of MOp
classes include:

• change-object, which substitutes new objects to those
originally affected by the CE’s effects.

• change-effects, which modify the effects
(consequences) of a CE

• propagate-effects extend the CE’s effects to other
semantically compatible objects in the environment

• link-effects, which relate one CE’s effect to another’s
one

At the causal engine level, Macro-Operators are specific
instances of the above classes. The causal engine is
actually designed to handle multiple MOp-Applications on
one or more CE, in order to produce complex effects or to
operate at a global scene level (Figure 6).

Figure 6: Macro-Operator search overview

The possibility of attributing a causal interpretation to a
newly formed event co-occurrence is governed by
cognitive principles (see e.g. [11]), which include spatio-
temporal contiguity, but also semantic relations between
events and the objects they involve. This is why, when
modifying CE objects, Macro-Operators will precisely
make use of both kinds of knowledge. Object compatibility
functions are associated to each MOp class, which use
spatial proximity information, as well as semantic
information such as physical properties, shape, etc. For
instance, objects which should break up as an effect of the
CE could be replaced by similar, “breakable”, objects. To
accelerate the search, certain MOp class own specific
evaluator functions. However, it should be noted that a
individual MOp does not directly encode any specific
causal relations. These would arise dynamically from the
modifications induced by the MOp-Applications. As
mentioned, the overall control mechanism of the causal
engine consists of a heuristic search algorithm, which
determines at each step which MOp transformations to
apply. Further, in order to keep the world changes within
certain boundaries, each time a particular Mop-Application
is performed, creating a new world state, a cost function
reflecting the extent of world transformation is calculated.
At the end of the Mop-Application process, the search
module evaluates and compares the heuristic. This
threshold, experimentally determined, termed as the
Maximum World Disruption. The search is terminated
when the evaluation function exceeds this threshold. Then,
the resulting set of modified context events is sent back to
the EIS module for effects to be triggered in the

environment. However, if none of the generated world state
values are higher than the threshold, this one is
decremented by the highest cost. Then, the search routine
is re-performed starting from a new world state presenting
this highest value. In this sense, the search algorithm
behaves as a cost-bound one. In the following
simulation, we demonstrate from a single identical event,
how the causal engine, by considering various values of
threshold, generates alternative consequences.

6 Result
We have developed a test environment, the “Causality

café”, which recreates a familiar environment in which the
user can interact with various objects and devices, such as
glasses, bottles, taps, doors, fridges, etc (totalling around
300 reactive objects). The interactions with these objects
are identified within a population of 60 context events
(such as Start-Fill-Container, Activate-Fluid-

Source, Open-Container, Tilt-Container, etc...). The
test case we consider is that if a beer Bottle being grasped,
then thrown by the user at a glass panel of a beer bottle
refrigerator situated behind the bar. The default physical
behaviour would consist of the panel breaking on the
impact (top left on figure 7). However, intercepted by our
causal engine, this default behaviour could be substituted
by a large set of alternative consequences. For instance,
low threshold values would give rise to alternative

behaviours such as the impact of the bottle breaking
another glass door. While higher values, usually provokes
more surprising effects, like breaking bottles inside the
fridge without actually penetrating the panel or breaking its
glass. As illustrated in the figure 7, the number of MOp-
Applications is proportional to the threshold. A low-level
world disruption (low threshold) could force the search to
exit after only one iteration (right side on the figure 7).
Whereas high-level world disruption (high threshold)
considerably increases the number of transformations
applied, requesting multiple/consecutive MOp-
Applications (a total of three Mop-Applications as shown
in left side figure 7). At the end of a Mop-Application, the
extent of world transformation proposed by each Mop
combinations is evaluated and compared to the threshold.
The following section details how a Macro-operator’s
instance measures the relevance of transformations it
produces, and how that affects the search process.

As a starting event, when the bottle is colliding the
glass door, a Bump () event is detected by the UnrealTm
engine. Using event recognition mechanisms previously
described, the EIS module generates an instance of the CE
Break-on-impact with the bottle and panel ID as
parameters (like Break-on-impact (Panel#1,Bottle#2)).
This instance is forwarded to the causal engine, when the
event sample time has elapsed (usually 10-20 ms for only
one user). The first action of the Causal engine when

 Figure 7: Generation of Co-occurrences by the Causal Engine.

receiving this CE instance is to generate a restricted list of
“candidate” objects. This restriction is based on spatio-
contiguity constraints calculated from the position of the
original CE Objects. This first operation considerably
reduces search execution time, while limiting the search-
space to objects present in the user’s field of view. The set
of candidate objects, including the CE’s original objects,
and the set of Intercepted/Frozen CEs constitute our initial
world state. In this example, we can list about sixty
interactive objects, situated in a certain radius around the
bottle / panel object (i.e. Fridge#1, Fridge#2,

FridgeDoor#1, FridgeDoor#2, Panel#1, Panel#2, Bottle#4,
Bottle#5, Bottle #6,etc…) Once an initial world state has
been defined, the Causal Engine can start the search
process by generating a first MOp-Application. A set of
potential new world states is generated. Each new state
proposes a new set of CE instances, called Modified CE.
To obtain them, the causal engine has applied a
combination of MOp instances to the initial world state,
with different candidate objects each time. This procedure
is terminated when all candidates have been processed
once. In our simple example simulation, we use a basic set
of 4 MOps on a population of candidates varying from 49
to 60 objects. As each Mop uses at least two objects, the
MOp-Application will produce between 6 and 8 new world
states. However, during this generation process, Macro-
operators may associate a heuristic value, called degree of
relevance (D.O.R) to each Modified CE. The
transformations produced by a MOp instance are embodied
in a [Modified CE, D.O.R] structure as highlighted by the
pseudo-code below.

The degree of relevance of a Modified CE corresponds to
the multiplication of its semantic compatibility weight and
its spatio-contiguity weight. The first value is produced by
the compatibility functions of the Macro-Operators, based
on the CE semantic constraints, contained in its condition
fields. The second is a simple function computing and
normalising the distance between the Frozen CE objects
and Modified CE objects. Thus, the degree of relevance,
expressed on a range of 0 to 1.0 can be simply formulised
as below:

This system provided a fast and principled mechanism to
qualify the relevance of a transformation proposed by a
macro-operator, in the frame of the action it is modifying
(given by the Frozen CE manipulated). A low degree of
relevance, close to zero, reflects a totally incompatible
transformation. A high degree, close to one, that reveals a
fully compatible transformation. For instance, we could
consider different applications of a same Mop instance
such as Mop-substitute-action-object, derived from the

change-object MOp class. As suggested by its
appellation, this MOp substitutes the object’s instance,
targeted by the frozen CE effect predicate (Explode

(Panel#1)), by another object instance from the
population of candidate objects. Within our example, it will
first produce transformation instances such as:

� Trans#1[break-on-impact (Fridge#1,Bottle#2), 0.0)]

� Trans#2[Break-on-impact Panel#2,Bottle#2), 0.0].

Then, it will compute the Spatio-Contiguity weight
regarding the distance of Fridge#1 and Panel#2 to
Panel#1, which is present in the Frozen CE (i.e. Break-
on-impact (Panel#1,Bottle#2)). The weights output
would approximately be 0.9 for the fridge#1, parent of the
Panel#1, and 0.7 for the Panel#2, positioned just beside
Panel#1. After, the semantic compatibility weight of such
transformations will be estimated by the Mop compatibility
function. This function tests the applicability of a CE effect
predicate on an object instance, considering the semantic
constraint listed in the particular CE Condition field. It
returns a normalised value, between 0 and 1.0, reflecting
the number of predicates satisfied by the object instance
tested. For instance, the Fridge#1 that only validates the
rigid property predicate of the break-on-impact CE will
return a low value, close to zero (0.33). While, the
Panel#2, that fully satisfies the rigid (?Obj1),
Fragile(?Obj1) and Harder(?Obj2,?Obj1) predicate, will
return a value equal to one. As a result, we obtain:

� Trans#1[break-on-impact(Fridge#1,Bottle#2),0.297]

� Trans#2[break-on-impact(Panel#2,Bottle#2), 0.7]

The relevance of the Trans#1 evaluated at 0.297 reflects an
incompatible transformation, whereas the Trans#2
relevance, which is valued at 0.7, appears clearly
compatible within the context of the initial Break-On-
Impact event. At the end of a MOp-Application, the search
module compares the global relevance of each set of
proposed transformations, to the targeted threshold . A
cost-function sums the heuristic values specified for each
solution. The first solution presenting a value closest to or
superior to the threshold is selected. Consequently, the
solution represents the optimal set of transformations in
term of relevance. Thus, from a generic set of event
modification operators (i.e. MOp), our system will always
tend to provide an set of compatible transformations, while
supporting mechanisms to extent or reduce their
amplitudes.

7 Conclusion
 We have presented a system, which supports the
elicitation of causal impressions through the creation of
event co-occurrences. The system can produce a vast
number of modifications to “normal” consequences on a
range of usual physical actions. These modifications are
still determined by semantic considerations, hence ensuring
believable, albeit non-standard, co-occurrences. The

combination of search and MOp application provides a
powerful mechanism to generate associations and explore
the space possible co-occurrences more systematically than
through any a priori definition of co-occurrences. At the
same time, there exists control mechanism which enable us
to biase the search towards specific categories of effects.
Overall, the system performance is in line with its initial
design constraints, which imposed a response time in the
order of 150-200 ms. for the moment, there is no indication
as to how the system should scale-up to more complex
environments. However, causal perception can only take
place within the focus of attention of the user, which
somehow suggests an upper bound on the environment’s
complexity. This research was originally driven by the
creation of virtual reality experiences departing from our
everyday experience, an approach we have termed
alternative reality [3]. Moreover, such environments also
have the potential to support various kinds of scientific
experiments on causal perception, within a fully immersive
and interactive setting, and as such could provide new tools
for cognitive research

Acknowledgments
 This work has been funded in part by the European
Commission through the ALTERNE project (IST-38575).
Marc Le Renard is thanked for providing the SAS-Cube
Figure.

References
[1] Bonet, B. and Geffner, H. (2001). Planning as
heuristic search. Artificial Intelligence: Special Issue on
Heuristic Search, 129:5-33.

[2] Buehner, M. J. (2001). Inducing Causation:
Covariation Assessment and the Assumption of Causal
Power. In M. May & U. Oestermeier (Eds.),
Interdisciplinary Perspectives on Causation. Norderstedt,
Germany:Libri.

[3] Cavazza, M., Hartley, S., Lugrin, J.-L. and Le Bras,
M. (2003). Alternative Reality: a New Platform for Digital
Arts, ACM Virtual Reality Software and Technology
Conference, Osaka, Japan, October 2003.

[4] Chaput, H. H. & Cohen, L. B. (2001). A model of
infant causal perception and its development. Proceedings
of the 23rd Annual Conference of the Cognitive Science
Society

[5] Fikes, R. E. and Nilsson, N. J., 1971. STRIPS: a new
approach to the, application of theorem proving to problem
solving. Artificial Intelligence, 2 (3-4), pp.189-208

[6] Galavotti, M.C. (2001). Causality, Mechanisms and
Manipulation. http://philsci-
archive.pitt.edu/archive/00000132/

[7] Jacobson, J. and Hwang, Z. 2002 Unreal Tournament
for Immersive Interactive Theater. Communications of the
ACM, Vol. 45, 1, pp. 39-42.

[8] Lewis, M and Jacobson, Games Engines in Scientific
Research. Communications of ACM, Vol. 45, No. I,
January 2002. pp 27-31.

[9] McDermott, D. (1998) PDDL, the planning domain
definition language. Technical Report TR-98-003, Yale
Center for Computational Vision and Control.

[10] Michotte, A. (1963). The perception of causality.
New York: Basic Books. Translated from the French by T.
R. and E.Miles.

[11] Oestermeier, U., & Hesse, F. W. (2001). Singular and
general causal arguments. In J. D. Moore & K. Stenning
(Eds.), Proceedings of the 23rd Annual Conference of the
Cognitive Science Society (pp. 720-725). Mahwah, NJ:
Erlbaum.

[12] Pearl, J. (2000). Causality: Models, Reasoning and
Inference, Cambridge: Cambridge University Press

[13] Price, H and Menzies, P. (1993) Causation as a
secondary quality. British Journal for the Philosophy of
Science 44, pp. 187-203

[14] Price, H. (2001). Causation in the special sciences:
the case for pragmatism. In Domenico Costantini, Maria
Carla Galavotti and Patrick Suppes, eds., Stochastic
Causality, CSLI Publications, pp. 103-120

[15] Wilkins, D. E. (1988). Causal reasoning in planning.
Computational Intelligence, vol. 4, no. 4, pp. 373-380.

[16] Wolff, P. (2003). Direct causation in the linguistic
coding and individuation of causal events. Cognition, 88,
pp. 1-48

[17] Wolff, P., & Zettergren, M. (2002). A vector model
of causal meaning. In Proceedings of the 23rd Annual
Conference of the Cognitive Science Society Hillsdale, NJ:
Erlbaum.

