
AN FPGA-BASED LOW-COST FRAME GRABBER FOR IMAGE
PROCESSING APPLICATIONS

Donglai Xu, Said Boussakta," and John P Bentley

School of Science and Technology, University of Teesside,Middlesbrough, TS 1 3BA, UK
d.xu(j.p.bentley) @tees.ac.uk

* School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
s.boussakta@ee.leeds.ac.uk

Abstract: This paper presents a low-cost frame
grabber, which was specifically designed as part
of a real-time motion detection system for high-
resolution images. The frame grabber is FPGA-
based to minimise size of the PCB and improve
reliability of the system. It also acts as a backend
add-on card for an IBM-PC compatible. The
experimental tests carried' out on different
machines show that the board implemented meets
all specifications required by the system, and.
performs well. The captured frames are clear, well
contrasted and jitter-free in both live and still
video modes and their quality is comparable to
that available from equivalent commercial
systems.

1. INTRODUCTION
The work reported in this paper is part of a

research programme to develop a real-time motion
detection system for high-resolution images. A
key component in such a system is a frame
grabber to store digitised images [I]. The
customised low-cost system which we have
designed and implemented makes use of field-
programmable logic arrays (FPGAs), allowing
rapid alteration of functionality during
development. More fundamentally, as users of the
system have control over the hardware, it is
possible to add hardware image processing blocks
which interface directly with the frame-grabber,
sitting on the same PCB, by means of either
commercial signal and image processing chips or
user-designed FPGAs. This makes a powerful but
low-cost test-bed to prototype systems where
image processing is shared between hardware and
a host computer.

2. FPGA-BASED FRAME GRABBER
The frame grabber presented here has the
following specification:

To capture images with a resolution of
512x512 pixels using a standard CCIR input
video signal from commercially available
monochrome cameras;
To digitise to an accuracy of 8 bits using an
on-board ADC;
To store 4 images using 1 MB of on-board
VRAM; '

0 To display either live images or a selected
stored frame on an attached monitor using an
on-board DAC;
To implement all the control logic in FPGAs;
To create the system as a 2-layer PCB
occupying one ISA expansion slot;
To save a selected frame to the PC's hard disk
in TIF format;
To support the use of C software to control the
capture, storage and display of images and
implement various image processing
algorithms.

The frame grabber is connected to a PC through
its ISA local-bus as a backend add-on card [2],
[3], [4]. During operation, video pictures from a
video camera are captured, and either stored in
VRAM for processing later or passed to a D/A
converter for live display. The operations are I

performed by a digitizer, PLL (phase locked
loop), D/A converter and VRAM under the
control of an FPGA-based system controller.
Figure 1 shows the architecture diagram for the
complete frame grabber. Its major components are
presented below in some detail.

2.1 Digitizer module
The digitizer module was implemented using a
Plessey SP94308 video ADC combined with an
LM 188 1 sync separator.

0-7803-6542-9/00/$10.00 0 2000 IEEE

3 3 3

Authorized licensed use limited to: Teesside University. Downloaded on May 25,2010 at 15:27:56 UTC from IEEE Xplore. Restrictions apply.

mailto:tees.ac.uk
mailto:s.boussakta@ee.leeds.ac.uk

PC Main Board

Video 7%

I

Figure 1 Architecture diagram of the frame grabber

The ADC samples the input waveform on the
rising edge of the input clock and produces a
latched digital output. A tri-state buffer is
connected to the digital output in order to isolate
the ADC during the still video mode. This is
necessary because, during the still video mode,
the DAC receives data from memory while in
live video mode the ADC sends data to both the
DAC and the memory.
Either the video sync or the video burst pulses
can be used to drive the clamping circuit within
the ADC. In our case the burst pulse derived
from the LM1881 is used. The LM1881 provides
all the necessary timing information associated
with the input composite video signal. Of its
other outputs, CSYNC (composite sync) is used
to trigger the PLL, VSYNC (vertical sync)
controls frame synchronisation and ODEV
(odd/even field signal) is combined with other
signals to address the memory rows.

2.2 DAC module
The DAC (Plessey MV95308) latches the data
on rhe falling edge of the clock while the ADC
samples the input on the rising edge of the clock,
which means that the same clock signal can be
used for both. All the necessary video pedestals

are mixed with data at the DAC output in oraer to
produce a standard composite video signal.

2.3 PLL module
The PLL (74HCT4046) is a device that is
employed to produce the 10 MHz global clock of
the system. This clock must be fully synchronised
with the video composite sync.
Concisely, the PLL consists of a phase detector, a
low-pass filter and a VCO (voltage controlled
oscillator), acting 'as a closed loop. The phase
detector compares two input frequencies and
generates an output which is a measure of their
phase difference. This phase error signal, after
being filtered and amplified, causes the VCO
output frequency to deviate in ordler to eliminate
the detected difference. If a frequency divider (i.e.
a synchronous counter) is used belween the VCO
and the phase detector input, the result can be any
fixed multiple of the base frequency. In this case a
counter counting up to 640 is used in order to
achieve the required 10 MHz frequency because
the unbroken sequence of the video sync pulses has
a frequency of 15.625 KHz, which ,gives 10 MHz if
multiplied by 640.
The output of the VCO is the global clock of the
system. It clocks the IO-bit counter which is reset

3 3 4

Authorized licensed use limited to: Teesside University. Downloaded on May 25,2010 at 15:27:56 UTC from IEEE Xplore. Restrictions apply.

every 640 pulses. The MSB of this counter
(LSYNC) is fed back to the other input of the
phase detector in order to be compared with the
video composite sync. The PLL keeps these two
signals locked in phase and frequency so that the
VCO output runs at 10 MHz.

2.4 Video memory module
The 1 MB on-board video memory which is
required to store up to four 5 12x5 12x8 bit image
frames is implemented using eight TC524256B
VRAMs. Each chip is organised in 512 rows by
512 columns by 4 bits so that two of them can be
combined to accommodate a single frame. Thus
for every 8-bit pixel in a frame one nibble is
stored in every chip of the pair.

2.5 FPGA-based controller
At the heart of the frame grabber are two Xilinx
FPGAs [SI, [6], which minimise the component
count and PCB size, and which aIlow on-board
re-programmability. Two relatively small
devices from the Xilinx range are used to avoid
routing complexity on the PCB, since a single
device would need a large number of pins; also,
the devices are cheap and may be reconfigured
individually. They include all the required digital
logic for controlling the other support chips on
the board, namely the sync separator (which
generates important timing signals from the input
video), the ADC, the DAC, the VRAM memory
and the PLL (which is needed to generate the 10
MHz global clock signal from the 15.625 kHz
line frequency embedded in the video signal).
WGAl holds a number of logic blocks. First,
there is a 10 bit counter, used to count pixels
within each line of active video and also, in
combination with the PLL, to produce the 10
MHz global clock by frequency division of 640.
There is a 9-bit counter, used to count the lines
and produce the necessary row addressing for the
memory. An address multiplexer feeds the
memory with the appropriate address at all
times, while a command arbiter prevents
conflicts when reading, writing or refreshing the
VRAM memory. It generates the signals RAS,
CAS, DT\OE, WR\WE and SC needed to create
refreshing cycles, internal memory transfer
cycles and cycles which read from or write to the
computer.
The video control logic needed to produce the
required signals for the ADC and DAC is also

contained within FPGAl as is the logic needed to
control the flow within the video data bus. When
the grabber is operated in live video mode, the
ADC feeds both the memory and the DAC,
whereas the memory feeds only the DAC in still
video mode.
Finally in FPGA1 there is PC interface logic to
handle the bi-directional data bus, including three
registers, two of 9-bit width for row and column
addresses respectively and one of 4-bit width, for
controlling the status of the system. The Pc data
bus is switched between the three registers and the
memory by decoding the AI and A2 PC address
lines. By using appropriate VO addresses the user
is able to:
1) Load the row or column address regster with

2) Switch from live video mode to still video

3) Select between the stored frames;
4) Read from or write to the video memory at a

position defined from the row and column
registers;

the desired address;

mode;

5) Initialise an FPGA re-programming cycle.
FPGA2 contains the external address decoding
logic allowing FPGAl to be accessed like an YO
mapped peripheral occupying 8 U 0 addresses. The
address offset can be selected via on-board dip-
switches with a choice of 32 different octal address
sets from Hex 300 to Hex 3F8. FPGA2 also has
internal buffering and tri-state buffering as all the
address, data and control lines which are used
directly by FPGAl need to be externally buffered
and Xilinx input IBUF buffers do not offer
sufficient drive capability.
The software required to integrate, test and
demonstrate the capabilities of the frame grabber is
written in C. The main functions of the program
are to:
1) Save the selected frame into TIF format;
2) Reprogram the FPGAs;
3) Produce a standard pattern on the screen;
4) Control the operation mode (Live or Still

video).
5) Select which of the 4 stored frames is to be

displayed;
6) Copy a user defined window from a position on

the screen and display it at another position;
7) Draw a diagonal line using a user specified grey

level;
8) Control the execution of various image

processing algorithms.

3 3 5

Authorized licensed use limited to: Teesside University. Downloaded on May 25,2010 at 15:27:56 UTC from IEEE Xplore. Restrictions apply.

3. CONCLUSIONS
The final result is a PC-compatible image frame
grabber which meets the required specification
in every respect at a relatively low cost.
Captured frames are clear, well contrasted and
jitter-free in both live and still video modes and
their quality is comparable to that available from
equivalent commercial systems costing about
three times as much. In this design, the frame
grabber acts as a backend add-on card for an
IBM-PC compatible through its ISA local-bus,
which can be plugged into one of the PC’s
expansion slots. The work is currently being
extended to produce a similar product for the
PCI bus around which it is intended to build a
real-time motion detection system.

REFERENCES
1. D. M. Avedon, Electronic lmage System: Design,

Application and Management, McGraw-Hill,
1994.

2. D. C. Sastry and J . Jagadeesh, “A High-speed
Low-cost Frame Grabber”, Computer, Vol. 29,

3 . G. Bush, M. J. Smith and D. H. Evans, “Frame
Grabber for Sequential Real-time Video Image
Digitisation and Transfer to Microcomputer
System”, Medical and Biological Engineering and
Computing, Vol. 32, 1994, pp416-478.

4. T. Shanley and D. Anderson, ISA System
Architecture, Mindshare, Inc., 1995.

5. Xilinx Inc., XACT 2000/3000/4000 Progrummable
Gate Array Development System Reference Guide,
1998.

6. Xilinx Inc., The Programmable Logic Data Book,
1998.

1997, pp102-103.

3 3 6

Authorized licensed use limited to: Teesside University. Downloaded on May 25,2010 at 15:27:56 UTC from IEEE Xplore. Restrictions apply.

