
AnBx - Security Protocols Design and Verification?

Michele Bugliesi and Paolo Modesti

Università Ca’ Foscari Venezia
Dipartimento di Informatica

{bugliesi,modesti}@dsi.unive.it

Abstract Designing distributed protocols is challenging, as it requires ac-
tions at very different levels: from the choice of network-level mechanisms
to protect the exchange of sensitive data, to the definition of structured in-
teraction patterns to convey application-specific guarantees. Current security
infrastructures provide very limited support for the specification of such guar-
antees. As a consequence, the high-level security properties of a protocol typ-
ically must often be hard-coded explicitly, in terms of low-level cryptographic
notions and devices which clutter the design and undermine its scalability
and robustness.
To counter these problems, we propose an extended Alice & Bob notation for
protocol narrations (AnBx) to be employed for a purely declarative modelling
of distributed protocols. These abstractions provide a compact specification
of the high-level security guarantees they convey, and help shield the design
from the details of the underlying cryptographic infrastructure. We discuss
an implementation of the abstractions based on a translation from the AnBx

notation to the AnB language supported by the OFMC [1,2] verification tool.
We show the practical effectiveness of our approach by revisiting the iKP
e-payment protocols, and showing that the security goals achieved by our
declarative specification outperform those offered by the original protocols.

1 Introduction

On-line transactions represent an important share of the overall world trade and secu-
rity constitutes a major concern in this kind of applications, as agreeing, on the terms
of a transaction in a distributed and open environment like the internet, requires pro-
tection against threats from intruders and/or from the potential misbehavior of other
participants. Establishing the desired safeguards is challenging as it involves actions
at different levels: from the choice of core, network-level mechanisms to protect the ex-
change of sensitive data, to the definition of structured, application-specific measures
to enforce the high-level behavioral invariants of the participants. Current security
infrastructures offer effective abstractions only for the core mechanisms, based on
tools such as TLS/SSL [3] to provide tunneling support for communication. On the
other hand, little to no support is provided for the specification of more structured in-
teraction patterns, so that high-level security invariants must typically be expressed,
? Work partially supported by MIUR Projects SOFT “Security Oriented Formal Tech-

niques” and IPODS “Interacting Processes in Open-ended Distributed Systems”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322323963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and hard-coded explicitly, in terms of low-level cryptographic notions such as salting,
nonces, keyed-hashing, encryptions, signature schemes, and compositions thereof. As
a result, the application code and data structures get intertwined with low-level code
that not only gets in the way of a clear understanding of the applications’ business
logic, but also undermines its scalability and robustness.

To counter these problems, various papers in the recent literature (see, e.g., [4,5,6])
have advocated a programming discipline based on (i) high-level security abstractions
and mechanisms for composing them to support structured interaction patterns [7,8],
and (ii) automatic techniques to build defensive implementations on top of well-
established cryptographic infrastructures and tools.

Following this line of research, in the present paper we isolate a core set of chan-
nel and data abstractions to be employed for a purely declarative modelling of dis-
tributed protocols. Our abstractions are part of AnBx, a dialect of the well-known
Alice & Bob (AnB) notation for protocol narrations, which supports various mecha-
nisms for securing remote communications based on abstract security modes, without
any reference to explicit cryptography. The AnBx abstractions are readily translated
into corresponding public-key cryptographic protocols described by standard AnB
narrations. This provides an abstract, yet effective implementation of the AnBx spec-
ification language, to be employed as the basis for the development of fully-fledged
implementation.

Main contributions and results. We developed a compiler for the automatic
translation from AnBx to the AnB notation used in the symbolic model-checker OFMC
(Open-source Fixed-point Model Checker [1,2]), and verified the soundness of our
implementation with OFMC itself. The translation allows the verification of AnBx
protocols with any OFMC-interoperable verification tool [9]. To experiment and val-
idate the practical effectiveness of the AnBx approach to protocol design, we revisited
the iKP e-payment protocol family (Internet Keyed Payment Protocol [10,11]) as
a case study, and contrasted the security goals achieved by our version with those
offered by the original protocol.

Interestingly, our AnBx versions of the iKP protocols outperform the original pro-
tocols (for all i ’s), i.e. they satisfy stronger security goals and properties. This is
largely a consequence of the declarative nature of the specification style supported by
AnBx: being defined as channel-level abstractions, the AnBx primitives convey protec-
tion on all message components, not just on some components as in the original iKP
specification, yielding stronger encapsulation mechanisms, and consequently, stronger
and more scalable security guarantees. As a byproduct of our comparative analysis,
we also found a (to the best of our knowledge) new flaw in the original specification
of {2,3}KP, and proposed an amended version that rectifies the problem.

Plan of the paper. In Section 2 we introduce the AnBx specification language
together with our high-level security abstractions; in Section 3 we outline a trans-
lation of the abstractions into a low-level, cryptographic language. In Section 4 we
present the AnBx compiler that implements that translation using the AnB• crypto-
graphic language supported by OFMC as a target, and discuss the soundness of the
translation. In Section 5 we show the abstractions at work on the specification of the
iKP protocols, and discuss their properties. Section 6 concludes the presentation.

Table 1 AnBx communication modes
η mode semantics

(−,−) plain conveys no security guarantee

(A,−) from A a public, but authentic exchange which provides the
receiver with a guarantee on the origin of the message

(@A,−) fresh from A (A,−) with the additional guarantee that the message
is fresh, and may not be replayed

(−, B) secret for B a secret transmission, providing guarantees that only
the intended receiver B will be exposed to the message
payload: an intruder may become aware of the existence
of an output, but not of the message contents

(A,B) from A,
secret for B

combines the guarantees of modes (A,−) and (−, B)

(@A,B) fresh from A,
secret for B

combines the guarantees of modes (@A,−) and (−, B)

↑ η0 forward conveys some of the guarantees given by η0 and signals
that the message did not originate at the sender’s;
η0 can not be a forward mode itself

2 AnBx: declarative protocol narrations

Looking at the existing protocols for electronic transactions, such as e-payment, e-
cash and e-voting, one notices that they are characterized by very specific interaction
patterns, expressed by few messaging primitives and data structures. In this section,
we isolate a core set of these primitives, and encode them in terms of (i) different
modes for remote communication, and of (ii) a hiding transformer on data. We inject
these modes and the data transformer into an extended version of the familiar AnB
specifications for security protocols, whose syntax may be defined as follows:

A : α local action performed by A
i. A→ B, η : m A sends a message m to B in mode η

(symmetrically ←receives from)

The action statements A : α may be employed to specify operations performed by
a principal, such as the generation of a new key or a test evaluation, as well as
to declare the initial knowledge that we assume available to the principal. In the
exchange statements i. A → B, η : m, i is an index labelling a protocol step: the
mode η and the format of the message m are discussed below.

Message formats. An important aspect of our abstractions is the choice of the
message formats. A message may either be a tuple of names (ñ), or a reference to a
message exchanged at a previous protocol step (↑i), or a message digest [m̃]. Notice
that no explicit cryptographic operator is available for message formation, and the
only operation on data is the creation of digests (or footprints) needed in most e-
commerce and e-voting protocols: being able to form [m] proves the knowledge of

Table 2 AnBx forward modes
A→ B, η0 : m B → C, η1 : m mode semantics

(−, C) ↑ (−, C) blind
- Secrecy for C is preserved
- B is not exposed to m

(A,C) ↑ (A,C) blind
- Authenticity from A is preserved
- Secrecy for C is preserved
- B is not exposed to m

(A,−)
(A,B)

(@A,−)
(@A,B)

9>>=>>; ↑ (A,−) sighted
- Authenticity from A is preserved
- Freshness (if present) is lost
- B is exposed to m

(A,−)
(A,B)

(@A,−)
(@A,B)

9>>=>>; ↑ (A,C)
sighted
secret

- Authenticity from A is preserved
- Freshness (if present) is lost
- Secrecy for C is added to m, but C can not
make any assumption on secrecy at origin A
- B is exposed to m

m without leaking it. We assume digests to be resistant to chosen-plaintext attacks,
hence presuppose an implementation based on a hashing scheme that packages m
together with a randomized quantity known to the principals that possess m (the
designated verifier of [m]), and is never leaked to any principals that do not have
knowledge of m. To ease the implementation, we allow digests to be tagged with an
annotation that specifies the intended verifier, as in [m̃ : B].

Communication modes. Following [17,18], our abstractions encompass two
fundamental mechanisms for security, based on secrecy and authentication, and in-
clude the communication modes that result from their possible combinations. The
mode η is encoded by a pair (source, destination) that qualifies the security guaran-
tees conveyed at the two end-points of the remote communication. The structure and
the informal reading of the communication modes are described in Table 1.

Forward modes. They can be used to model some three party exchanges, in
n-party protocols where n > 2. The statement B → C, η1 : m with η1 = ↑η expresses
the intention of B to forward a message m to C. The statement is legal just in case
B has been the target of a previous exchange A→ B, η0 : m, where m is the same in
both statements (or else m = ↑i where i is the label identifying the A→ B exchange).

When this is the case, the mode η used in the forward statement will preserve,
and possibly extend, the security properties specified by η0. There are additional
coherence constraints that must be satisfied when specifying the mode of an exchange,
to rule out unwanted effects of impersonation, and other inconsistencies that would
result into unexecutable or broken protocols:

– the legal combination of η0 and η1 only are those in Table 2 and they specify
possible forward modes;

– in A→ B, η : m, η may not specify a source other than A, unless η is a forward
mode;

Table 3 AnB-like Intermediate Syntax Notation

syntax description

(PKA, PK
−1
A) long term (pub, priv) key pair used by principal A for encryption

(SKA, SK
−1
A) long term (pub, priv) key pair used by A for signature

{m}PKA message m encrypted with the public key PKA of principal A

{m}
PK−1

A
message m decrypted with the private key PK−1

A by principal A

{m}K {m}K−1 message m encrypted (decrypted) with a symmetric key K

{H(m)}
SK−1

A
≡ sigA(m) digital signature of the message m, signed by principal A, where

H is the hash function specified by the digital signature scheme

(m, sigA(m)) ≡ SA(m) message m digitally signed by principal A

nA nonce generated by principal A

new K fresh symmetric key, randomly generated

gx mod p
gy mod p

fresh half keys generated during a discrete logarithm based
agreement protocol (e.g. Diffie-Hellman),
where p is prime and g is primitive root mod p

gxy fresh symmetric key, computed using a discrete logarithm based
agreement protocol (mod p is omitted in the notation)

HmacK(m) HMAC of message m, computed with the key K

A : α action α performed by principal A

A→ B : m A sends a message m to principal B (symmetrically ←)

– if η specifies a destination other than B, then m can be forwarded only blindly.

3 A cryptographic translation for AnBx

We outline a translation of the abstract specification language we just introduced
into an intermediate representation based on few, well defined, building blocks: keys,
cryptographic operations and primitives for remote communication. The intermediate
notation, displayed in Table 3, is derived from the well known AnB security proto-
col notation, and represents the low-level counterpart of the AnBx abstract notation
discussed in Section 2. The core resulting from the translation can then be further
compiled against a specific and concrete target (operating system, programming lan-
guage, cryptographic libraries, network protocols, etc) to produce the running code.

This translation is based on public key cryptography, and presupposes the ex-
istence of a Public Key Infrastructure (PKI) supporting a robust distribution (and
use) of public keys and certificates (including their verification). We also assume that
the underling PKI supports dual key pairs, for encryption and digital signatures [19].

Table 4 Exchange Modes Translation of A→ B, η : m

η mode translation certified

(−,−) plain A→ B : m -

(A,−) from A A→ B : SA(B,m) A

(−, B) secret for B A : new K
A→ B : {K}PKB

, {m}K
B

(A,B) from A,
secret for B

A : new K
A→ B : {K}PKB

, {SA(B,m)}K
A,B

(@A,−) fresh from A A→ B : A
A← B : {nB , B}PKA

A→ B : {nB , sigA(B,m)}PKB , SA(B,m)

A,B

(@A,−) fresh from A
with DH*

A→ B : gx

A← B : {gy, nB , B}PKA

A→ B : {nB , sigA(B,m)}gxy , SA(B,m)

A

(@A,B) fresh from A,
secret for B

A→ B : A
A← B : {nB , B}PKA

A : new K
A→ B : {nB ,K}PKB

, {SA(B,m)}K

A,B

* this translation is used only when the intended recipient B is not
certified, and therefore the standard fresh from A can not be applied

Each AnBx principal may thus possess up to two pairs of certified encryption keys: if
it does posses both key pairs, we say that the principal is certified.

We also use symmetric encryption schemes, which are notoriously computation-
ally more efficient than the asymmetric counterpart. Ideally perfect encryption is as-
sumed and the hashing functions are expected to be collision-free and non-invertible.
Practically the secrecy notion we expect is the standard computational secrecy, i.e.
all polynomial time adversaries have negligible success probabilities. This allows to
use real cryptographic protocol for a concrete implementation.

Communication Modes Translation. Table 4 summarizes the translation of
the different AnBx communication modes into a sequence of AnB statements and
shows which principals must be certified. In a real implementation we could include,
for robustness, also some additional information (tags) such as protocol name, ver-
sion, step number, process identifier, origin, destination, but at this level of abstrac-
tion we can skip these details.

The authenticity property enforced by the “fresh from” mode corresponds to
Lowe’s injective agreement [20] while the property enforced by the “from” mode
corresponds to Lowe’s non-injective agreement. In the former case we say that B
authenticates A on m, while in the latter the authentication is only weak. We use
mostly standard techniques, hence here we will underline only few additional points.

Table 5 Forward modes translation
η0 η1 mode m1 certified notes

(−, C) ↑ (−, C) blind {K}PKC
, {m}K C m0 = m1

(A,C) ↑ (A,C) blind {K}PKC
, {SA(C,m)}K A,C m0 = m1

(A,−)
(@A,−)

ff
↑ (A,−) sighted SA(C,B,msg) A

m1 ⊆ m0

m = C,msg

(A,B)
(@A,B)

ff
↑ (A,−) sighted SA(C,B,msg) A,B

m1 ⊆ m0

m = C,msg

(A,−)
(@A,−)

ff
↑ (A,C)

sighted
secret

{K}PKC
, {SA(C,B,msg)}K A,C

SA(C,B,msg) ⊆ m0

m = C,msg

(A,B)
(@A,B)

ff
↑ (A,C)

sighted
secret

{K}PKC
, {SA(C,B,msg)}K A,B,C

SA(C,B,msg) ⊆ m0

m = C,msg

AnBx specification: A→ B, η0 : m; B → C, η1 : m

m1 ⊆ m0 : message m1 is a component of message m0

– in authentic exchanges the identity of the intended recipient B is included to
comply with the definition of the Lowe’s non-injective agreement, (injective for
fresh exchanges) [20];

– in secret exchanges we use an hybrid construction, with the fresh symmetric key
K acting as a confounder. If both, key and data encapsulation schemes, are secure
against adaptive chosen ciphertext attacks, then the hybrid scheme inherits that
property as well [21];

– combining authenticity and secrecy, we first sign and then encrypt [22];
– in fresh exchanges we use a challenge-response technique based on nonces. We

do not use timestamps, because they require synchronization (time servers), and
this introduce more complexity (attacks, failures, etc);

– in fresh from exchanges, when the intended recipient is not certified, we use a
combination of challenge-response and Diffie-Hellman key agreement protocol;

Forward Modes Translation. Table 5 outlines the translation of the forward
modes. Each clause gives the translation of the statement B → C, η1,m with reference
to the statement A → B, η0,m that originated m: we only give the translation for
the legal combinations of η0, η1: in all other cases the translation is undefined.

Given that the forward modes in η1 will never include the freshness tag @, the
translation of B → C, η1,m amounts to just one AnB step, B → C,m1 with m1 as
defined in Table 5.

Notice that m1 is always defined in terms of m0, which is the closing AnB message
resulting from the translation of the reference AnBx statement A → B, η0,m. In the
sighted modes, the presence of the identities B and C is necessary because both
principals have to authenticate A on msg, which represents the real high level payload
of the three-party exchange.

Table 6 Message Formats Translation (digest formed by principal A)

digest translation certified notes

[m : B] A : new K
A→ B : HmacK(m), {K}PKB

B Obfuscated verifiable digest
Can be verified only by B,
if B knows m
(beside the digest’s creator A)

[m : −] A : new K
A→ B : HmacK(m)

- Obfuscated unverifiable digest
Can not be verified by anyone
(except the digest’s creator A)

[m] H (m) - Plain digest
Can be verified by everyone knowing m
H cryptographic hash function

[m : C] p : new K
p→ C : {H (mp)} , {Kp}PKC

C Digest verifiable by proxy
p ∈ {A,B}
C can notify to any principal if
H (mA) = H (mB) or not

Message Format Translation. (Table 6). As we observed, an implementation
of a message digest [m] should guarantee that the only principals entitled to verify
that [m] matches m are those who already know m, either as initial information,
or provided explicitly by a legitimate source. In addition, a robust implementation
should protect the digest against chosen-plaintext attacks, and additionally guarantee
that even in case m is disclosed to a non-legitimate principal any time in the future,
that principal should not be able to use m to match [m].

These guarantees can be made by interpreting (and translating) the digest for-
mation in terms of a hashing scheme that packages m together with a randomized
quantity known to the principals that possess m, and never leaked to any princi-
pals that do not have knowledge of m. A hashing scheme with these properties is
supported by what is known as keyed-Hash Message Authentication Code (HMAC).

The subtlety in our translation is in the way the secrets keys are made available
to the legitimate principals, as the structure of the digest [m] does not inform on
who is intended to act as the digest’s verifier. In certain cases, that information may
be recovered by an analysis of the initial knowledge of the participants. However,
in general, it requires the designer’s intervention to tag each digest occurrence [m]
with an annotation [m : B] that signals that B is the designated verifier of [m] (a
digest can also be always verified by its creator). Table 6 illustrates the translation
scheme for digests based on these additional annotations proposing also alternatives
when the digest can not directly verified, due to the lack of certification of some
participant. When and how to use these alternatives should be carefully evaluated
since it could allow an intruder to perform downgrade attacks.

Table 7 AnB OFMC specification of “fresh from” mode

Protocol: Fresh_From_A
Types:

Agent A,B;
Number Msg ,N1;
Function pk,sk

Knowledge:
A: A,B,pk,sk,inv(pk(A)),inv(sk(A));
B: A,B,pk,sk,inv(pk(B)),inv(sk(B))

Actions:
A -> B: A
B -> A: {N1,B}pk(A)
A -> B: {N1,hash({B,Msg}inv(sk(A)))}pk(B),{B,Msg}inv(sk(A))

Goals:
B authenticates A on Msg

4 Implementing the translation: the AnBx compiler

We have implemented the AnBx translation we just outlined using a subset of the
AnB cryptographic language supported by the OFMC model checker as a target. In
this section, we briefly outline the implementation and discuss its soundness.

An overview of OFMC. OFMC [1,2]) supports two protocol specification lan-
guages, the Intermediate Format (IF) and a dialect of the AnB style of protocol
narrations, that we will refer to as OFMC-AnB. Details about of OFMC-AnB can be
found in [23] and in documentation included in the OFMC software package, so we
will give a very short description. A protocol specification comprises various sections:

– Types: describes the entities (agents/principals) involved in the protocol, as well
as protocol data and data operators (constants, cryptographic functions, . . . etc.)

– Knowledge: specifies the initial knowledge of each principal
– Actions: specifies the sequence of statements that constitute the ideal, unattacked

run of the protocol;
– Goals: specifies the goals that the protocol is meant to convey.

A sample specification is reported in Table 7, where we give the AnB narration of
the low-level translation for the “fresh-from” AnBx messaging primitive.
Msg is the message being authenticated, using N1 to complete the nonce-exchange; pk
and sk, generate the public keys for encryption and signing. Each principal is assumed
to know its own and its partner’s identities, the public key of all known principals and
its own private keys. The specification is completed with the authentication goal for
the transmitted message Msg. This goal already implies the freshness of the message,
since in OFMC authenticity goals correspond to the requirements of Lowe’s injective
agreement.

AnBx and its compiler. AnBx is defined as variant of OFMC-AnB that supports
the messaging modes discussed in §2 as well as few additional features in the preamble
sections. A sample AnBx specification is in reported Table 8, where we give the AnBx
specification of the “fresh from” messaging primitive. Notice that while in the action
section we use AnBx syntax to specify the transmission modes, the protocol goals are
expressed by means of OFMC-AnB goal statements.

Table 8 AnBx specification of “fresh from” mode

Protocol: Fresh_From_A
Types:

Agent A,B;
Certified A,B;
Number Msg;
Function id

Definitions
Msg: Msg1 ,Msg2

Knowledge:
A: A,B;
B: A,B

Actions:
A -> B,(@A ,-): Msg

Goals:
B authenticates A on Msg

Given an AnBx specification, the compiler generates a corresponding OFMC-AnB
protocol specification that results from composing the translations of each AnBx state-
ment into a corresponding OFMC-AnB protocol, as outlined in §3: thus, while AnBx
supports abstract messaging primitives for secrecy and authentication, the code gen-
erated by the compiler only involves standard, “plain” messages exchanges, and relies
of the cryptographic constructions of §3 to achieve the desired security guarantees.
In addition to generating the AnB protocol steps, the compiler implements all the
bookkeeping needed to generate the entries in the preamble sections (Types and
Knowledge) required to make a consistent OFMC-AnB specification. To illustrate,
the AnB protocol in table 7 is, in fact, the result of compiling the AnBx in Table 8.

One may wonder why we did not take advantage of the bulleted OFMC-AnB
channels in our translation. The fact is that the combination of the three OFMC
basic kinds of channel (authentic, confidential, secure) does not allow one to express
communication patterns as those defined by the forward modes.

This can be easily seen if we try to build the following sighted forward exchange:
A→ B, (@A,−) : m, B → C, ↑ (A,−) : m . If we attempt to use a bulleted channel
to translate the first instruction, as in A*->B:B,m, there is no bulleted equivalent to
express the second one. On the other hand, if we provide a translation over a plain
channel for the second instruction as the following, B->C:{B,C,Msg}inv(sk(A)),
OFMC will deem the protocol non-runnable. In fact OFMC works at symbolic level,
and the term {B,C,Msg}inv(sk(A)) can be used in the second instruction only if it is
has appeared earlier in the network, because only principal A can have created such
term, being the only one knowing inv(sk(A)). Therefore OFMC rejects a protocol
where the term {B,C,Msg}inv(sk(A)) appears for the first time in an exchange
originating from B. In other words, there is no way to bind the bulleted and the
unbulleted channels in order to satisfy the expected goals for the forward modes.
Hence in order to provide a coherent translation of all AnBx modes we need the plain
channel as target in all cases.

Soundness. To verify the soundness of the implementation, we coded in OFMC-
AnB all the AnBx primitives listed in §3, defining the expected security goals. The full
list is given in Appendix (Table 13). Then we ran OFMC to verify the safety of each

protocol. We tested, successfully, all the resulting protocols with OFMC, in one and
two sessions (both typed and untyped) with the classical mode. Most protocols were
also verified in classical typed mode up to four sessions. We checked also the new
fix-point module for unbounded number of sessions, but limited to secrecy and weak
authenticity goals, which are the only goals currently supported by OFMC 2009c.

A note on compositionality. Having validated the implementation of each AnBx
primitive against its expected goals does not in itself provide any validation guarantee
on the implementation of a structured AnBx specification. In fact, composing the
implementation protocols resulting from the translation of each AnBx step may, in
principle, break the security guarantees provided by each of the component protocols:
this is an instance of the well-known compositionality problems in security. While
we do not have, as yet, a formal compositionality proof for our translations, we are
confident that such result can be proved: in fact, the implementation protocols satisfy
all the static conditions, such as the use of encryption keys from disjoint key-spaces
that constitute the standard sufficient conditions for compositionality.

In addition, although compositionality is certainly an interesting and useful prop-
erty, it does not represent a primary concern for our present endeavour. Our main
interest is in making AnBx interoperable with existing verification tools like OFMC
rather than in defining a new tool. Thus, as long as the security goals of a given
AnBx protocol narration provide an adequate specification of the security properties
we expect of the protocol, we may safely content ourselves with validating the AnB
protocol resulting from our translation, rather than the AnBx specification itself.

A similar approach is gaining popularity in the literature on typed process calculi
targeted at the specification of distributed protocols and systems (see, e.g., [24,25]).
In these papers, the typed calculi provide for idealized specifications which are im-
plemented by translations into low-level, but still typed, cryptographic languages.
Rather than showing the translations sound, the process calculi specifications are
shown secure by directly proving that the result of the translations are secure, just
as we propose here: the difference is that in a typed calculus, security is by (well)
typing, while in AnBx we prove security by model-checking.

5 A case study: e-payment systems

We show AnBx at work on the specification of systems for e-payment. We start by
outlining a general e-payment scheme which captures the essential ingredients of most
of the existing e-payment protocols, among which IBM’s iKP [10,11], SET [26] and
3-D Secure [27] adopted by VISA.

Each principal has an initial knowledge shared with other participants. In particular,
since most e-commerce protocols describe only the payment transaction, we assume

that customer and merchant have agreed on a contract, that includes an order de-
scription (desc) and a price. We also assume that payments are based on existing
credit-card systems operated by an acquirer who shares with the customer the cus-
tomer’s account number (can) comprising the credit card number and the associated
PIN. In summary, the initial knowledge of the parties is the following:

– Customer C : price, desc, can
– Merchant M : price, desc
– Acquirer A: can

To make each transaction univocally identified, the merchant generates a unique
transaction ID (tid) and associates the transaction also with a date (or any appro-
priate time information). Both pieces of information must be communicated to the
other parties. Summarizing, the transaction is characterized by the the tuple (price,
tid, date, can, desc) which also constitutes the payment order information: if cus-
tomer and merchant reach an agreement on this tuple, and they can prove their
agreement to the acquirer, then the transaction can be completed successfully.

However, two security concerns arise here: on the one hand, customers typically
wish to avoid leaking credit-card information to the merchant; on the other hand,
customers and the merchant would not let the acquirer know the details of the order
or the services involved in the transaction. Both these requirements can be enforced
by protecting the exchange of can and desc with the digests we introduced in Section
2 and implemented as described in Table 6. The tuple that represent the contract
among the three parties may thus be represented as (price, tid, date, [can][desc]),
while auth is the transaction authorization result returned by the acquirer.

Revisiting iKP. The iKP protocol family {i=1,2,3} was developed at IBM Re-
search [10,11,28] to support credit card-based transactions between customers and
merchants (under the assumption that payment clearing and authorization may be
handled securely off-line). All protocols in the family are based on public-key cryp-
tography, and vary in the number of parties that own individual public key-pairs to
generate digital signatures: this is reflected by the name of the different protocols –
1KP, 2KP, 3KP – which offer increasing levels of security. The structure of all the
protocols can be specified by means of the AnBx messaging primitives as follows:

1. C →M,η1 : [can : A], [desc : M]
2. C ←M,η2 : price, tid, date, [contract]
3. C →M,η3 : price, tid, can, [can : A], [contract]
4. M → A

(a) M → A, η4a : price, tid, can, [can : A], [contract]
(b) M → A, η4b : price, tid, date, [desc : M], [contract]

5. M ← A, η5 : auth, tid, [contract]
6. C ←M,η6 : auth, tid, [contract]

The digests [can] and [desc] are annotated with their intended verifiers, A and M
respectively (in 1KP [desc] deserves some more care, as we will discuss shortly).
Correspondingly, contract is the tuple price, tid, date, [can : A], [desc : M] and its

Table 9 Exchange modes for the revisited iKP e-commerce protocol
mode/step → 1KP 2KP 3KP

η1 C →M (−,−) (−,M) (@C,M)

η2 C ←M (−,−) (@M,−) (@M,C)

η3 C →M (−, A) (−, A) (C,A)

η4a M → A ↑ (−, A) ↑ (−, A) ↑ (C,A)

η4b M → A (−, A) (@M,A) (@M,A)

η5 M ← A (@A,−) (@A,M) (@A,M)

η6 C ←M ↑ (A,−) ↑ (A,−) ↑ (A,C)

certified A M,A C,M,A

digests can be left as [contract] as all the sensitive data is already protected against
chosen plaintext attacks by the nested digests.

By instantiating the exchange modes ηi one may generate different versions of the
protocol, achieving different security guarantees. In Table 9 we report the protocols
resulting from the choice of the exchange modes ηi that offer the strongest level
of security for a given number (i) of participants having public key-pairs at their
disposal. The resulting protocols constitute the AnBx counterpart of the iKp protocol
family.

Security Verification. We verified the AnBx specifications of {1,2,3}KP by com-
piling them into OFMC-AnB and running OFMC on the generated protocols against
the strongest possible goals, for each of the protocols.
We also carried out a corresponding analysis of the original specifications, as reported
in [11] and later amended in [29]. Below, we refer to this amended version as the
“original” iKP, to be contrasted with the “revised”, AnBx version discussed above.
In both versions, we run our tests assuming that the acquirer is trusted (technically,
modelled as a constant in the OFMC specification). This appears reasonable in an e-
commerce application, since the acquirer is always certified. Furthermore, to compare
the results of the analysis we treated the messages common and contract, in the
original and in the revised version, respectively, as equivalent (indeed, they do provide
the same abstraction conceptually).

On each protocol, we ran OFMC in classic mode with 1 and 2 sessions (typed
and untyped): with 2 sessions we were sometimes unable to complete the test due to
search space explosion. We also ran intensive tests limiting the depth of the search
space to remain within the available memory space (2Gb). Below, we report on the
results of such tests. For 3KP, the AnBx code for the revised and the original versions
is shown in the Appendix (Tables 11 and 12).

Main results. In general, our implementation of the iKP protocols outperforms
the original version, i.e. it satisfies more and stronger security goals, for all i ’s. This
is largely due to the declarative nature of AnBx messaging primitives, which be-
ing defined as channel abstractions provide strong encapsulation mechanisms on the
messages they exchange. One of the design goals of iKP was scalability, to support

Table 10 Security goal satisfied by Original and Revised iKP
1KP 2KP 3KP

Goal O R O R O R

can secret between C,A - - - - + +

C → ∗ a : can + + + + + +

A authenticates C on can - - - - - +

desc secret between C,M + + + + + +

Auth secret between C,M,A - - - - - +

M authenticates A on Auth - + +* + +* +

C authenticates A on Auth - + +* + +* +

tid secret between C,M,A - - - - - +

price secret between C,M,A - - - - - +

[contract] secret between C,M,A - - - - - +

a authenticates C on [contract] - - - + + +

a authenticates M on [contract] - - - + + +

* goal satisfied only fixing the definition of SigA

increasing security with the increase of the number of certified principals. In the orig-
inal version, scalability is achieved by including extra components (e.g. signatures)
in the messages exchanged in the different instances of the protocols. Conversely, the
AnBx versions are naturally scalable, as the different instances of the protocol are
simply encoded by tuning the exchange modes employed at the different steps (9).
The only price to pay with respect to the original iKP is that we need to split step
4 in two substeps, plus one additional step to return the initiative to the merchant
after step 4a. (Obviously the compiled AnB code involves more additional steps in
order to achieve the freshness when required).
As we mentioned earlier, the AnBx specification are not just more scalable: they pro-
vide stronger security guarantees (cf. Table 13). During the analysis of the original
2KP and 3KP we found what, to the best of our knowledge, is a new flaw. It is
related with the authenticity of the Authorization response (auth) that is generated
by the acquirer and then sent to the other principals at step 5 and 6. The authentic-
ity of the response is very important for the correct termination of the transaction
because otherwise, in case of controversy customer and merchant could not rely on
a robust proof of payment. The starred goals in Table 13 are met only after fixing
this flaw that is in relation with how injective agreement is defined (and to its notion
of authenticity). The change we propose is to add the identities of merchant and
customer in SigA, adding the identities of merchant and customer (in 2KP this can
be done with an ephemeral identity derived from the credit card number). Therefore
in the original specification [11]: SigA : {hash(Auth, hash(Common))}SK−1

A
should

be replaced by SigA : {hash(C,M,Auth, hash(Common))} SK−1
A

.
Our revisited 2KP performs almost as good the original 3KP. The only goal not

satisfied is can secret between C,A. This does not means that the credit card is leaked

but only that the credit card number is not strongly authenticated by the acquirer.
In 3KP the credit card number can be signed by C, whereas this is not possible
in 2KP and 1KP (neither in the original, nor in the revised versions). In this case,
the acquirer weakly authenticates the customer by means of the credit card number,
which is a shared secret among the two parties.

We mentioned earlier that some care must be taken in the revisited version of
1KP to compute the digest [desc:M]. In fact M is not certified, so we cannot calculate
the digest verifiable by M (Table 6). Therefore we must adopt one of the possible
alternatives and this requires a slight modification of the protocol. If we decide to use
the unverifiable digest, as done by the original iKP, it is advisable to have M generate
the digest rather than C, because [can:A] it already generated by C, and since the
digest generation implies the usage of fresh keys as confounders, it is appropriate that
those two values are generated by two different principals. In 2KP and 3KP, [desc:M]
is verifiable by M and this concern is not present. Finally, we notice that in 1KP the
only information really protected is the credit card number (Goal C → ∗ a : can).
Since this is one of the main concerns of all e-commerce user, this is indeed good
news.

6 Related Work and Conclusion

The benefits of a programming discipline based on high-level abstractions for security
are increasingly being recognized as important in the design of distributed systems.
We believe the experience with AnBx we have reported in this paper provides further
evidence of the advantages of the approach: as we have illustrated, using adequate
abstractions results non only in simpler design, but also in more robust code and
stronger security. In fact, being defined as channel-level abstractions, the AnBx prim-
itives convey protection on all message components, yielding stronger encapsulation
mechanisms, and consequently, stronger and more scalable security guarantees.

Our approach shares motivations and ideas with various papers on design and
implementation of high-level process calculi for distributed protocols and systems
[4,12,13,6,14]. While related in their initial motivations, these approaches differ sig-
nificantly from our present endeavour in their technical development. In addition,
the abstractions we discuss here capture more expressive security mechanisms such
as those needed in the design of structured e-commerce protocols. Work more closely
related to ours has been carried out in [15,16,2]. Guttman [15] has proposed a proto-
col design process organized around the authentication tests, a method for protocol
verification based on the strand space theory. Guttman, Herzog, Ramsdell, and Sniffe
[16] attached trust management assertions to protocol actions, constraining the be-
havior of a principal to be compatible with its own trust policy, and proposed the
CPPL language for design and verification. However their language still make use of
cryptographic primitives while we avoid any reference to explicit cryptography

Mödersheim and Viganò [2] described security protocols with three basic kinds
of channels (authentic, confidential, secure). An Ideal and a Cryptographic Channel
Model, describe the ideal functionality of the channels and the concrete cryptographic
messages on insecure channels. The meaning of channels is defined as goals proving

that, under certain restrictions, composing individually secure protocols results in a
secure protocol. We used their OFMC tool [1,2] to verify the AnBx compiled protocols.
Our set of channel modes has a wider extension with respect to the OFMC bulleted
channels and in §4 we showed that our forward modes (and their associated goals)
can not specified only by means of the bulleted OFMC channels.

Future plans include work along several directions. Specifically, we are interested
in developing a typed version of our primitives to provide static support for security,
according to the design principles that are often referred to as language-based secu-
rity. The resulting typed abstractions could then be integrated into a programming
language. Meanwhile we are coding a Java library to be used to experiment with
real applications. Also, it would be interesting to investigate the effectiveness of our
approach in expressing other properties, such as anonymity and privacy, and work
with the corresponding application domains such as e-cash and e-voting.

References

1. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for security
protocols. International Journal of Information Security 4(3) (2005) 181–208

2. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for symbolic
analysis of security protocols. In: Foundations of Security Analysis and Design V,
Springer-Verlag (2009) 194

3. Dierks, T., Allen, C.: Rfc2246: The TLS protocol version 1.0. Internet RFCs (1999)

4. Abadi, M., Fournet, C., Gonthier, G.: Authentication primitives and their compila-
tion. In: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, ACM New York, NY, USA (2000) 302–315

5. Bugliesi, M., Focardi, R.: Language Based Secure Communication. In: Computer Se-
curity Foundations Symposium, 2008. CSF’08. IEEE 21st. (2008) 3–16

6. Adao, P., Fournet, C.: Cryptographically Sound Implementations for Communicating
Processes. Lecture Notes in Computer Science 4052 (2006) 83–94

7. Corin, R., Dénielou, P.M., Fournet, C., Bhargavan, K., Leifer, J.J.: Secure implemen-
tations of typed session abstractions. In: CSF 2007, IEEE (2007) 170–186

8. Bhargavan, K., Corin, R., Dénielou, P.M., Fournet, C., Leifer, J.J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: CSF 2009. (2009)

9. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., Drielsma,
P., Héam, P., Kouchnarenko, O., Mantovani, J., et al.: The AVISPA tool for the auto-
mated validation of internet security protocols and applications. In: CAV. Volume 5.,
Springer (2005) 281–285

10. Bellare, M., Garay, J., Hauser, R., Herzberg, A., Krawczyk, H., Steiner, M., Tsudik, G.,
Waidner, M.: iKP A Family of Secure Electronic Payment Protocols. In: Proceedings
of the 1st USENIX Workshop on Electronic Commerce. (1995)

11. Bellare, M., Garay, J., Hauser, R., Herzberg, A., Krawczyk, H., Steiner, M., Tsudik, G.,
Van Herreweghen, E., Waidner, M.: Design, implementation, and deployment of the iKP
secure electronic payment system. IEEE Journal on selected areas in communications
18(4) (2000) 611–627

12. Abadi, M., Fournet, C., Gonthier, G.: Secure implementation of channel abstractions.
Information and computation(Print) 174(1) (2002) 37–83

13. Abadi, M., Fournet, C.: Private authentication. Theor. Comput. Sci. 322(3) (2004)
427–476

14. Bugliesi, M., Giunti, M.: Secure implementations of typed channel abstractions. In
Hofmann, M., Felleisen, M., eds.: POPL, ACM (2007) 251–262

15. Guttman, J.: Security protocol design via authentication tests. In: In Proceedings of
15th IEEE Computer Security Foundations Workshop. IEEE Computer. (2002)

16. Guttman, J., Herzog, J., Ramsdell, J., Sniffen, B.: Programming cryptographic proto-
cols. Lecture notes in computer science 3705 (2005) 116

17. Maurer, U., Schmid, P.: A calculus for secure channel establishment in open networks.
In: Computer Security-ESORICS 94: Third European Symposium on Research in Com-
puter Security, Brighton, United Kingdom, November 7-9, 1994. Proceedings, Springer
(1994) 175

18. van Doorn, L., Abadi, M., Burrows, M., Wobber, E.: Secure network objects. In: Secure
Internet Programming. (1999) 395–412

19. Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the chosen protocol
attack. Lecture Notes in Computer Science (1998) 91–104

20. Lowe, G.: A hierarchy of authentication specifications, IEEE Computer Society Press
(1997) 31–43

21. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM journal on computing(Print)
33(1) (2004) 167–226

22. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols. In:
1994 IEEE Computer Society Symposium on Research in Security and Privacy, 1994.
Proceedings. (1994) 122–136

23. Mödersheim, S.: Algebraic properties in alice and bob notation. Availability, Reliability
and Security, International Conference on 0 (2009) 433–440

24. Backes, M., Hritcu, C., Maffei, M.: Type-checking zero-knowledge. In Ning, P., Syverson,
P.F., Jha, S., eds.: ACM Conference on Computer and Communications Security, ACM
(2008) 357–370

25. Corin, R., Deniélou, P.M., Fournet, C., Bhargavan, K., Leifer, J.J.: A secure compiler
for session abstractions. Journal of Computer Security 16(5) (2008) 573–636

26. Bella, G., Massacci, F., Paulson, L.: An overview of the verification of SET. Interna-
tional Journal of Information Security 4(1) (2005) 17–28

27. Visa: Visa 3-D Secure Specifications. Technical report (2002)
28. O’Mahony, D., Peirce, M., Tewari, H.: Electronic payment systems for e-commerce.

Artech House Publishers (2001)
29. Ogata, K., Futatsugi, K.: Formal analysis of the iKP electronic payment protocols.

Lecture notes in computer science (2003) 441–460

Appendix

Revised iKP narration

The ideal narration of the revised iKP protocol given in Section 5 is, basically, the
following:

– Step 1 and 2: customer and merchant exchange data that let them build inde-
pendently the contract. They have to tell their “own version of the story” to the
acquirer A. Customer C declares [can : C], the credit card is going to use in
contract, sending the protected digest of can to the merchant M. The customer
also informs (and agrees with) the merchant on the digest of desc they will use to
define the contract. The merchant M generates a (fresh) transaction ID (tid) and
the date of transaction (C and M already had agreed on price and desc, being
part of their initial knowledge). C can verify the integrity of [desc : M], form
the contract, and then compute its digest. The tuple (price, tid, date, [contract])
is sent to C which, upon receiving it, can compute [contract] and verify that it
matches the digest provided by M. If the match succeeds the protocol execution
continues, otherwise stops.

– Step 3: the customer prepares a secret message for the acquirer containing the
information necessary to complete the transaction: contract, credit card number
(can), amount of the transaction (price) and transaction ID (tid). However this
message is sent to the merchant and not to the acquirer, because this proto-
cols does not allow direct interaction between customers and acquirer, but only
through merchant mediation. We assume that the merchant M is cooperating in
delivering messages. Hence M receives an opaque message, and the only thing
can do is to blindly forward it to the acquirer A (step 4a).

– Step 4: the merchant M sends the tuple price, tid, date, [desc : M], [contract] to
the acquirer (step 4b). This information is necessary to complete the payment.
In particular date and [desc : M] are required by the acquirer to compute inde-
pendently the digest of contract. Upon reception of the two version of [contract]
originating from the two other principals, the acquirer can also compute the same
value autonomously. If all three match together, the transaction can be autho-
rized, since this is the proof of the complete agreement between the customer
and the merchant.

– Step 5: the acquirer A sends the authorization response to the merchant, within a
fresh authentic message, containing also tid and [contract]. This is done in order
to bind all those information, and produce a proof that the payment has been
authorized for that specific transaction and that specific contract.

– Step 6: the merchant M forwards the message received from the acquirer A to
the customer C. This is a notification of the result of the transaction. In this
way C receives, via the merchant, a proof of payment from the acquirer. Since
the message is signed by the acquirer, the merchant can not alter the message
without to be discovered.

Table 11 AnBx specification of revised 3KP

Protocol: Revised_3KP
Types:

Agent C,Me,a;
Certified C,Me,a;
Number TID ,Auth ,Desc ,Price;
Function can

Definitions:
Contract: Price ,TID ,dig(can(C),a),dig(Desc ,Me)

Knowledge:
C: C,Me ,a,can(C);
Me: C,Me,a;
a: C,Me ,a

Actions:
0. Setup/Initial Knowledge
C *->*Me: Price ,Desc
Me -> C: empty
C -> Me ,(@C,Me): dig(can(C),a),dig(Desc ,Me)
Me -> C,(@Me ,C): TID ,dig(Contract)
C -> Me ,(C,a): Price ,TID ,can(C),dig(can(C),a),dig(Contract)
Me -> a,^(C,a): Price ,TID ,can(C),dig(can(C),a),dig(Contract)
a -> Me: empty
Me -> a,(@Me ,a): Price ,TID ,dig(Desc ,Me),dig(Contract)
a -> Me ,(@a ,Me): C,Auth ,TID ,dig(Contract)
Me -> C,^(a,C): C,Auth ,TID ,dig(Contract)

Goals:
can(C) secret between C,a
a authenticates C on can(C)
Desc secret between C,Me
Auth secret between C,Me,a
Me authenticates a on Auth
C authenticates a on Auth
TID secret between C,Me,a
Price secret between C,Me,a
dig(Contract) secret between C,Me ,a

Table 12 Portion of the AnBx specification of original 3KP

Protocol: Original_3KP
Types:

Agent C,Me,A;
Certified C,Me,A;
Number TID ,Auth ,empty ,Desc ,Price ,ID,SALTC ,SALTMe ,V,VC,NONCE ,RC;
Function pk,sk,hash ,hmac ,can

Definitions:
IDC: hmac(RC,can(C));
Common: Price ,ID ,TID ,NONCE ,hmac(RC ,can(C)),hmac(SALTC ,Desc),hash(V),hash(VC);
Clear: ID,TID ,NONCE ,hash(Common),hash(V),hash(VC);
Slip: Price ,hash(Common),can(C),RC,SALTMe;
EncSlip: {Slip}pk(A);
SigMe: {hash(Common),EncSlip}inv(sk(Me));
SigC: {hash(EncSlip ,hash(Common))}inv(pk(C));
SigA: {C,Me,hash(Auth ,hash(Common))}inv(sk(A))

Knowledge: [...]
Actions:

C *->* Me: Price ,Desc
Me -> C: empty
C -> Me: SALTC ,IDC
Me -> C: Clear ,SigMe
C -> Me: EncSlip ,SigC
Me -> A: Clear ,hmac(SALTC ,Desc),EncSlip ,SigMe ,SigC
A -> Me: Auth , SigA
Me -> C: Auth ,SigA ,V,VC

Goals: [...]

Table 13 Map of AnBx communication and forward modes
exchange mode OFMC goals

Communication Modes - Tables 1,4

A→ B, (−,−) : Msg plain -

A→ B, (A,−) : Msg from A B weakly authenticates A on Msg

A→ B, (@A,−) : Msg fresh from A B authenticates A on Msg

A→ B, (−, B) : Msg secret for B A->*B: Msg

A→ B, (A,B) : Msg
from A,

secret for B
B weakly authenticates A on Msg

Msg secret between A,B

A→ B, (@A,B) : Msg
fresh from A,
secret for B

B authenticates A on Msg

Msg secret between A,B

Forward Modes - Tables 2,5

A→ B, (−, C) : Msg
B → C, ↑ (−, C) : Msg

blind A->*C: Msg

A→ B, (A,C) : Msg
B → C, ↑ (A,C) : Msg

blind
Msg secret between A,C

C weakly authenticates A on Msg

A→ B, (A,−) : C,Msg
B → C, ↑ (A,−) : C,Msg

sighted
B weakly authenticates A on Msg

C weakly authenticates A on Msg

A→ B, (A,B) : C,Msg
B → C, ↑ (A,−) : C,Msg

sighted
B weakly authenticates A on Msg

C weakly authenticates A on Msg

A->*B: Msg

A→ B, (@A,−) : C,Msg
B → C, ↑ (A,−) : C,Msg

sighted
B authenticates A on Msg

C weakly authenticates A on Msg

A→ B, (@A,B) : C,Msg
B → C, ↑ (A,−) : C,Msg

sighted
B authenticates A on Msg

C weakly authenticates A on Msg

A->*B: Msg

A→ B, (A,−) : C,Msg
B → C, ↑ (A,C) : C,Msg

sighted
secret

B weakly authenticates A on Msg

C weakly authenticates A on Msg

A→ B, (@A,−) : C,Msg
B → C, ↑ (A,C) : C,Msg

sighted
secret

B authenticates A on Msg

C weakly authenticates A on Msg

A→ B, (A,B) : C,Msg
B → C, ↑ (A,C) : C,Msg

sighted
secret

B weakly authenticates A on Msg

C weakly authenticates A on Msg

Msg secret between A,B,C

A→ B, (@A,B) : C,Msg
B → C, ↑ (A,C) : C,Msg

sighted
secret

B authenticates A on Msg

C weakly authenticates A on Msg

Msg secret between A,B,C

