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21. ABSOLUTE EIT COUPLED TO A BLOOD GAS
PHYSIOLOGICAL MODEL FOR THE ASSESSMENT OF LUNG
VENTILATION IN CRITICAL CARE PATIENTS
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Introduction: The authors propose to use a previously
developed data-driven physiological model (SOPAVent
[1]) for continuous and non-invasive blood gas predictions
in combination with the Sheftield Mk3.5 Absolute Elec-
trical Impedance Tomography (aEIT) [2] system to assess
lung functions and guide ventilation therapy in critical
care patients (Figure 1).

Methods: In aEIT, the Mean End Expiratory lung
Volume (MEEV) should have the ability to provide
regional information on the patient’s lung behaviour. To
model the relationship between MEEV and the relevant
ventilator parameters, a series of clinical trials have been
conducted on five (5) ITU patients at the Northern
General Hospital, Sheftield, UK. Two modelling tech-
niques (neural networks (NN) and neural-fuzzy) have
been applied in order to elicit such relationships which are
of a nonlinear nature.

Results: Figure 2 shows the results of one clinical trial
performed on four successive days on the same [TU
patient. A decrease in the Peak End-Expiratory Pressure
(PEEP) levels leads to decreased lung resistivity and
MEEV which agrees with [3].

Finally, the clinical exploitation of the models is eval-
uated by comparing the predicted blood gas information
(P,0, and P,co,) obtained from SOPAVent and the
regional lung volume information (MEEV) provided by
the ANFIS model subject to changes in PEEP settings.
Table 1 summarises these results.

Discussion: Mean end-expiratory lung volume (MEEV)
calculated from aEIT is a feature parameter that reveals
volume of air present in the lungs at the end of patients’
expiration. In this study, increasing PEEP has lead to
increase in MEEV (predicted from ANFIS model) and
P,o, (predicted from SOPAVent model). This correlation
shows that both models are capable of providing infor-
mation on patients’ lung behaviour in response to venti-
lation therapy. These sets of information should lead to a
better understanding of phenomena surrounding venti-
lated patients in order to support decision-making and
guide ventilator therapy. However, more ventilated pa-
tients EIT data are needed to further improve the accu-
racy of MEEV prediction. Knowledge from experts will
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Fig. 1 Advisory system for the management of ventilated critical care
patients.
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Fig. 2 Lung abolute resistivity and air volume measured by aEIT at
different PEEP levels on an ITU patient.

Table 1 MEEV, P,o, and P,co, predicted by the models fol-
lowing PEEP changes - i

PEEP MEEV P.o. P.co,
(mmHg) 0 (mn_lH 2) (mmHg)
12.0 4.94 11.56 6.14
11.0 4.87 11.22 5.89
10.0 4.80 10.87 5.67

9.0 4.73 10.53 5.47

8.0 4.67 10.19 5.28

also be included in the form of decision rules for sug-
gesting adequate ventilator parameters settings.
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22. DECISION-SUPPORT FOR CLINICIANS—HOW TO
IMPLEMENT
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Introduction: 1 focus on clinical trial application of clinician
decision-support because this is a first step in providing
the credible information necessary to build a foundation
for wide spread use of clinician decision-support in clinical
practice. Meeting the scientific requirements of rigorous
clinical trials (clinical experiments) highlights similar
challenges that exist in the usual clinical care practice
environment.

Compliance of physicians with evidence-based treat-
ments or guidelines is low across a broad range of health care
topics, in part because we lack widespread application of
detailed clinical decision-support protocols. This low
clinician compliance contributes to uneven cointervention
effects in clinical trials and thus contributes to unnecessary
variation of clinical trial results. Cointerventions are con-
founders introduced after allocation of subjects to the
clinical trial experimental groups. Cointerventions, unlike
confounders present before randomization, cannot be made
uniform across clinical trial groups through randomization.
Many cointerventions are clinical care processes that
influence clinical trial outcomes, independent of the
experimental clinical trial intervention under study.

Experimental method and result reproducibility is
required before new information is included in standard
sources in many scientific domains. This is a scale and
domain-independent scientific requirement. The absence
of detailed clinical decision-support protocols is a critical
barrier to the uniform management of cointerventions
needed to conduct high quality clinical trials (1, 2). The
clinical research community does not possess tools to

standardize clinician decisions associated with delivery of
cointerventions and cointerventions are not commonly
controlled in clinical trials. As a result clinical trials, and
especially non-blinded clinical trials like those of
mechanical ventilation, suffer from excess variation, non-
reproducible methods, low scientific credibility, and var-
iable results (2, 3). Cointervention effects likely explain
many inconsistencies observed in different studies of the
same putative intervention. Much of the often inconsis-
tent and conflicting results of clinical trials (4, 5) and
clinical care are likely due to non-reproducible methods
because the judgments of clinicians become an unarticu-
lated and unidentifiable part of the experimental or clin-
ical care method. These unidentified and unarticulated
elements influence outcomes in different studies and
clinical reports and remain a barrier to understanding.

Methods: We embed rules (intelligence) into the
eProtocols to minimize avoidable errors and omitted
documentation, and to maximize the use of best practices.
As data are input into the system they trigger one or more
rule sets; such rules may also be invoked by passage of
time. Output from the eProtocol decision logic is stored
in the patient’s eProtocol database, and sent to the
appropriate caregiver(s) at the bedside. We develop, val-
idate, and establish safety of the eProtocols using mature
methods (1, 2, 6-8).

Results: We have built, validated, employed clinically,
and distributed adequately explicit bedside computer
protocols (eProtocols) that enable reproducible clinical
care in critical care medicine for mecthanical ventilation,
intravenous fluid, and blood glucose management
(1, 2, 6-10). eProtocols are adequately explicit computer
protocols that enable reproducible clinician decision
methods that can control experimental cointerventions.
An adequately explicit protocol can elicit the same deci-
sion from different clinicians when faced with the same
clinical information. Clinician compliance with our
eProtocol recommendations is 94%.

Discussion: Adequately explicit computer protocols
enable a reproducible clinician decision method that stan-
dardizes clinician decision making while retaining patient-
specific treatment and preserving ultimate clinician
decision-making authority (1, 2, 6, 8, 11). Individualized
patient care is preserved because the computer protocol
requires explicitly, patient-specific, clinical data. Differ-
ences in clinical data represent unique patient expressions of
the disease. This leads to different and individualized rec-
ommendations from the computer protocol for each
patient, even though the decision-making logic is the same
for all patients. Therefore, eProtocols enable a reproducible



