
Security Protocol Specification and Verification with AnBx

Michele Bugliesia, Stefano Calzavaraa, Sebastian Mödersheimb, Paolo Modestic,1

aDipartimento di Scienze Ambientali Informatica e Statistica, Università Ca’ Foscari Venezia, Venezia, Italy
bDTU Compute, Danmarks Tekniske Universitet, Kgs. Lyngby, Denmark

cSchool of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom

Abstract

Designing distributed protocols is complex and requires actions at very different levels: from the
design of an interaction flow supporting the desired application-specific guarantees, to the selection
of the most appropriate network-level protection mechanisms. To tame this complexity, we pro-
pose AnBx , a formal protocol specification language based on the popular Alice & Bob notation.
AnBx offers channels as the main abstraction for communication, providing different authentic-
ity and/or confidentiality guarantees for message transmission. AnBx extends existing proposals
in the literature with a novel notion of forwarding channels, enforcing specific security guaran-
tees from the message originator to the final recipient along a number of intermediate forwarding
agents. We give a formal semantics of AnBx in terms of a state transition system expressed in the
AVISPA Intermediate Format. We devise an ideal channel model and a possible cryptographic
implementation, and we show that, under mild restrictions, the two representations coincide, thus
making AnBx amenable to automated verification with different tools. We demonstrate the bene-
fits of the declarative specification style distinctive of AnBx by revisiting the design of two existing
e-payment protocols, iKP and SET.

Keywords: Protocol specification, protocol verification, model-checking, e-payment

1. Introduction

The Alice & Bob notation, also known as pro-
tocol narrations, is a popular device which has
been widely adopted in the literature as the
basis of several security protocol specification
frameworks [1, 2, 3, 4, 5, 6]. In such frameworks,
the semantics of the specification languages is
defined by a translation into lower level formats,
amenable to model-checking and automated ve-
rification. Besides making verification possible,
the translation semantics provides for a clean
separation between the abstract specification of
the protocol structure and the details of its im-
plementation, which may be generated directly
from the specification [6, 7, 8, 9, 10, 11, 12]. This

Email addresses: bugliesi@unive.it (Michele
Bugliesi), calzavara@dais.unive.it (Stefano
Calzavara), samo@imm.dtu.dk (Sebastian Mödersheim),
paolo.modesti@sunderland.ac.uk (Paolo Modesti)

1Current address: Department of Computing, Engi-
neering and Technology, University of Sunderland, Sun-
derland, United Kingdom

separation has a beneficial impact on both the
specification and the implementation: on the
one hand, it helps focusing on application-level
properties, staying away from unnecessary low-
level details; on the other hand, it contributes to
strengthening the implementation and to ensure
the protocol end-to-end security, by delegating
to the compiler the selection of the most ade-
quate core implementation components.

Channel abstractions make a further step in
the same direction: they help designing dis-
tributed applications irrespective of the cryp-
tographic mechanisms needed to protect com-
munication, by interpreting channels as a secure
communication medium with built-in protection
against certain attacks (e.g., on confidentiality).

How these properties are actually ensured
represents a different design aspect, which might
not be a concern of the application designer at
all, and may be left to the compiler.

Related work. Several papers in the literature
have taken this approach, and developed it along
different directions. First, there are papers that

Preprint submitted to Journal of Information Security and Applications May 4, 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Teeside University's Research Repository

https://core.ac.uk/display/322323958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

propose the definition and implementation of
different channel abstractions, based on cryp-
tographic realizations and interaction patterns.
Abadi et al. propose a process calculus with
native constructs for authentication and discuss
a possible cryptographic implementation [13].
Adão and Fournet design a variant of the pi-
calculus with secure communication and de-
scribe its computationally sound compilation
into a concrete implementation [14]. Other au-
thors explore the idea of compiling secure pro-
tocols for distributed sessions from convenient
ML abstractions based on session types, a pow-
erful formalism used to structure interaction and
reason over communicating processes and their
behaviour [15, 16].

Another line of research, instead, is more fo-
cused on reasoning about channels and their
ideal behaviour in an abstract way. Dilloway
and Lowe present a hierarchy of secure chan-
nels and discuss their relative strengths [17].
Bugliesi and Focardi devise secure channel ab-
stractions in a process algebraic setting and rea-
son about the relative power of a low-level adver-
sary [18]. Armando et al. model different chan-
nel types using set-rewriting and linear tempo-
ral logic [19]. Kamil and Lowe adapt the Strand
Spaces model to deal with secure channels, pro-
viding different security guarantees [20, 21].

Mödersheim and Viganò consider both an ab-
stract characterization and a concrete realiza-
tion of channels, showing that both characteri-
zations coincide; the paper defines also the no-
tion of channels as goals and proves a related
compositionality result [22]. The same authors
also formalize some easy-to-check static condi-
tions that support a large class of channels and
applications and that are sufficient for vertical
security protocol composition [23]. These works
also demonstrated that Alice and Bob notation
is ideal for the combination with the channel no-
tation, and channel types were integrated both
in the languages AnB [4] and SPS [6]. In these
papers, the focus is on giving a very general
and concise semantics to Alice and Bob nota-
tion, namely defining with a few mathematically
simple principles the semantics in presence of an
arbitrary algebraic theory. With respect to this
semantics, [6] proves the correctness of a transla-
tor to formal models and implementations. Our
paper is based on this semantic machinery for
the cryptographic handling of messages, and de-
fines a rich set of channels on top of this basis.

We should mention two more related works on

channels. Gibson-Robinson employs the notion
of channel (and their properties) for the analy-
sis of multi-layer security protocols [24]. Finally,
Sprenger and Basin consider a refinement ap-
proach where cryptographic protocols are syn-
thesised from high-level security goals; one of
the steps of the refinement process builds on the
usage of channel abstractions [25, 26].

Contributions. In the present paper we develop
channels one step further, generalizing them
to capture the notion of forwarding channel,
a critical abstraction for designing and reason-
ing about complex protocols involving three or
more communicating parties. A typical scenario
for such protocols is represented by e-commerce
transactions, in which a customer requires a
merchant to certify that her payment has been
cleared out, and the merchant provides that ev-
idence by forwarding to the customer the no-
tification she received from the credit card is-
suer. Similarly, single sign-on protocols usually
involve an authenticity-preserving forwarding of
access tokens from a trusted third-party to dif-
ferent clients. This kind of interactions may be
modelled by session types, since they are typ-
ically developed on top of very expressive cal-
culi and languages, but it is not accounted for
in existing protocol narration frameworks with
channel abstractions. Including forwarding in
these frameworks is important, given their wide
popularity and ease of use.

We develop the novel concept of forwarding
channel as part of AnBx , a formal specifica-
tion language that we introduce by conserva-
tively extending the semantics of the AnB lan-
guage [4]. AnBx includes modes for all kinds
of message forwarding, where all or some of the
properties of the original transmission are pre-
served upon relaying. In our characterization,
we provide both an abstract interpretation of
channels that captures their ideal behavior, and
a cryptographic implementation, and we prove
a formal equivalence between the two charac-
terizations. Both interpretations are based on
a translation to the AVISPA Intermediate For-
mat, hence AnBx is directly available for auto-
mated verification with the different tools that
use this format, such as OFMC [27].

We demonstrate the practical effectiveness of
our approach by an analysis and re-engineering
of two real-life e-payment protocols: iKP (Inter-
net Keyed Payment [28, 29]), and SET (Secure
Electronic Transaction [30, 31, 32]). Though

2

both protocols could be expressed in their full
complexity in AnBx , we rely on the abstract
channels available in the language to factor out
the cryptographic aspects almost entirely. The
resulting protocols are more concise, easier to
understand and, interestingly, more efficient to
verify than the original versions.

In addition, the AnBx formulations
strengthen the original specifications, in
that they enjoy stronger security goals and
properties. As a byproduct of our comparative
analysis, we also find a (to the best of our
knowledge) new flaw in the original specifica-
tion of iKP, and propose an amended version
that rectifies the problem.

Moreover, the Java implementation of the re-
vised versions of iKP and SET proved to behave
well at run-time [11, 12], in some cases execut-
ing even faster than their original counterparts.
This demonstrates that the benefits of using a
language like AnBx are not limited to the design
and verification levels but they also impact the
implementation and deployment phases.

Outline of the paper. Section 2 introduces the
basics of AnBx . Section 3 focuses on the se-
mantics of the language and presents our for-
mal results. Sections 4-6 discuss our case stud-
ies. Section 7 concludes the presentation. The
AnBx implementation, together with its analyt-
ical tool and the scripts employed in the case
studies, is available online2.

New contents. This paper integrates and ex-
tends the results reported in [33] (first defini-
tion of AnBx), [4] (formal semantics of the AnB
language) and [22] (ideal behaviour and cryp-
tographic implementation of secure channels).
Section 3 is novel: in previous work the seman-
tics of AnBx was defined by a direct transla-
tion to AnB , based on a cryptographic imple-
mentation. Here we recast our cryptographic
implementation within the AVISPA Intermedi-
ate Format IF, and provide an alternative IF
characterization, based on the ideal channel be-
haviour. We then prove that the cryptographic
implementation conforms with the ideal seman-
tics. Besides representing a valuable theoreti-
cal contribution, the semantics correspondence
has practical value, as it makes both charac-
terizations equally viable for automatic analy-

2http://www.dais.unive.it/~modesti/anbx/

Protocol : Diffie-Hellman

Types :
Agent A,B;
Number g,X,Y,Msg;

Knowledge :
A : A,B,g;
B : A,B,g;

Actions :
A→ B,(A |B |−) : exp(g,X)

B→ A,(B |A |−) : exp(g,Y)

A→ B,(−|−|−) : {|A,Msg|}exp(exp(g,Y),X)

Goals :
B authenticates A on Msg
Msg secret between A,B

Figure 1: Diffie-Hellman specification in AnBx

sis within any verification framework supporting
IF. The SET case study in Section 6 is new.

2. AnBx Protocol Specifications

AnBx is a formal protocol specification lan-
guage based on the popular (informal) Alice &
Bob notation. AnBx conservatively extends the
AnB specification language [4] with a richer no-
tion of communication channel.

2.1. Protocol Types and Agent Knowledge

Protocol narrations in AnBx are built around
an underlying signature of typed identifiers that
include protocol variables, constants, and func-
tion symbols. Variables are noted with upper-
case initials and represent values that are deter-
mined dynamically, at each protocol run. Con-
stants, in turn, are noted by lower-case identi-
fiers and represent values and functions that are
invariant across different protocol executions.
As an example, consider the AnBx specification
of the Diffie-Hellman key exchange protocol in
Figure 1. Variables of type Agent are roles: here
we have the roles A and B, which get instantiated
to arbitrary concrete agents when executing the
protocol. The numbers g, X and Y , in turn, are
the (constant) group generator and the (vari-
able) random exponents of the Diffie-Hellman
key exchange.

For each role, the protocol specification de-
scribes the knowledge that an agent playing

3

that role needs to execute the protocol: this in-
directly specifies what the intruder will know
when playing one of the roles of the protocol.
Only variables of type Agent may be part of the
initial knowledge. All other variables represent
values that are chosen randomly by the partici-
pant who first uses them, e.g., in the example A
chooses X and B chooses Y .

2.2. Protocol Actions

The core of an AnBx specification consists of
the message exchanges between the participants
in an ideal, unattacked run of the protocol. Ev-
ery action has either of the two forms below:

A→ B,η : M or A @→ B,η : M,

noting standard and fresh exchanges, respec-
tively. In both cases, an agent playing role A
communicates message M to the agent playing
role B, along a communication channel that con-
veys the security guarantees specified by the ex-
change mode η . The AnBx modes are triples:

(Auth |Verifiers |Conf),

whose components may be set to an agent name
(a list of names for the Verifiers field), or un-
set, in which case they are filled with the dis-
tinguished symbol “−”. When the Conf field
is set, the action represents a confidential ex-
change, which guarantees that only the agent
named in the field has access to the message.
When the Auth field is set, the action identifies
an authentic exchange, which guarantees that
the message originates from the agent named in
the field; the Verifiers field must be set if and
only if the Auth field is set, to include a non-
empty list of agents that are entitled to verify
the authenticity of the message. Authentic ex-
changes may further specify that the message
being exchanged is freshly communicated by the
agent referenced in the Auth field: the notation

A @→ B,η : M serves that purpose. None of the
modes conveys any guarantee that the intended
recipients will eventually receive the message.

Though the intended purpose of the channel
modes is to hide low-level communication de-
tails, we remark that AnBx conservatively ex-
tends the AnB notation, making it possible to
freely intermix abstract exchanges and crypto-
graphic terms. Note, in particular, that the first
two actions in the Diffie-Hellman specification in
Figure 1 employ the channel modes to express

the authentic exchange of the two “half keys”,
while the third describes the exchange of mes-
sage Msg encrypted under the new key.

The idea to structure protocol specifications
around abstract mechanisms for secure commu-
nications is certainly not new, as we discussed
in Section 1. Among the various approaches in
the literature, the closest to ours is the “bul-
let” notation supported by AnB• [22], a spec-
ification language providing support for confi-
dential and authenticated channels. Every ex-
change mode available in AnB• can be easily
encoded in AnBx, as shown in Table 1 below;
however, AnBx provides additional expressive-
ness, as we discuss in the next section.

AnB• AnBx

Plain A→ B A→ B,(−|−|−)
Authentic A•→B A→ B,(A |B |−)
Confidential A→•B A→ B,(−|−|B)
Secure A•→•B A→ B,(A |B |B)

Table 1: Encoding of AnB• in AnBx

2.3. Forwarding Modes

In addition to the standard AnB• exchanges,
the AnBx modes allow additional generality.
Specifically, AnBx provides primitive support
for message forwarding, a feature which is not
offered by existing proposals, but constitutes
a recurrent communication pattern in practical
applications. We will provide examples of con-
crete uses of forwarding in our case studies; for
the moment, we just illustrate the concept with
some simple examples.

The first example shows how authenticity can
be preserved upon forwarding:

A→ B,(A |B,C |−) : M
B→C,(A |B,C |−) : M

The first action denotes an authentic exchange
that originates from A and is meant to be deliv-
ered to both B and C. Upon receiving M, agent B
forwards it to C in the second action, preserving
the authenticity guarantees by A. Notice that
the mode (A |B,C |−) in the second exchange
still mentions A as the source of the commu-
nication, even though the message is sent by B.
This pattern cannot be encoded in the AnB•
notation, since authentic messages are always

4

assumed to be originated by the agent specified
on the tail of the arrow.

Forwarding modes can be used also to imple-
ment a form of “blind” delivery, arising when an
agent relays messages that are intended to re-
main confidential for a third party:

A→ B,(−|−|C) : M
B→C,(−|−|C) : M

Here, A sends M to C confidentially, relying on B
to deliver the message. As in the previous case,
this protocol cannot be expressed in the AnB•
notation, in this case because secret messages
are always intended to be disclosed to the agent
specified on the head of the arrow.

Message forwarding is also available for fresh
exchanges, in various combinations. Assume
message M is sent freshly from A to B:

A @→ B,(A |B,C |−) : M

Then both the following actions:

B → C,(A |B,C |−) : M

and:
B @→ C,(A |B,C |−) : M

are legal. With the first action, M is forwarded
to C without any freshness guarantee, whereas
the second action allows C to verify the freshness
of the transmission.

2.4. Protocol Goals

AnBx protocol specifications are analyzed
and validated against a set of security goals, that
specify the properties expected of the protocol.
Like its predecessors, AnBx supports three stan-
dard kinds of goals, which we briefly review be-
low, referring the reader to [4] for full details.

• Weak Authentication goals have the form:

B weakly authenticates A on M,

and are defined in terms of non-injective
agreement on the runs of the protocol [34];

• Authentication goals have the form:

B authenticates A on M,

and are defined in terms of injective agree-
ment on the runs of the protocol, guaran-
teeing the freshness of the exchange;

• Secrecy goals have the form:

M secret between A1, . . . ,Ak,

and are intended to specify which agents
are entitled to learn message M at the end
of the protocol run.

3. AnBx Semantics

Following previous proposals [4, 22], we define
the semantics of AnBx in terms of a translation
to the AVISPA Intermediate Format IF [35].
IF is a set-rewriting calculus in which the se-
mantics of a protocol is described in terms of
a set of facts that encode the knowledge of the
honest agents and the intruder at the different
protocol steps, and a set of rewriting rules de-
scribing the state transitions of the participants
and the intruder during the protocol execution.
The rewriting rules for honest participants are
generated from the AnBx protocol specification,
while the capabilities available to the intruder
are modelled by protocol-independent rules, i.e.,
the intruder is not forced to follow the protocol
specification.

We define the translation from AnBx to IF in
several steps (Figure 2), conveniently exploiting
the existing AnB2IF compiler [4] as a black box.
Given an AnBx specification, we translate it into
a corresponding AnB specification, in which the
AnBx modes are expressed as message tags (Sec-
tion 3.1). The resulting AnB specification is fed
to the AnB2IF compiler, which extracts from
the narration the actions associated with the
protocol agents, and renders them as IF rewrit-
ing rules (Section 3.2). The resulting IF rules
still include the tags from the annotated AnB
narration: a further transformation step (Sec-
tions 3.3 and 3.4) completes the translation, ex-
ploiting the tags to produce a cryptographic IF
specification and an ideal IF specification. We
refer to these two constructions as the Crypto-
graphic Channel Model (CCM) and the Ideal
Channel Model (ICM) respectively. The two
models are contrasted and related in Section 3.5.

3.1. From AnBx to AnB

The first step of the translation transforms
each action in the AnBx narration into a cor-
responding AnB action bearing additional an-
notations, which drive the later stages of the
translation.

5

AnBx specification

A→ B,η : M
· · ·

��
AnBx -to-AnB translation

[Table 2]

��
AnB specification

A→ B : M + tags
· · ·

��
AnB2IF compiler

��
IF specification

IF + tags

vv ((
IF-to-CCM translation

[Table 4]

��

IF-to-ICM translation
[Table 4]

��
CCM specification

IF/CCM

ICM specification

IF/ICM

Figure 2: Translation from AnBx to IF/CCM and IF/ICM.

The AnBx -to-AnB translation is conceptually
simple, though the presence of the fresh modes
and their interaction with the forward modes
hide a few subtleties. Our characterization of
freshness relies on a simple mechanism by which
the sender generates a fresh nonce and the recip-
ient caches every nonce it receives, telling fresh
messages from replicas by checking whether the
received nonce is in the cache. In case of for-
warding of a fresh message, we reuse the same
nonce generated at the step which introduced
the message being forwarded.

In order to ensure that newly generated non-
ces are indeed fresh, the AnBx -to-AnB transla-
tion keeps track in a store ξ of all the protocol
variables introduced to represent the different
nonces created along the protocol steps. For-
mally, the store is a partial function from triples
of the form (A,Ṽ ,M) to nonce variables N. The

store ξ is used in the translation to AnB (Ta-
ble 2), as described below:

• At each fresh exchange which is not a for-
ward, we first select a nonce variable N that
does not occur in the range of ξ and then we
let ξ (A,Ṽ ,M) = N, where A is the name of
the source agent, Ṽ is the (non-empty) list
of verifiers and M is the message exchanged
in the AnBx specification; this information
enables the reuse of N in all the possible
future forwards of message M;

• At each authentic or secure forward action,
we lookup the domain of ξ in search of a
triple matching the Auth and the Verifiers
components of the mode, as well as the mes-
sage being forwarded; if such a triple ex-
ists, the action is a forward of a fresh ex-
change, and we include the corresponding

6

JA→ B,(−|−|−) : MKξ = A→ B : plain,M

JA→ B,(−|−| B̂) : MKξ = A→ B : ctag,blindB̂(M)

JA→ B,(Â |Ṽ |−) : MKξ = A→ B : atag, Â,Ṽ ,M,N if Â 6= A and ξ (Â,Ṽ ,M) = N
= A→ B : atag, Â,Ṽ ,M otherwise

JA→ B,(Â |Ṽ | B̂) : MKξ = A→ B : stag,blindB̂(Â,Ṽ ,M,N) if Â 6= A and ξ (Â,Ṽ ,M) = N
= A→ B : stag,blindB̂(Â,Ṽ ,M) otherwise

JA @→ B,(Â |Ṽ |−) : MKξ = A→ B : fatag, Â,Ṽ ,M,N if Â = A (with N chosen fresh in ξ)

or Â 6= A and ξ (Â,Ṽ ,M) = N

JA @→ B,(Â |Ṽ | B̂) : MKξ = A→ B : fstag,blindB̂(Â,Ṽ ,M,N) if Â = A (with N chosen fresh in ξ)

or Â 6= A and ξ (Â,Ṽ ,M) = N

Table 2: Translation from AnBx to AnB

nonce from ξ among the components of the
forwarded message, irrespective of whether
the forward is fresh or not (this choice is
technically convenient in the definition of
the translation). If the triple does not be-
long to the domain of ξ , then the source
action must be non-fresh, thus no nonce
is included in the forward of the generated
message.

• The translation is undefined when a fresh
forward is performed, but no matching
triple is found in the domain of ξ .

In a practical implementation, one would of
course either use timestamps or sequence num-
bers, in order to limit the amount of data that
the receiver has to store. We remark, however,
that these realizations are essentially equivalent
to our formal model3.

A further subtlety in the translation arises
from blind forwards, i.e., when the recipient A
of a message M differs from the final intended
receiver B, and the message M should not be ex-
posed to A. To capture the desired effect, we
wrap M inside the constructor blindB, to denote
that it should be readable only by B.

The translation clauses are listed in Table 2,
where we do not explicitly track the updating
of ξ for the sake of readability. The tags plain,

3A further possible alternative is to use challenge-
response protocols, but these generate additional net-
work traffic, which in turn would considerably com-
plicate our exposition of the two channel models and
their relationship, as well as the practical model-checking
problems induced in our tool.

ctag, atag and stag are just as in [22]: in ad-
dition, we include the new tags fatag and fstag
to account for freshly authenticated channels.
All the tags are public constants in the target
AnB specification and blindX is a function sym-
bol available to every agent (including the in-
truder) for any X . The specification is also ex-
tended with private function symbols unblindX ,
parameterized over the agents identity, which
are used to extract the confidential messages4.

As a first, simple illustration, below we give
the annotated AnB narration that results from
applying the translation to the AnBx specifica-
tion of the protocol in Figure 1:

A→ B : atag,A,B,exp(g,X)
B→ A : atag,B,A,exp(g,Y)
A→ B : plain,{|Msg|}exp(exp(g,Y),X)

As a further example, consider the following
variant of the blind forward protocol examined
earlier on:

A→ B,(−|−|C) : Msg, token
B→C,(−|−|C) : Msg, token

where we assume that the three agents use token
as a known tag marking their exchanges. The
resulting AnB narration is as follows:

A→ B : ctag,blindC(Msg, token)
B→C : ctag,blindC(Msg, token)

4In our implementation we actually rely on the
OFMC facility for asymmetric cryptography, since
the current implementation of AnB2IF does not sup-
port user-defined algebraic theories. Namely, we let
blindX (M) , {M}b(X) where b(·) is a public function sym-
bol and inv(b(X)) is known only to X .

7

Error conditions. If none of the clauses in Ta-
ble 2 applies, the translation is undefined and
an error is reported. Errors signal unexecutable
specifications, which expect the protocol partici-
pants to send messages they are unable to com-
pose, since they lack some of the required in-
formation bits. One such error condition arises
when an agent is expected to execute a fresh
forward action for a message it received with-
out any freshness guarantee, as in the following
specification:

A→ B,(A |B,C |−) : M

B @→C,(A |B,C |−) : M

Further cases of unexecutable specifications
are identified by a subsequent translation step,
specifically during the AnB -to-IF translation.
Indeed, the blindX (M) construction for confiden-
tial messages has precisely the purpose to signal
to the AnB2IF compiler that message M can
only be seen by X , so that a protocol turns out to
be unexecutable if such a blinded message needs
to be read by another agent. Consequently, a
sequence of AnBx actions like the one below is
translated successfully to AnB , but the AnB2IF
compiler will reject it as non-executable, since
after the first exchange B has access to blindC(M)
but not to M:

A→ B,(−|−|C) : M
B→C,(−|−|−) : M

3.2. From AnB to IF
The AVISPA Intermediate Format IF [35] is a

low-level language for specifying transition sys-
tems using set rewriting. We refer the reader to
[4] for full details on the translation from AnB
to IF; here, we just provide an informal overview
to make the paper self-contained.

An IF specification P = (I,R,G) consists of an
initial state I, a set of transition rules R for the
protocol participants and the intruder, and a set
of goals G that determine which states count as
attack states. Our notion of attack state coin-
cides with the one used in standard AnB [36],
defining violations to secrecy and authentica-
tion (in terms of injective or non-injective agree-
ment). A protocol is safe when no attack state
is reachable from the initial state using the tran-
sition rules.

An IF state is a set of ground facts, sepa-
rated by dots (“.”), which encode the know-
ledge of the different protocol agents. We di-
stinguish two kinds of facts: ik(m), which de-
notes that the intruder knows the term m, and

stateA (A,m1, . . . ,mn), which characterizes the lo-
cal state of an honest agent during the protocol
execution by the terms A, m1, . . . ,mn. The con-
stant A identifies the role of the agent, and,
by convention, the first message A denotes the
name of that agent5. Our formalization of the
intruder also includes a further class of facts
of the form dishonest(A) to identify the dishon-
est agents participating in the protocols. While
many tools assume that there is only a single
dishonest agent i (the “intruder”), our model
supports any number of collaborating dishonest
agents – one may still think of one intruder who
has compromised several agents and can now use
their identities.

We now discuss how the initial state is gen-
erated from an AnB specification. Let n de-
note a bounded number of protocol sessions and
let σ1, . . . ,σn be corresponding mappings from
the protocol roles R1, . . . ,Rm to concrete agent
names. Let K j stand for the initial knowledge of
the role R j, then the initial state is:

⋃
1≤i≤n,1≤ j≤m

{
{stateR j (K jσi)} if R jσi 6= i

{ik(K jσi),dishonest(i)} if R jσi = i

where i is a reserved constant denoting the iden-
tity of the intruder. The initial state thus con-
sists of the local states of the honest agents
and the initial knowledge of the intruder, which
is determined by the compromised agents; a
dishonest(i) fact is introduced when at least one
of the agents is compromised.

The transition rules of an IF specification are
of the form L | Cond =[X]⇒ R where L and R
are states, X is a set of fresh variables (rep-
resenting fresh values generated at run-time),
and Cond is a set of conditions, expressed as
(in)equalities and negated predicates. The se-
mantics of an IF rule is defined by the state
transitions it enables: from a state S the rule
enables a transition to a state S′ iff there exists
a substitution σ of the variables of L and X
such that Lσ ⊆ S, S′ = (S \Lσ)∪Rσ , and X σ

are fresh constants not occurring in S; moreover,
the conditions Condστ are true in S for every
substitution τ of the variables in Cond that do
not occur in L. We assume the ik(·) and the
dishonest(·) facts to be persistent, i.e., to be al-

5In contrast to the convention used in the AnBx
specification, IF makes a clear distinction between role
names, noted by calligraphic letters such as A , and vari-
ables of type Agent.

8

ways propagated to the right-hand side of any
transition.

The semantics of AnB is just defined by the
translation from an AnB specification to IF.
The main point of the translation is to define
the behavior of the honest agents in terms of
IF transition rules, by identifying in particu-
lar what checks must be performed on the mes-
sages they receive, and how they construct the
messages they send out. The behavior of the
intruder, in contrast, is defined by protocol-
independent rules modelling a Dolev-Yao at-
tacker, as in Table 3. We assume the existence
of a set of function symbols with an associated
arity, which is partitioned into two sets of public
and private symbols respectively.

ik(M).ik(K)⇒ ik({M}K)

ik({M}K).ik(inv(K))⇒ ik(M)

ik({M}inv(K))⇒ ik(M)

ik(M).ik(N)⇒ ik(M,N)

ik(M,N)⇒ ik(M).ik(N)

ik(M1). · · · .ik(Mn)⇒ ik(f (M1, . . . ,Mn))

Table 3: Dolev-Yao intruder rules

The first rule describes both asymmetric en-
cryption and signing, while the second one ex-
presses that the payload of a ciphertext can be
retrieved if the corresponding decryption key is
known. We use inv(·) as a private function sym-
bol, employed, e.g., to represent the secret com-
ponent of a given key-pair. The third rule allows
the attacker to learn the payload of any signed
message he knows. Then, we have rules for tu-
pling and projecting tuple elements, as well as
a rule for applying public function symbols to
known messages (while respecting their arity).
We treat constants, including agent identities,
as public functions with 0-arity. In this phase of
the translation, all the messages exchanged by
honest agents are always assumed to be medi-
ated by the intruder, i.e., every communication
happens through ik(·) facts.

We illustrate the translation from AnB to IF
with an example. Specifically, we give the IF
transition rules for roles A and B from the AnB
translation of the protocol in Figure 1. The IF
transition rules are in Figure 3 below, where for
the sake of readability we do not explicitly rep-
resent the public tags in the state facts and we

turn the side-conditions of the rules into pattern
matching:

stateA (A,B,g) =[X]⇒
stateA (A,B,g,X).ik(atag,A,B,exp(g,X))

stateA (A,B,g,X).ik(atag,B,A,GY) =[Msg]⇒
stateA (A,B,g,X ,GY,Msg).
ik(plain,{|A,Msg|}exp(GY,X))

stateB(B,A,g).ik(atag,A,B,GX) =[Y]⇒
stateB(B,A,g,GX ,Y).ik(atag,B,A,exp(g,Y))

stateB(B,A,g,GX ,Y).

ik(plain,{|A,Msg|}exp(GX ,Y))⇒
stateB(B,A,g,GX ,Y,Msg)

Figure 3: IF translation of the example of Figure 1

Notice in the second clause that A accepts any
value GY from the network, not necessarily the
result of a correct Diffie-Hellman exponentia-
tion, and applies it to encrypt the last message
of the protocol. Conversely, in the fourth clause,
B checks that the first encrypted message com-
ponent is indeed the identity of A, but it cannot
check anything about Msg, since it is freshly gen-
erated by another participant.

3.3. From IF to CCM

The Cryptographic Channel Model realizes
the AnBx channel modes by means of digital sig-
natures and public-key encryptions, represented
in a simple symbolic model of cryptography.

Honest agents. The translation of the honest
agents is based on the IF-to-CCM mapping
defined in Table 4. For rules generated by
the AnB2IF compiler, the corresponding CCM
rule results from applying the mapping IF-
CCM in the table to the intruder facts. In
the CCM code, we additionally associate two
key-pairs (pk(A), inv(pk(A))) for encryption/de-
cryption, and (sk(A), inv(sk(A))) for verifica-
tion/signing with every agent A acting as the
target of a confidential exchange or as the source
of an authentic message. These keys are only
used for encoding channels and must not appear
in the AnBx protocol specification.

The message M occurring in all clauses in Ta-
ble 4 may be an arbitrary message. The last
clause is the exception, as it only applies to vari-
ables: this clause handles the case of agents that
are expected to execute blind forward actions

9

IF CCM ICM

ik(plain,M) ik(M) ik(M)

ik(ctag,blindB(M)) ik({M}pk(B)) cnfCh(B;M)

ik(atag,A,Ṽ ,M) ik({Ṽ ,M}inv(sk(A))) athCh(A;Ṽ ;M)

ik(stag,blindB(A,Ṽ ,M)) ik({{Ṽ ,M}inv(sk(A))}pk(B)) secCh(A;Ṽ ;B;M)

ik(fatag,A,Ṽ ,M,N) ik({Ṽ ,M,N}inv(sk(A))) athCh(A;Ṽ ;M,N)

ik(fstag,blindB(A,Ṽ ,M,N)) ik({{Ṽ ,M,N}inv(sk(A))}pk(B)) secCh(A;Ṽ ;B;M,N)

ik(t,X) t ∈ {ctag,stag, fstag}, ik(X) ik(X)

X variable

Table 4: Translation from IF to CCM and ICM

for confidential or (fresh) secure messages. In
the AnB2IF translation, such agents receive the
messages to be forwarded as terms of the form
(t,X) for some variable X , as they are going to
accept any message at such steps, without in-
specting it: therefore, to obtain the correspond-
ing CCM code, we just remove the tag.

To illustrate this, consider again the anno-
tated AnB blind-forward example we examined
in Section 3.1:

A → B : ctag,blindC(Msg, token)
B → C : ctag,blindC(Msg, token)

Though token is assumed to be known to all
agents, the forward action by B is performed
irrespectively of the actual content of the mes-
sage it receives, since B is not able to perform
any check on a confidential message for C. This
is shown by the IF code produced by the trans-
lation of the exchange to the CCM:

stateA (A,B,C, token) =[Msg]⇒
stateA (A,B,C, token,Msg).ik({Msg, token}pk(C))

stateB(B,C,A, token).ik(X)

⇒ stateB(B,C,A, token,X)

stateC (C,A,B, token).ik({Msg, token}pk(C))

⇒ stateC (C,A,B, token,Msg)

In the second transition rule, B accepts every
message X provided by the intruder. (Recall
that the ik(X) fact is not repeated explicitly on
the right-hand side of the arrow, since such facts
are persistent.) Conversely, in the third rule C
can verify that the second component of the en-
cryption is indeed the expected token available
in her knowledge.

An additional measure is needed for translat-
ing to the CCM the transition rules expecting a

fresh message on input. These rules are easily
identified in the annotated AnB code, as they
have an occurrence of fatag/fstag in their in-
coming message. For any such transition rule,
let B be the receiver, and N the nonce associ-
ated with the fresh message. Now, to implement
the nonce-checking mechanism of replay protec-
tion we discussed in Section 3.1, it is enough
(i) to include the side condition not(seen(B,N))
in the transition rule, and (ii) to introduce the
fact seen(B,N) to the right-hand side of the same
rule. For instance, for the sender of the message

A @→ B,(A |B |−) : Msg, the CCM will comprise a
transition rule of the form:

. . . =[N]⇒ ik({B,Msg,N}inv(pk(A))). . . .

with N fresh. Correspondingly, on the receiver
side, the transition rule in the CCM will be
structured as follows:

. . . .ik({B,Msg,N}inv(pk(A))) | not(seen(B,N))

⇒ seen(B,N). . . .

As a result, message M is received only if the
nonce N was never seen before by the receiver:
if that is the case, and the message is accepted,
the receiver adds N to its cache of seen nonces.

Intruder rules. The intruder rules of the CCM
are just the Dolev-Yao intruder rules in Ta-
ble 3, where we assume that the symbols sk(·)
and pk(·) introduced earlier on are public func-
tions. Consequently, every agent, including the
intruder, can obtain the public keys of every
other agent as soon as its name is known (this
implies that the intruder knows all the public
keys). Since the function inv(·) providing the
ability to construct signing and decryption keys
is private, each agent A knows only her own pri-
vate keys inv(sk(A)) and inv(pk(A)). Notice that

10

private keys of dishonest agents are available to
the intruder, according to the definition of the
IF initial state in Section 3.2.

3.4. From IF to ICM

The Ideal Channel Model provides for a di-
rect representation of the communication modes
in terms of corresponding IF state facts that
encode the types of channel involved in the
exchanges. In particular, the ideal seman-
tics draws on the constructors athCh, cnfCh
and secCh, around which we define persistent
state facts that track the protocol exchanges.
Protocol-independent rewriting rules, in turn,
characterize the intended behaviour of the ideal
channels.

Honest agents. The translation of the honest
agents is based on the IF-to-ICM mapping de-
fined in Table 4. For each rule generated by
the AnB2IF compiler, the corresponding ICM
rule results from applying the mapping IF-ICM
in the table. Similarly to the CCM translation,
the last case in the table handles a blindly for-
warding agent who cannot check anything about
the message being forwarded.

For our blind forwarding example, the trans-
lation to the ICM generates the following IF
transition rules:

stateA (A,B,C, token) =[Msg]⇒
stateA (A,B,C, token,Msg).cnfCh(C;Msg, token)

stateB(B,C,A, token).ik(X)

⇒ stateB(B,C,A, token,X)

stateC (C,A,B, token).cnfCh(C;Msg, token)

⇒ stateC (C,A,B, token,Msg)

The only significant difference with respect to
the CCM is that the encrypted message for C is
replaced by a cnfCh(C; ·) channel fact.

Two comments are in order for the ICM trans-
lation. First, nonces are implicitly included in
the payload of the message when freshness is lost
upon forwarding: this choice reflects the corre-
sponding behavior in the CCM, where nonces
cannot be removed from digitally signed pack-
ets. Second, given that the state channel facts
employed in the ICM are persistent, we need ad-
ditional measures to protect against replicas in
all transition rules expecting a fresh message on
input. For that purpose, we rely on the very
same mechanism described earlier for the cryp-
tographic model, based on the seen(·, ·) facts to

tell replicas apart. Even though we could define
additional non-persistent channel facts to model
fresh channels, this choice simplifies the defi-
nition of the correspondence between the two
channel models and the related proof.

Intruder rules. The intruder rules constitute
the key component of the ideal semantics, as it
is through these rules that we define the actual
interpretation of our channel facts. Specifically,
in the ICM, the Dolev-Yao intruder rules in Ta-
ble 3 are extended with the rules reported in
Table 5 below.

ik(Ṽ ,M).dishonest(A)⇒ athCh(A;Ṽ ;M)

athCh(A;Ṽ ;M)⇒ ik(Ṽ ,M)

ik(B).ik(M)⇒ cnfCh(B;M)

cnfCh(B;M).dishonest(B)⇒ ik(M)

athCh(A;Ṽ ;M).ik(B)⇒ secCh(A;Ṽ ;B;M)

secCh(A;Ṽ ;B;M).dishonest(B)⇒ athCh(A;Ṽ ;M)

Table 5: Intruder rules for ICM

An intruder can forge a message over an au-
thentic channel only if the associated sender
identity is compromised, while he can learn ev-
ery message sent over an authentic channel. Du-
ally, an intruder can send over a confidential
channel every message he can compose, but he
can learn a message sent over a confidential
channel only if the associated receiver identity
is compromised.

In addition, we give the intruder two more
abilities for secure channels, corresponding to
those available in the CCM. Specifically, the last
two transition rules in Table 5 provide the in-
truder with the ability to secure an authentic
channel, and to drop confidentiality from secure
channels shared with compromised agents.

The two transition rules reflect the corre-
sponding intruder capabilities available in the
CCM, where an intruder can upgrade a message
on a (fresh) authentic channel to one on a (fresh)
secure channel, by encrypting it, and dually ac-
cess the contents of a secure message directed to
a compromised receiver, by decrypting it.

3.5. Relating ICM and CCM

We complete our formalization of the AnBx
semantics by analyzing the relationship between
the ICM and the CCM characterizations. In

11

particular, we define and prove correct a seman-
tic equivalence between the two models. As a
first step, we define a correspondence relation
∼ between ICM and CCM states, that relates
states that only differ in their encoding of chan-
nels. Intuitively, two ∼-correspondent states en-
code the same local knowledge for each protocol
agent and the intruder. To define this notion
easily, we first introduce an erasure operation
used to remove the cryptographic keys intro-
duced in the CCM encoding.

Definition 1 (Erasure). Given a CCM state S,
let |S| be the CCM state obtained by removing
the cryptographic keys introduced in the CCM
encoding, i.e., by deleting any element of the
form pk(A), sk(A), inv(pk(A)), inv(sk(A)) from
the agents’ knowledge (including the intruder).

The formal definition of ∼ is given below: it
relies on the simple mapping from ICM states
to CCM states shown in Table 6. Notice that
message M may include a nonce in the case of
channels providing freshness guarantees.

ICM CCM
cnfCh(B;M) ik({M}pk(B))
athCh(A;Ṽ ;M) ik({Ṽ ,M}inv(sk(A)))
secCh(A;Ṽ ;B;M) ik({{Ṽ ,M}inv(sk(A))}pk(B))

Table 6: Mapping the ICM to the CCM

Definition 2 (Corresponding States). Let S1 be
an ICM state and S2 be a CCM state. We say
that S1 and S2 are corresponding states (noted
S1 ∼ S2) if and only if there exists a bijection
from the facts in S1 to the facts in |S2| that is the
identity on all but the channel facts and behaves
on the channel facts according to the mapping
in Table 6.

Based on this definition, we now turn to the
problem of establishing a semantic equivalence
between the ICM and the CCM, proving a one-
to-one correspondence between attack states.
Given an AnBx specification P, let CCM(P) and
ICM(P) stand for its translation to the CCM and
to the ICM, respectively.

Theorem 1. Let P be an AnBx specification.
For each state S1 reachable from ICM(P) there
exists a state S2 reachable from CCM(P) such
that S1 ∼ S2.

Proof. We proceed by induction on the num-
ber of steps performed. The initial states are

equivalent modulo ∼ by definition of our trans-
lation. Let us assume, by induction hypothesis,
that S1 ∼ S2 for some reachable ICM state S1
and some reachable CCM state S2. Let S′1 be
an ICM state reachable from S1 in one step: we
show that there exists a CCM state S′2 such that
S′2 is reachable from S2 and S′1 ∼ S′2.

We proceed by a case analysis on the transi-
tion rule r applied to rewrite S1 into S′1. The
easiest case is when r is an intruder rule, which
does not involve any channel fact (e.g., a rule
like ik(M).ik(K)⇒ ik({M}K)). In this case the
very same rule can be applied also in the CCM
to obtain an equivalent state. A similar rea-
soning applies for honest agents rules, given the
definition of our translation. The most inter-
esting possibility is when r is an intruder rule
involving channel facts.

We show the cases for authentic channels as
representative of all other cases:

• Let r = ik(Ṽ ,M).dishonest(A) ⇒
athCh(A;Ṽ ;M). Since S1 ∼ S2, the in-
truder knows Ṽ and M also in S2. The
CCM encoding of the channel fact on the
right side of the rule is ik({Ṽ ,M}inv(sk(A))).
This term can be constructed by the
intruder in the CCM, since dishonest(A)
implies that inv(sk(A)) is known to the
intruder. Therefore, there is a reachable
state S′2 such that S′1 ∼ S′2.

• Let r = athCh(A;Ṽ ;M) ⇒ ik(Ṽ ,M). Since
S1 ∼ S2, the intruder knows in S2 the CCM
encoding of the channel fact, i.e., we have
ik({Ṽ ,M}inv(sk(A))) ∈ S2. The intruder can

thus learn M and Ṽ by verification of the
signature, using sk(A). Therefore, an S′2
with S′1 ∼ S′2 is reachable.

The proof for confidential and secure channels
proceeds along the same lines.

Theorem 1 ensures that, if we verify a protocol
in the CCM, then the protocol is also secure in
the ICM. The opposite direction, instead, does
not hold in general, since there is an unbounded
number of reachable CCM states which do not
have any counterpart in the ICM, due to the
presence of the cryptographic keys for encoding
channels. Still, for verification purposes, we are
interested in attack states, and we can in fact
prove a formal result about them. Carrying out
such a proof is challenging, since in principle
the intruder can abuse channel encodings inside

12

CCM states for mounting attacks which would
not work in the ICM, where such cryptographic
messages are not present at all.

The insight is interpreting such abuses as a
special case of “type-flaw” attacks, as the in-
truder is actually fooling the honest agents into
improperly using cryptographic material related
to the channel encodings. Interestingly, it is
well-known that type-flaw attacks can be sys-
tematically prevented by good protocol design,
when all message components are annotated
with sufficient information to enforce a unique
interpretation [37, 38]. These “typing results”
do not keep the intruder from sending ill-typed
messages (e.g., sending an encrypted message
in place of a nonce); rather, they ensure that
every message (part) has a unique interpreta-
tion. Then, it can be shown that if an attack
exists, also a well-typed attack exists – hence
it never helps the intruder to use ill-typed mes-
sages. Considering only well-typed attacks is a
convenient proof strategy and it bears no loss of
generality for the class of typeable protocols.

Typeable protocols. We presuppose a finite set
of basic type symbols B (like nonce, agent, etc.).
We define the set T of composed types as the
least set that contains B and that is closed un-
der the following property: if τ1, . . . ,τn ∈ T and
f is a function symbol of arity n, then also
f (τ1, . . . ,τn) ∈ T .

We note with Γ typing environments, binding
constants and variables of a protocol specifica-
tion to types, so that Γ(c)∈ B for every constant
c and Γ(X) ∈ T for every variable X . We extend
Γ to a function on arbitrary terms as follows:

Γ(f (t1, . . . , tn)) = f (Γ(t1), . . . ,Γ(tn)) .

Definition 3 (Typeable Protocol). Consider
a CCM protocol specification P with the stan-
dard operators for symmetric and asymmetric
encryption, and such that communication occurs
only via ik(·) facts (i.e., the transition rules of
the protocol agents operate on disjoint facts for
disjoint agents).

Let the set MP(P) of message patterns of P
be defined as the set of all terms of the form
ik(m) in the initial state and the transition rules
of the honest agents; we assume here that vari-
ables occurring in MP(P) are α-renamed in such
a way that no two distinct elements have a com-
mon variable (α-renaming is assumed to be type

consistent). Finally, let:

SMP(P) = {s | sv t ∈MP(P)∧ s /∈ V }
∪ {inv(k) | {m}k v t ∈MP(P)},

be the the non-variable subterms of message pat-
terns as well as all decryption keys, again under
α-renaming (v denotes the subterm relation and
V is the set of variables).

We say that the protocol P is typeable in a
typing environment Γ if for all s, t ∈ SMP(P) one
has Γ(s) = Γ(t) whenever s and t have a unifier.
We omit Γ when clear from the context.

Theorem 2. If there is an attack against a ty-
peable protocol, then there is a well-typed one,
i.e., where every variable X is instantiated with
a term t such that Γ(X) = Γ(t).

Proof. A simple adaptation of the proof in [39].
See Appendix A for details.

As usual, the notion of typing we adopt rules
out as non-typeable many specifications that are
actually perfectly alright. This happens when
several messages have similar formats. In this
case, we cannot apply Theorem 2 regarding well-
typed attacks (and invoke the main theorem be-
low). Fortunately, there is a systematic way to
make all protocols typeable, by adding tags to
tell different messages apart, a practice which is
not expensive in the implementation and does
not destroy any standard authentication and se-
crecy property.

We are finally ready to state and prove the
result of interest for our typed model. We con-
jecture that such result may hold true also for
arbitrary attacks on any given protocol, but we
do not see any viable proof strategy for this more
general setting.

Theorem 3. Let P be an AnBx specification
and let us assume a well-typed attack in CCM(P)
that leads to the attack state S2. Then there ex-
ists a reachable attack state S1 in ICM(P) such
that S1 ∼ S2.

Proof. First observe that an honest agent can
only receive messages that are a well-typed in-
stance of a message in MP(P) for the CCM vari-
ant of P. We can thus restrict the intruder
to generating only messages (and sub-messages
thereof) that honest agents can actually receive
or that are the decryption key for a message
in his knowledge. These messages are all well-
typed instances of MP(P) or inv(·) thereof.

13

Further, observe that the key functions sk(·)
and pk(·) may occur only in the channel encod-
ings in the CCM and not in the AnBx protocol
specification, hence none of the variables in P
has a type containing either of these construc-
tors. It is thus enough to assume the intruder
only uses the channel keys for composition of
messages as it is intended by the protocol, e.g.,
we can exclude double encryption with the chan-
nel key pk(·), since any other uses of these keys
would lead to ill-typed messages.

Now, we prove a stronger statement, namely
that any well-typed trace in CCM(P) has a corre-
sponding trace in ICM(P) such that every state
in the first trace corresponds (in the sense de-
fined by∼) to some matching state in the second
trace. We proceed by induction on the length of
the trace. If the trace is empty, then the con-
clusion is immediate by definition of our trans-
lation. Otherwise, assume the trace in CCM(P)
includes a transition from a state S2 to a state S′2.
By inductive hypothesis, there exists a reachable
state S1 in ICM(P) such that S1 ∼ S2. We show
that there exists an ICM state S′1 such that S′1
is reachable from S1 and S′1 ∼ S′2.

As the most interesting case, consider an
asymmetric encryption step of the intruder, en-
crypting a message M with public key K. We
thus have {ik(M), ik(K)} ⊆ S2, while ik({M}K) ∈
S′2. By the typing assumption, we have either of
the following cases:

• Neither M nor K contain pk(·) or sk(·) as
subterms, i.e., they are not related to chan-
nel facts. Then by definition of ∼ we have
that {ik(M), ik(K)} ⊆ S1 and so the same
step is possible in the ICM.

• K = pk(B) and M does not contain pk(·)
or sk(·). Then by definition of ∼ we
have ik(M) ∈ S1. The result here corre-
sponds to proving cnfCh(B;M) ∈ S′1, which
can be generated by the rule ik(B).ik(M)⇒
cnfCh(B;M) in the ICM.

• K = pk(B) and M = {Ṽ ,M0}inv(sk(A)), i.e.
the intruder turns an authentic message
from A for verifiers Ṽ into a secure mes-
sage for B. Since ik(M) ∈ S2, by def-
inition of ∼ we have athCh(A;Ṽ ;M0) ∈
S1, and thus we can reach the corre-
sponding secCh(A;Ṽ ;B;M0) ∈ S′1 by the rule
athCh(A;Ṽ ;M).ik(B) ⇒ secCh(A;Ṽ ;B;M) in
the ICM.

All other encryptions steps would produce mes-
sages that cannot be received and we excluded
these redundant steps above.

The cases for signing, analysis, and the tran-
sitions of honest agents similarly have a corre-
spondence in the ICM.

Theorems 2 and 3 can be combined as fol-
lows. Given a protocol P, we verify that its CCM
translation satisfies the assumptions of the typ-
ing result (Theorem 2): note that the conditions
to check are purely syntactical and can be mech-
anized. We then know that, if P has an attack,
then it has a well-typed one, so Theorem 3 im-
plies that there is also an attack on the ICM.
Thus, if ICM(P) is secure, then so is CCM(P).

Conceptually, the ICM is the preferential defi-
nition of our channels, as it is independent of the
specific implementation details and it focuses
solely on formalizing the behaviour of channels.
This abstract model is more suitable for proto-
col design. Moreover, for tools like ProVerif [40]
and SATMC [41], the ideal model is easier for
verification, since it is free of most of the typ-
ing problems such as those discussed above. On
the other hand, the CCM is more convenient in
conjunction with other model-checking tools like
the ones of AVISPA [27], where CCM specifica-
tions may be verified directly. Collectively, our
results have thus relevant practical consequences
for automating security verification with several
different tools.

4. Case Study: e-Payment Protocols

We now demonstrate AnBx at work on the
specification of a wide and interesting class of
protocols, namely e-payment protocols.

4.1. Introducing the Case Studies

The first case study we propose is the iKP
e-payment protocols family, showing how AnBx
lends itself to a robust and modular design that
captures the increasing level of security enforced
by the different protocols in the iKP family, de-
pending on the number of principals possess-
ing a certified signing key. Interestingly, as a
byproduct of our design and verification efforts,
we isolate a new flaw in the original iKP speci-
fication and propose a fix.

The second case study illustrates a revised
version of SET, a protocol that for its complex-
ity is considered a benchmark for protocol anal-
ysis. Here, we shift our attention to some known

14

security flaws of the protocol and show that
our AnBx variant is immune to such defects.
Notably, the case study employs fresh forward
modes to propose a simple solution to a known
issue related to payment authorization [42].

In both case studies, our revised versions of
the protocols provide stronger security guar-
antees than the original protocols. This was
largely expected, since the AnBx channel ab-
stractions convey protection on all message
components; however, we believe that our exer-
cise of revisiting existing protocols provides ev-
idence about the value of employing adequate
channel abstractions for protocol design. In
fact, our revised protocols have a much sim-
pler structure than their original specification
and, in principle, a robust implementation can
be automatically synthesised from their AnBx
narration, yielding stronger and more scalable
security guarantees with limited effort.

We postpone a detailed discussion on the ver-
ification setup until Section 4.4, and turn now
to the details of the e-payment protocols speci-
fication in AnBx.

4.2. A Basic e-Payment Scheme

We outline the bare-bone specification of an e-
payment protocol, exposing the protocol struc-
ture and the message formats common to both
our case studies.

We presuppose three principals: a Customer
C, a Merchant M and an Acquirer A, i.e., a finan-
cial institution entitled to process a payment. In
our model, each principal starts with an initial
knowledge shared with other participants. In-
deed, since most e-payment protocols describe
only the payment transaction and do not con-
sider any preliminary phase, we assume that the
Customer and the Merchant have already agreed
on the details of the transaction, including an
order description (desc) and a price. We also
assume that the Acquirer shares with the Cus-
tomer a customer’s account number (can) com-
prising a credit card number and the related
PIN. The initial knowledge of the three parties
can thus be summarized as follows: C knows
price, desc, can; M knows price, desc; and A
knows can.

The transaction can be decomposed into the
following steps:

1. C→M : Initiate

2. C←M : Invoice

(In steps 1 and 2 the Customer and
the Merchant exchange all the information
which is necessary to compose the next pay-
ment messages.)

3. C→M : Payment Request

4. M→ A : Authorization Request
(In steps 3 and 4 the Customer sends a pay-
ment request to the Merchant. The Mer-
chant uses this information to compose an
authorization request for the Acquirer and
tries to collect the payment.)

5. M← A : Authorization Response

6. C←M : Confirm
(In steps 5 and 6 the Acquirer processes
the transaction information, and then re-
lays the purchase data directly to the is-
suing bank, which then authorizes the sale
in accordance with the Customer’s account.
This interaction is not part of the narra-
tion. The Acquirer returns a response to
the Merchant, indicating success or failure
of the transaction. The Merchant then in-
forms the Customer about the outcome.)

Interestingly, steps (4) and (6) involve forward-
ing operations, since the Customer never com-
municates directly with the Acquirer, but some
credit-card information from the Customer must
flow to the Acquirer through the Merchant to
compose a reasonable payment request, while
the final response from the Acquirer must flow
to the Customer through the Merchant to pro-
vide evidence of the transaction. Steps (4) and
(6) cannot thus be expressed in existing proto-
col narration frameworks without sacrificing the
adoption of their channel abstractions: this pre-
vents a clean, abstract specification of protocols
like iKP and SET.

In addition to some elements of the ini-
tial knowledge, other information needs to be
exchanged in the previous protocol template.
First, to make transactions univocally identifi-
able, the Merchant generates a fresh transaction
ID (tid) for each transaction. Second, the Mer-
chant associates to the transaction also a date or
any appropriate timestamp. Both pieces of in-
formation must be communicated to the other
parties. The transaction is then defined by a
contract, which comprises most of the previous
information. If Customer and Merchant reach
an agreement on it, and they can prove this to
the Acquirer, then the transaction can be com-
pleted successfully. The details on the structure
of the contract vary among different protocols.

15

At the end of the transaction, the authorization
auth is then returned by the Acquirer, and com-
municated to the two other participants.

Message formats. Our protocol templates pre-
suppose the exchange of three kinds of messages:
either simple names, m, or tuples of messages
(M̃), or else message digests.

We represent digest creation simply as a term
[M] by which an agent may prove the knowl-
edge of a message M without leaking it to the
recipient, e.g., via a hash function: this is mod-
elled through a non-invertible function symbol.
We also consider digests which are resistant to
dictionary attacks, hence presupposing an im-
plementation based on a hashing scheme that
combines the message M with a key known by
the principal which must verify the digest. We
note with [M:A] a digest of a message M which
is intended to be verified by A. The symbolic
implementation of this HMAC primitive is stan-
dard, and full details can be found in the scripts
employed for our case studies.

4.3. Protocol Goals

We provide a brief overview of our security
properties of interest for e-payment protocols.
Further details about the validated protocol
goals are later reported for each case study.

A first goal we would like to meet for an e-
payment system is that all the principals agree
on the contract they sign. In terms of OFMC
goals, this corresponds to requiring that each
participant can authenticate the other two par-
ties on the contract. Moreover, the Acquirer
should be able to prove to the other two par-
ties that the payment has indeed been autho-
rized and the associated transaction performed:
in OFMC this can be represented by requiring
that M and C can authenticate A on the autho-
rization auth.

A stronger variant of the goals described
above requires that, after completion of a trans-
action, each participant is able to provide a non-
repudiable proof of the effective agreement by
the other two parties on the terms of the trans-
action. In principle, each principal may wish
to have sufficient proofs to convince an external
verifier that the transaction was actually car-
ried out as she claims. The lack of some of
these provable authorizations does not neces-
sarily make the protocol insecure, but it makes
disputes between the parties difficult to settle,

requiring to rely on evidence provided by other
parties or to collect off-line information.

Finally, we are also interested in some secrecy
goals, like verifying that the Customer’s credit
card information can is kept confidential, and
transmitted only to the Acquirer. In general,
we would like to keep the data exchanged by the
principals secret among the parties who strictly
need to access them for protocol functionality.

4.4. Experimental Setup and Performance

We verified the AnBx specifications of iKP
and SET by compiling them into their cryp-
tographic implementation, using our tool, and
running OFMC [27] on the generated CCM
translation against the described security goals.
We also encoded and verified the original ver-
sions of iKP and SET, and compared the results
with those of the revised versions.

For all the tests we ran OFMC with one and
two symbolic sessions. This bounds how many
protocol executions the honest agents can en-
gage in, while the intruder is left unbounded
thanks to the symbolic lazy intruder technique
in OFMC. In the following we say that a goal
is met only if it is satisfied in all the considered
settings. With two sessions we were unable to
complete the full verification due to search space
explosion. Therefore, we report (Table 8 and 10)
the performance results for the highest depth of
the search space we were able to complete for all
protocols within the limits of RAM available6.

Our experiments show that the revised ver-
sions of iKP, for a given depth of search, can be
verified much faster than the original ones, while
for SET the verification times for the original
and revised versions are similar.

Another aspect we consider is the execution
speed of a full run of the protocols. We built
Java implementations of these protocols auto-
matically generating them with the AnBx com-
piler [11, 12]. On both the original and revised
versions we used the same cryptographic prim-
itives and settings7. The results of the original
and revised versions are usually similar, though
the original 3KP and signed SET run slightly
faster. However, they are less secure than their
revised counterparts.

6Configuration - RAM: 8 Gb, CPU: Intel Core i7-
4700HQ 2.40 GHz, OS: Windows 8.1

7Configuration (JDK8u66) - Symmetric Encryption:
AES-128, Asymmetric Encryption: RSA-2048, Hashing:
SHA-1, HMAC: HmacSHA1

16

5. The iKP Protocol Family

The iKP protocol family was developed at
IBM Research [28, 29, 43] to support credit
card-based transactions between customers and
merchants (under the assumption that payment
clearing and authorization may be handled se-
curely off-line). All protocols in the family are
based on public-key cryptography. The idea is
that, depending on the number of parties that
own certified public key-pairs, we can achieve
increasing levels of security, as reflected by the
name of the different protocols (1KP, 2KP, and
3KP).

5.1. Protocol Narration

Despite the complexity of iKP, by abstract-
ing from cryptographic details, we can isolate a
common communication pattern underlying all
the protocols of the family. Namely, a common
template can be specified as follows:

1. C→M,η1 : [can:A], [desc:M]

2. C←M,η2 : price, tid,date, [contract]

3. C→M,η3 : price, tid,can, [can:A], [contract]

4. M→ A (decomposed into two steps to spec-
ify different communication modes)

(a) M→ A,η4a :
price, tid,can, [can:A], [contract]

(b) M→ A,η4b :
price, tid,date, [desc:M], [contract]

5. M← A,η5 : auth, tid, [contract]

6. C←M,η6 : auth, tid, [contract]

with contract ,
(price, tid,date, [can:A], [desc:M]).

By instantiating the exchange modes η j in the
previous scheme, one may generate the AnBx
variants of the different protocols in the iKP
family, achieving different security guarantees:
this is exactly what we do in Table 7. Notice
that all the considered protocols rely on blind
forwarding at step 4 to communicate sensitive
payment information from the Customer to the
Acquirer, without disclosing them to the Mer-
chant. Moreover, a forwarding operation is em-
ployed at step 6 to preserve the authenticity of
the response by the Acquirer.

5.2. Main Results of iKP Security Verification

We verified the AnBx protocols described
above and carried out a corresponding analy-
sis of the original specifications of {1,2,3}KP, as
amended in [44]. Below we refer to this amended

version as the “original” iKP, to be contrasted
with the “revised” AnBx version in Table 7. In
both cases, we ran our tests assuming that the
Acquirer is trusted, i.e., encoded as a concrete
agent a rather than as a role A; this is often
a reasonable assumption in e-payment applica-
tions. As we mentioned earlier, the AnBx speci-
fications are not just more scalable and remark-
ably simpler, but they also provide stronger se-
curity guarantees, which are detailed in Table 8
and commented further below.

During the analysis of the original 2KP and
3KP we found a (to the best of our knowledge)
new flaw. It is related to the authenticity of
the Authorization response auth that is gener-
ated by the Acquirer and then sent to the other
principals at steps 5 and 6. In particular, the
starred goals in Table 8 are met only after chang-
ing the protocol by adding the identities of Mer-
chant and Customer inside the signature of the
Acquirer in the original specification. In 2KP,
since the Customer is not certified, this can be
done with an ephemeral identity derived from
the credit card number.

It is worth noting that, after the completion
of the revised and the amended original 3KP,
each party has evidence of transaction autho-
rization by the other two parties, since the pro-
tocol achieves all the authentication goals that
can ideally be satisfied, according to the num-
ber of certified principals. Moreover, our revised
3KP, with respect to the original version, pro-
vides the additional guarantee of preserving the
secrecy of the authorization response Auth.

In contrast, the original 3KP protocol, the
strongest proposed version, fails in two authen-
tication goals: A can only weakly authenticate
M and C on [contract]. Luckily, if the transac-
tion ID tid is unique, this is only a minor prob-
lem, since [contract] should also be unique, i.e.,
two different contracts cannot be confused.

6. SET Purchase Protocol

Secure Electronic Transaction (SET) is a
family of protocols for securing credit card
transactions over insecure networks. This stan-
dard was proposed by a consortium of credit
card companies and software corporations led
by Visa and MasterCard and involving compa-
nies like IBM, Microsoft, Netscape, RSA and
Verisign. In the present paper we consider the
SET purchase protocol as outlined in [32]. In
the following we distinguish a signed and an

17

mode/step → 1KP 2KP 3KP

η1 C→M (−|−|−) (−|−|M) @(C |M |M)

η2 C←M (−|−|−) @(M |C |−) @(M |C |C)

η3 C→M (−|−|A) (−|−|A) (C |A |A)

η4a M→ A (−|−|A) (−|−|A) (C |A |A)

η4b M→ A (−|−|A) @(M |A |A) @(M |A |A)

η5 M← A @(A |C,M |−) @(A |C,M |M) @(A |C,M |M)

η6 C←M (A |C,M |−) (A |C,M |−) (A |C,M |C)

certified
agents

A M,A C,M,A

Table 7: Exchange modes for the revised iKP e-payment protocol

1KP 2KP 3KP
Goal O R O R O R

can secret between C,A + + + + + +

A weakly authenticates C on can - - - - + +

desc secret between C,M + + + + + +

auth secret between C,M,A - - - - - +

price secret between C,M,A - - - - - -

M authenticates A on auth +* + +* + +* +

C authenticates A on auth + + + + + +

A authenticates C on [contract] - - - - w +

M authenticates C on [contract] - - - - + +

A authenticates M on [contract] - - + + w +

C authenticates M on [contract] - - + + + +

C authenticates A on [contract],auth + + + + + +

M authenticates A on [contract],auth +* + +* + +* +

verification time 9h10m 2h08m 12h39m 3h57m 59h36m 4h02m

execution time 1.17s 1.16s 1.23s 1.22s 1.16s 1.28s

* goal satisfied only after fixing the definition of SigA [29]
w = only weak authentication

Table 8: Performance and security goals satisfied by Original and Revised iKP

unsigned version of SET : in the former all the
parties possess certified key-pairs, while in the
latter the Customer does not.

6.1. Protocol Narration

Given the complexity of SET, to ease the com-
parison with other works on such protocol, in
this presentation the information exchanged by
the principals is denoted with the names com-
monly used in SET specifications. We introduce
some basic concepts of the protocol by simply

providing a mapping of the exchanged data to
the corresponding information in the bare-bone
specification presented in Section 4: this should
clarify the role of most of the elements. We can
identify PurchAmt with price, OrderDesc with
desc, pan with can and AuthCode with auth.
The initial knowledge of the three parties can
then be summarized as follows: C knows Pur-
chAmt, OrderDesc and pan; M knows PurchAmt
and OrderDesc; A knows pan.

During the protocol run, the principals gen-

18

erate some identifiers: LIDM is a local trans-
action identifier that the Customer sends to
the Merchant, while the Merchant generates
another session identifier XID ; we denote the
pair (LIDM,XID) with TID. Finally, we com-
plete our abstraction by stipulating OIdata =
OrderDesc and PIdata = pan; we let HOD =
([OIdata:M], [PIdata:A]). The latter contains
the evidence (digest) of the credit card that the
Customer intends to use, and the evidence of the
order description that will later be forwarded to
the Acquirer. In our model HOD plays the role
of the dual signature, a cryptographic mecha-
nism central to SET, which is employed to let
the Merchant and the Acquirer agree on the
transaction without giving any of them full view
of the details. Namely, as we said, the Merchant
does not need the customer’s credit card number
to process an order, but he only needs to know
that the payment has been approved by the Ac-
quirer. Conversely, the Acquirer does not need
to be aware of the details of the order, but he
just needs evidence that a particular payment
must be processed.

Although many papers on SET [32, 45, 42]
focus their attention on the signed version of
the protocol, again we note that both versions
expose a common pattern which allows for an
easy specification in AnBx. The narration de-
picting the common structure of the protocols
is reported below:

1. C→M,η1 : LIDM

2. M→C,η2 : XID

3. C→M (decomposed in two steps to specify
different communication modes)

(a) C→M,η3a : TID,HOD

(b) C→M,η3b :
TID,PurchAmt,HOD,PIdata

4. M→ A (decomposed in two steps to specify
different communication modes)

(a) M→ A,η4a :
TID,PurchAmt,HOD,PIdata

(b) M→ A,η4b : TID,PurchAmt,HOD

5. A→M,η5 : TID,HOD,AuthCode

6. M→C,η6 : TID,HOD,AuthCode

Table 9 shows the communication modes we
specify to instantiate the previous protocol tem-
plate to our revised variants of the unsigned and
signed versions of SET.

6.2. Main Results of SET Security Verification

We verified the AnBx specifications of the
SET purchase protocol and carried out a corre-
sponding analysis of the original specifications,
as reported in [32]. In general, our versions
of the protocols satisfy stronger security guar-
antees than the original ones [32], as reported
in Table 10. It is worth noting, in particular,
that our revised versions do not suffer from two
known flaws affecting the original SET specifi-
cation.

The first flaw [32] involves the fifth step of
the protocol, where it is not possible to univo-
cally link the identity of the Acquirer and the
Merchant with the on-going transaction and the
authorization code. Namely, the original mes-
sage should be amended to include the identity
of the merchant M, otherwise the goal “C au-
thenticates M on AuthCode” cannot be satisfied.
In our revised version the exchange at step 5 is
automatically compiled into a message includ-
ing the identity of both the Merchant and the
Customer, so the problem is solved.

The same implementation also prevents the
second flaw, presented in [45]. In that paper
the specification of the protocol is more detailed
than in [32], as it introduces an additional field
AuthRRTags, which includes the identity of the
Merchant. We tested with OFMC the version
of SET presented in [45] and verified the pres-
ence of the flaw, namely an attack against the
purchase phase, which exploits a lack of verifi-
cation in the payment authorization process. It
may allow a dishonest Customer to cheat on an
honest Merchant when collaborating with an-
other dishonest Merchant. The attack is based
on the fact that neither LIDM nor XID can be
considered unique, so they cannot be used to
identify a specific Merchant. Therefore the cus-
tomer can start a parallel purchase with an ac-
complice, playing the role of another merchant,
and make the Acquirer authorize the payment
in favor of the accomplice. Here, again the goal
“C authenticates M on AuthCode” fails.

During our analysis we also verified that both
the original specifications [32, 45] fail to ver-
ify the goals “C authenticates A on AuthCode”
and “C authenticates M on contract,AuthCode”.
To overcome this problem the protocol must be
fixed in the sixth (and final) step, as already
outlined in [42]. This issue also leads us to more
interesting considerations on how to prove the
authorization of the transaction.

19

mode/step → unsigned SET signed SET

η1 C→M (−|−|M) @(C |M |M)

η2 C←M @(M |C |−) @(M |C |C)

η3a C→M (−|−|M) @(C |M |M)

η3b C→M (−|−|A) (C |A |A)

η4a M→ A (−|−|A) (C |A |A)

η4b M→ A @(M |A |A) @(M |A |A)

η5 M← A @(A |C,M |M) @(A |C,M |M)

η6 C←M @(A |C,M |−) @(A |C,M |C)

certified
agents

M,A C,M,A

Table 9: Exchange modes for the revised SET e-payment protocol

unsigned SET signed SET
Goal O R O R

pan secret between C,A + + + +

A weakly authenticates C on pan - - + +

OrderDesc secret between C,M + + + +

PurchAmt secret between C,M,A - - + +

AuthCode secret between C,M,A - - - +

M authenticates A on AuthCode + + + +

C authenticates A on AuthCode - + - +

C authenticates M on AuthCode +* + +* +

A authenticates C on contract - - w w

M authenticates C on contract - - + +

A authenticates M on contract - + - +

C authenticates M on contract + + + +

C authenticates A on contract,AuthCode - + - +

M authenticates A on contract,AuthCode + + + +

verification time 2h28m 2h22m 2h01m 2h05m

execution time 1.20s 1.19s 1.10s 1.19s

* goal satisfied only after fixing step 5 as in [32]

w = only weak authentication

for revised SET : contract = PriceAmt,TID,[PIData:A], [OIData:M]

for original SET : contract = PriceAmt,TID,hash(PIData),hash(OIData)

Table 10: Performance and security goals satisfied by Original and Revised SET purchase protocol

Proving authorization of the transaction. The
previous problem arises from the fact that the
Customer does not have any evidence of the ori-
gin of AuthCode by the Acquirer and she in-
stead has to rely only on information provided
by the Merchant. For example, giving to the

Customer a proof that the Acquirer authorized
the payment requires substantial modification of
the sixth step of the protocol. In fact, instead
of letting the Merchant sign a message for the
Customer, we exploit the AnBx forward mode to
bring to the Customer the authorization of the

20

payment signed directly by the Acquirer. It is
worth noticing that, employing a fresh forward
mode in the sixth step, we can achieve the de-
sired strong authenticity goal on the pair, even
though the transaction identifier is not unique.

We can then confirm the results outlined in
[42], showing that, while iKP meets all the non-
repudiation goals, the original specification of
SET does not. It is important to notice that, to
achieve non-repudiation, each participant must
have sufficient proofs to convince an external
verifier that the transaction was actually car-
ried out as she claims. A way to obtain this is
to assume that the authentication is obtained
by means of digital signatures computed with
keys which are valid within a Public Key In-
frastructure and are issued by a trusted third
party (Certification Authority). Although this
limits the way authentic channels in AnBx could
be implemented, in practice it does not repre-
sent a significant restriction, since in the con-
sidered protocols digital signatures are the stan-
dard means meant to achieve authentication.

7. Conclusions

We presented AnBx , the currently most ex-
pressive Alice & Bob-style language. The distin-
guishing key-feature of the language is a small,
yet powerful, extension of the popular chan-
nel abstraction to support message forwarding,
which is critical for designing and reasoning
about complex protocols involving three or more
parties. We analysed the formal details related
to the definition of the language, and we proved
a semantic equivalence between the ideal be-
haviour of our channels and a simple crypto-
graphic implementation.

Considering alternative implementations of
our channel abstractions (i.e., different CCMs)
is certainly possible and worth exploring in
the future, but it would require us to adapt
the proof of our equivalence results. For in-
stance, it seems that using a challenge-response
mechanism rather than sequence numbers to
achieve freshness would make the equivalence
proof quite harder.

We have demonstrated the usefulness of the
language in two case studies from the e-payment
area, namely iKP and SET, and we argue that
the abstraction from low-level security mecha-
nisms turns out to be helpful for protocols de-
signers. Our compiler from AnBx to IF is avail-

able online8 along with the related documenta-
tion and the source code of our case studies.

Acknowledgements

This work was partially supported by the
MIUR Projects SOFT (Security Oriented For-
mal Techniques), IPODS (Interacting Pro-
cesses in Open-ended Distributed Systems) and
CINA (Compositionality, Interaction, Negoti-
ation and Autonomicity) and by EU FP7
Projects no.216471, AVANTSSAR (Automated
Validation of Trust and Security of Service-
oriented Architectures) and no.318424, Fu-
tureID: Shaping the Future of Electronic Iden-
tity.

The authors would like to thank Luca Vi-
ganò, David Basin, Benedikt Schmidt, Thomas
Groß and the anonymous reviewers for their
helpful comments.

References

[1] G. Lowe, Casper: a compiler for the anal-
ysis of security protocols, Journal of Com-
puter Security 6 (1) (1998) 53–84.

[2] G. Denker, J. Millen, H. Rueß, The
CAPSL integrated protocol environment,
Tech. Rep. SRI-CSL-2000-02, SRI Interna-
tional, Menlo Park, CA (2000).

[3] F. Jacquemard, M. Rusinowitch, L. Vi-
gneron, Compiling and verifying security
protocols, in: LPAR’00, LNCS 1955, 2000,
pp. 131–160.

[4] S. Mödersheim, Algebraic Properties in Al-
ice and Bob Notation, in: ARES’09, 2009,
pp. 433–440.

[5] Y. Chevalier, M. Rusinowitch, Compiling
and securing cryptographic protocols, In-
formation Processing Letters 110 (3) (2010)
116 – 122.

[6] O. Almousa, S. Mödersheim, L. Viganò,
Alice and Bob: Reconciling formal mod-
els and implementation, in: Programming
Languages with Applications to Biology
and Security, Vol. 9465 of LNCS, 2015, pp.
66–85.

8http://www.dais.unive.it/~modesti/anbx/

21

[7] U. Carlsen, Generating formal crypto-
graphic protocol specifications, in: IEEE
S&P’94, 1994, pp. 137–146.

[8] J. Millen, F. Muller, Cryptographic pro-
tocol generation from CAPSL, Tech. Rep.
SRI-CSL-01-07, SRI International (2001).

[9] M. Jakobsson, K. Sako, R. Impagliazzo,
Designated verifier proofs and their appli-
cations, in: EUROCRYPT’96, 1996, pp.
143–158.

[10] J. N. Quaresma, C. W. Probst, Protocol
implementation generator, in: NordSec’10,
2010.

[11] P. Modesti, Efficient Java code genera-
tion of security protocols specified in An-
B/AnBx, in: STM’14, 2014, pp. 204–208.

[12] P. Modesti, Anbx: Automatic generation
and verification of security protocols imple-
mentations, in: FPS’15, Vol. 9482 of LNCS,
Springer, 2016.

[13] M. Abadi, C. Fournet, G. Gonthier, Au-
thentication primitives and their compila-
tion, in: POPL’00, ACM New York, NY,
USA, 2000, pp. 302–315.

[14] P. Adao, C. Fournet, Cryptographically
sound implementations for communicat-
ing processes, in: ICALP’06, Vol. 4052,
Springer, 2006, pp. 83–94.

[15] R. Corin, P.-M. Dénielou, C. Fournet,
K. Bhargavan, J. J. Leifer, Secure imple-
mentations of typed session abstractions,
in: CSF’07, IEEE, 2007, pp. 170–186.

[16] K. Bhargavan, R. Corin, P.-M. Dénielou,
C. Fournet, J. J. Leifer, Cryptographic pro-
tocol synthesis and verification for multi-
party sessions, in: CSF’09, 2009.

[17] C. Dilloway, G. Lowe, On the specification
of secure channels, in: WITS’07, 2007.

[18] M. Bugliesi, R. Focardi, Language based se-
cure communication, in: CSF’08, 2008, pp.
3–16.

[19] A. Armando, R. Carbone, L. Compagna,
LTL model checking for security protocols,
in: CSF’07, 2007, pp. 385–396.

[20] A. Kamil, G. Lowe, Specifying and mod-
elling secure channels in strand spaces, in:
FAST’09, 2009.

[21] A. Kamil, G. Lowe, Understanding ab-
stractions of secure channels, in: FAST’11,
Springer, 2011, pp. 50–64.

[22] S. Mödersheim, L. Viganò, Secure
pseudonymous channels, in: M. Backes,
P. Ning (Eds.), ESORICS’09, Vol. 5789 of
LNCS, Springer, 2009, pp. 337–354.

[23] S. Mödersheim, L. Viganò, Sufficient con-
ditions for vertical composition of security
protocols, in: ASIA CCS ’14, ACM, 2014,
pp. 435–446.

[24] T. Gibson-Robinson, Analysing layered se-
curity protocols, Ph.D. thesis, University of
Oxford (2013).

[25] C. Sprenger, D. Basin, Developing security
protocols by refinement, in: CCS’10, ACM
Press, 2010.

[26] C. Sprenger, D. Basin, Refining key estab-
lishment, in: CSF’12, Vol. 0, IEEE Com-
puter Society, Los Alamitos, CA, USA,
2012, pp. 230–246.

[27] D. Basin, S. Mödersheim, L. Viganò,
OFMC: A symbolic model checker for secu-
rity protocols, International Journal of In-
formation Security 4 (3) (2005) 181–208.

[28] M. Bellare, J. Garay, R. Hauser,
A. Herzberg, H. Krawczyk, M. Steiner,
G. Tsudik, M. Waidner, iKP a family
of secure electronic payment protocols,
in: 1st USENIX Workshop on Electronic
Commerce, 1995.

[29] M. Bellare, J. Garay, R. Hauser,
A. Herzberg, H. Krawczyk, M. Steiner,
G. Tsudik, E. Van Herreweghen, M. Waid-
ner, Design, implementation, and deploy-
ment of the iKP secure electronic payment
system, IEEE Journal on Selected Areas in
Communications 18 (4) (2000) 611–627.

[30] G. Bella, F. Massacci, L. Paulson, Verify-
ing the SET registration protocols, IEEE
Journal on Selected Areas in Communica-
tions 21 (1) (2003) 77–87.

22

[31] G. Bella, F. Massacci, L. Paulson, An
overview of the verification of SET, Interna-
tional Journal of Information Security 4 (1)
(2005) 17–28.

[32] G. Bella, F. Massacci, L. Paulson, Verify-
ing the SET purchase protocols, Journal of
Automated Reasoning 36 (1) (2006) 5–37.

[33] M. Bugliesi, P. Modesti, AnBx - Secu-
rity protocols design and verification, in:
ARSPA-WITS’10, Springer-Verlag, 2010,
pp. 164–184.

[34] G. Lowe, A hierarchy of authentication
specifications, in: CSFW’97, IEEE Com-
puter Society Press, 1997, pp. 31–43.

[35] AVISPA, Deliverable 2.3: The In-
termediate Format, available at
www.avispa-project.org (2003).

[36] S. Mödersheim, Algebraic properties in
Alice and Bob notation (extended ver-
sion), Tech. Rep. RZ3709, IBM Zurich Re-
search Lab, domino.research.ibm.com/

library/cyberdig.nsf (2008).

[37] J. Heather, G. Lowe, S. Schneider, How to
prevent type flaw attacks on security pro-
tocols, Journal of Computer Security 11 (2)
(2003) 217–244.

[38] M. Arapinis, M. Duflot, Bounding messages
for free in security protocols, in: V. Arvind,
S. Prasad (Eds.), FSTTCS 2007, Vol. 4855
of LNCS, Springer, New Delhi, India, 2007,
pp. 376–387.

[39] S. Mödersheim, Deciding security for a
fragment of ASLan, in: ESORICS’12, 2012,
pp. 127–144.

[40] B. Blanchet, An efficient cryptographic
protocol verifier based on Prolog rules, in:
CSFW’14, IEEE Computer Society, Cape
Breton, Nova Scotia, Canada, 2001, pp. 82–
96.

[41] A. Armando, L. Compagna, SAT-based
Model-Checking for Security Protocols
Analysis, International Journal of Informa-
tion Security 6 (1) (2007) 3–32.

[42] E. Van Herreweghen, Non-repudiation in
SET: Open issues, in: FC’01, LNCS,
Springer, 2001, pp. 140–156.

[43] D. O’Mahony, M. Peirce, H. Tewari, Elec-
tronic payment systems for e-commerce,
Artech House Publishers, 2001.

[44] K. Ogata, K. Futatsugi, Formal analysis of
the iKP electronic payment protocols, in:
ISSS’02, LNCS, Springer, 2003, pp. 441–
460.

[45] S. Brlek, S. Hamadou, J. Mullins, A flaw in
the electronic commerce protocol SET, In-
formation Processing Letters 97 (3) (2006)
104–108.

[46] J. K. Millen, V. Shmatikov, Constraint
solving for bounded-process cryptographic
protocol analysis, in: CCS’01, ACM Press,
2001, pp. 166–175.

[47] M. Rusinowitch, M. Turuani, Protocol inse-
curity with a finite number of sessions, com-
posed keys is NP-complete, Theor. Com-
put. Sci. 1-3 (299) (2003) 451–475.

[48] D. Basin, S. Mödersheim, L. Viganò,
OFMC: A symbolic model checker for secu-
rity protocols, International Journal of In-
formation Security 4 (3) (2005) 181–208.

Appendix A. Proof of Theorem 2

The idea behind the proof is to abuse a pop-
ular verification technique as a proof argument,
namely the symbolic constraint-based approach
that we call “the lazy intruder” [46, 47, 48, 39].
The intuition behind the lazy intruder is as fol-
lows. Every trace can be seen as an instance
of a symbolic trace, i.e., a sequence of transition
rule applications where we delay the unification
of left-hand side ik(m) facts and leave variables
in there uninstantiated. Instead, we keep a con-
straint M ` m, where M is the set of messages
the intruder knows at that state. Such a con-
straint expresses that the intruder must be able
to generate the message m from knowledge M.
Thus, these constraints before reduction contain
only messages m, or instances thereof, for which
ik(m) occurs in the IF specification of the pro-
tocol P (in the transition rules of the honest
agents). It can be shown that, if there is an
attack trace, then there is a corresponding sym-
bolic trace with satisfiable intruder constraints,
hence in the proof we can focus without loss of
generality on such symbolic traces.

23

The lazy intruder technique is based on a cal-
culus of constraint reduction rules for checking
their satisfiability (and, if satisfiable, determine
a solution). There are three constraint reduc-
tion rules: Generate (to compose new mes-
sages from public function symbols), Analyze
(to obtain all subterms of known messages by
decryption and projection) and Unify, which
states that a possible solution to the constraint
M ` t exists if there is a s ∈M, both s and t are
not variables, s and t have the most general uni-
fier σ , and all other constraints are satisfiable
under σ . The formal constraint reduction rules
are reported below, where we let φ range over
M ` t constraints or conjunctions thereof. For
the Analyze rule we give only the example of
asymmetric decryption, other rules are similar.

Unify (σ ∈mgu(s, t) and s, t /∈ V)

φσ

φ ∧ (M∪{s} ` t)

Generate (f public)

φ ∧ (M ` t1)∧ . . .∧ (M ` tn)

φ ∧ (M ` f (t1, . . . , tn))

Analyze ({m}k ∈M)

φ ∧ (M ` inv(k))∧ (M∪{m} ` t)
φ ∧ (M ` t)

We can finally prove the theorem.

Restatement of Theorem 2. If there is an
attack against a typeable protocol, then there is
a well-typed one, i.e., where every variable X is
instantiated with a term t such that Γ(X) = Γ(t).

Proof. Consider an arbitrary attack trace and
consider its corresponding symbolic trace. By
the completeness of the constraint reduction,
we know that the constraint reduction will find
a solution (i.e., a substitution solving all con-
straints). We show that any such solution is
well-typed. Hence, the existence of an attack
implies the existence of a well-typed one.

Technically, we actually need to prove a
stronger result by induction over the entire con-
straint reduction: we prove that every message
occurring in the constraints, and any arbitrary
subterm of it, is either a variable or an instance
of a message in SMP(P), and that all variables
are only instantiated in a well-typed way.

Let us first consider a protocol P such that no
element of MP(P) is a variable, i.e., P does not

involve any step where a “bare value” is trans-
mitted, but all messages are composed terms
or constants. In this case, MP(P) ⊆ SMP(P),
i.e., the union of the initial intruder knowledge
and the messages exchanged in P is included in
SMP(P). The Generate and Analyze cases
are straightforward to handle, since, in particu-
lar, such rules do not instantiate any variable.
In the Unify case, both s and t must be well-
typed instances of elements of SMP by induction
hypothesis, since they are not variables. Given
that s and t have a unifier, the typeability as-
sumption implies Γ(s) = Γ(t), hence also all cor-
responding subterms of s and t must have the
same type by definition of Γ, and the substitu-
tion σ is hence well-typed.

Finally, we extend the proof to any protocol P
we excluded above, i.e., such that there exists a
variable in MP(P). Let P′ be a modification of P
where every “bare variable” X is replaced by the
composed term (t,X) for some fresh tag t that is
known to the intruder. Assume now that P has
an attack, then also P′ has an attack, since the
previous wrapping does not enforce any protec-
tion. By construction P′ satisfies the hypotheses
of the previous point, hence for any attack on P′

there is a well-typed attack on P′, but it is im-
mediate that such well-typed attack works also
on P when removing the tag t.

24

