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Abstract. The EMVCo3organisation (i.e. MasterCard, Visa, etc.) protocols fa-
cilitate worldwide interoperability of secure electronic payments. Despite recent
advances, it has proved difficult for academia to provide an acceptable solution to
construction of secure applications within industry’s constraints. In this paper, we
describe a methodology we have applied to EMV1. It involves domain specific
languages and verification tools targeting different analysis of interest. We are
currently collaborating with EMVCo on their upcoming EMV R©2nd Generation
(EMV2) specifications.

1 Introduction

In principle, payment protocols are designed to be secure, with adequate and effec-
tive cryptographic methods employed to ensure confidentiality, integrity, authentication,
identification, etc. In practice, relevant attacks [9, 17, 19, 18] still occur in the industry,
with financial fraud related to payment systems rising in the last few years: for exam-
ple, in the UK, there has been a 80 percent increase in value of losses between 2011 and
2016, when the fraud losses were £618 million [24].

EMV, commonly termed Chip & PIN, is the dominant card based payment technol-
ogy and is managed by EMVCo (www.emvco.com). In 2015, their protocols generated
US$433 billion in payments worldwide, protecting users from fraud and identity theft.
Their protocols were designed to operate with cards being physically inserted into POS-
terminal/ATM and used a wired connection to communicate. The introduction of EMV
contactless made payments more convenient but created new security challenges as a
wireless interface has been added to EMV cards and PIN entry has been waived.

More in general, with the recent publication of PSD2 [13] and Open Banking APIs
(openbanking.org.uk), regulation is pushing innovation. The payment/banking industry
is being driven towards novel complex (cloud-based) protocols. Potential threats from
systematic fraud are real. Thus, current development strategies would benefit from early
safety-critical mindset.

Despite recent advances [15, 14], adequate solutions suitable for industry’s prob-
lems, within its constraints, are still lacking. Solutions developed in academia are too
complex to be used effectively by practitioners, who generally prefer to describe re-
quirements in a way that is understandable by a wide range of IT professionals. There-
fore, it is common to find in software requirement specification documents, even for

3 EMV R©is a registered trademark or trademark of EMVCo, LLC in the US and other countries.
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large application such as EMV, an informal/semi-formal description based on natural
language sentences and diagrams.

Analysis of EMV protocols is non-trivial due to the complexity of its require-
ments [22, 23]. They have to incorporate competing (and conflicting) interests from
multiple issuers and from financial regulators worldwide. The introduction of contact-
less payments has significantly increased its complexity. While EMV contact (Chip &
PIN) specification describes a unified payment protocol sequence (kernel) for all card
types, the specification for contactless payments contains seven protocol sequences, one
per card issuer. Complexity is reflected in expansion from four books (765 pages) for
contact transactions [22], to additional ten books (1627 pages) for contactless [23].

This paper presents a new methodology used for the analysis of the safety and se-
curity of EMV’s contactless protocols. It is illustrated by considering the security of
contactless transaction protocols as stand-alone processes and the wider impact of con-
tactless technology. Our key contribution is a structured analysis methodology involv-
ing various languages and tools that is tailored to EMV audiences/developers (i.e. ac-
ceptable to the industry partners we have been working with). Such methodology has
identified and demonstrated the impact of vulnerabilities in the EMV1 protocols.

Related Work. Several works have investigated on various aspects of the EMV protocol
suite. Some researchers focused on attacks on existing implementations. The discovery
in [39] allows attackers to buy goods from retailers, whereas the discovery in [9] al-
lows attackers to extract money from the victim’s account. Relay attacks [17, 18] allow
fraudulent transactions to be collected from contactless cards without the knowledge of
the cardholder. In the area of formal methods, the first comprehensive formal descrip-
tion of EMV [15] used an F# model translated to Applied-pi [6], in order to make it
amenable for analysis with the ProVerif verifier [7]. This analysis confirmed all known
weaknesses without revealing any new vulnerabilities. [14] proposes an open speci-
fication of an EMV-compliant protocol that can be securely used on mobile devices,
even if infected by malicious applications. The model is validated with Tamarin [40].
Other works [10, 30] have analysed cryptographic aspects, focusing on protocols for
secure key agreement and channel establishment. Finally, we worked on a Z encoding
of Kernel 3 [25] that lead to new discoveries [18, 20].

Contribution. Our work complements other formal approaches, as we benefit from
existing verification techniques (e.g. model checking), but provides additional insights
that cannot be captured by protocol verifiers. For example, the capability to formally
specify user-defined functions in VDM-SL [33] and validate a model, in the protocol
specification language AnB [36], against them. We also abstract from the underlying
cryptographic aspects, assuming specific primitives are made available according to the
protocol specification.

We use abstract (uninterpreted) functions in AnB to represent control flow and
problem-related state updates, which the declarative nature of the AnB language lacks.
Such functions can be formally specified, and are indeed implemented (i.e. function for
public key of agents pk in AnB is only defined by different tools’ implementations).
This approach is inspired in their successful use by the CSP model checker FDR, and
SMT-Lib decision procedures and predicate solvers. Beyond their implementation in
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different tools, we formally specify the functions behaviour in VDM, the same lan-
guage that is being used here for the formal specification of AnB. This is different from
other approaches [1, 2, 5], which compile AnB to different languages (e.g. CSP [32],
operational strands [31], IF [3]), with a formally specified compilation strategy/set of
rules which consider uninterpreted functions only symbolically.

In our case, as with the semantics of AnB, these functions are also specified to be ex-
ecutable, hence enabling symbolic simulation of various protocols of interest. Presence
of such functions does not compromise security goals checked, given that the intruder
has access to them just like it has to access to symbolic public (non-cryptographic)
functions in the abstract model. Therefore, all the intruder can do is to ask the environ-
ment to perform the computation and get the result. We think this is important to set the
scene and clarify the scope of this methodology.

Outline. In §2, we present an overview of our methodology, in §3 we introduce the
specification language AnB through a simplified version of the EMV1 Kernel and
present the method applied to the full Kernel 3 including key user-defined functions
linked to the underlying verification environment in VDM. §4 presents our findings,
and §5 summarises our results and discusses future work.

2 Methodology

Working with the payment protocols industry motivated the development of the method-
ology described here. It is a variation and extension of a successful application of rig-
orous/formal reasoning [18, 21] applied top-down.

Our approach applies model-based techniques for the formal specification and ver-
ification of protocol requirements and designs. It focuses on the construction by proto-
col designers of a declarative description of protocol sequences using the AnB (Alice
& Bob) notation [36] (see §3.1). This model is used to investigate the consistency of
requirements, identify descriptive errors, and generate test cases for our POS-terminal
emulator capable of performing transactions with both EMV contact and contactless
protocols.

This has proved to be effective in both documenting decisions precisely [20,
21, 25], and detecting significant protocol flaws early in the development pro-
cess [19, 18], way before deployment or actual implementations. Specifically, it
is a variation of a successful industry approach by Praxis (now Altran UK, see
www.adacore.com/sparkpro/tokeneer), where formal specifications are used to clarify
requirements and then later used to inform its design and implementations. That is,
the sound rigour of the formalism does neither hamper the user’s experience nor im-
pose unrealistic expertise, yet provides a number of important verification outcomes
and challenges (i.e. proof obligations) of interest. To illustrate the process, we analysed
one of the EMV1 contactless kernels [23]. The process is depicted in Figure 1, and is
explained below.
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Fig. 1. Methodology

2.1 AnB Protocol modelling

Starting from the requirements in natural language (EMV Protocol Specification), proto-
col developers in industry produce flowcharts and UML-sequence diagrams describing
protocol message exchanges and information flow. We introduce AnB to stake hold-
ers in order to systematically capture these exchanges between entities involved in a
declarative fashion. Given AnB’s simplicity, our experience shows that the process is
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generally fast and straightforward. The model (AnB Protocol Model) is then used to
check message-format consistency (i.e. messages sent are within agents’ knowledge),
and to verify security properties such as secrecy and authentication goals.

In our settings, we have used the OFMC model-checker [4]. If an error is found
on the message-formats, it is likely that the developer has made one or more errors
in the encoding of the AnB model. For example, some message exchanges specification
could have been misinterpreted, w.r.t. the specification document, and therefore a model
revision may be necessary.

If these consistency checks are successful, the model checker will try to verify the
protocol against the security goals. If the goals are violated (i.e. the intruder may attack
the protocol and the protocol is unsafe), a revision of the specification may be again
necessary. If a fix is found amending the AnB model, then the same will have to be
incorporated in the original specification.

Such iterative process may require several steps and it is aimed at building a correct
and reliable AnB model that can be used in the next phases of the methodology.

2.2 VDM Protocol modelling

We compile AnB protocols to VDM-SL [33] to automatically obtain a VDM-SL model
of protocols. These VDM models of AnB protocols can be symbolically evaluated by
the formal language semantics of AnB described in VDM (AnB Sigma). This provides
a formal characterisation of the AnB protocol, where the underlying program state in
VDM represents the accumulated knowledge accreted as a result of performing a pro-
tocol run, which also includes what the intruder is capable of knowing in the worse
case. This semantic encoding of AnB enables knowledge computation that is symbolic,
and a notion of intruder model that is directly linked with (and limited by) the language
semantics.

It should be noted that AnB is not expressive enough to capture control flow or to
represent important computations explicitly. Instead, the user can define abstract func-
tion symbols to be used by the verification tools in implementation-dependant manners.
For example, if the user defines a new function foo to perform some computation,
what most tools will do is to ensure the function types/results are correct and execute as
Skip. We make use of these user-defined functions (VDM transparent functions specifi-
cation) to link the AnB model with the protocol’s underlying required state and specific
computations, by formalising their meaning.

Therefore, a protocol/formal-methods expert can write the library, providing exe-
cutable formal specifications for functions involved in the protocol, and its underlying
state once, which can then be reused across a number/family of protocols. For example,
EMV1 contactless payment protocols are defined in kernels per issuer-specific imple-
mentation (e.g. Kernel 3 presented in §3 is Visa NFC).

The VDM model of the protocol is used for symbolic simulation of protocol runs,
as well as test case specification (with the Overture and VDMJ tools).
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2.3 Protocol implementation and tool support

We currently use the AnBx Compiler and Code Generator [37] to translate the AnB
model to Java reference code. The compiler uses template files (Java Templates) which
are instantiated with the protocol logic and the concrete Java implementation of the
transparent functions. The compiler can also apply optimisation techniques in order to
minimise the number of cryptographic operations and reduce the execution time [38].

The same tool is also used for translating the AnB model to VDM-SL. Moreover,
in order to facilitate the adoption by practitioners, we have developed an Eclipse-based
IDE [29] supporting many tools used in this methodology.

3 Case Study - EMV1 Kernel 3

In this section, we present the methodology through a case study.

3.1 AnB language

The AnB language [36] is a simple, abstract, and declarative language, where AnBx [11,
12] is a syntactic extension including various useful patterns of use and a stronger type
system for user-defined (abstract) function symbols. Its key feature is the declaration
of Agents representing protocol actors, Actions representing message exchanges be-
tween agents, and Goals representing desired properties of interest for the messages
exchanged to have. Action messages are described in a simple expression language that
include user-defined function symbols, some of which are security protocols primitives
like private/public keys functions.

A protocol has always five sections: i) its name; ii) declaration of agents, types, and
user/pre-defined functions; iii) declaration of initial knowledge for all declared agents,
which implicitly include self-awareness (i.e., agent C knows its own identity); iv) decla-
ration of actions as message exchanges between agents, where various criteria/restric-
tions (described below) apply; and v) declaration of desirable security goals, which
include messages being kept secret between agents and agents being authenticated by
other agents on specific messages. An optional section with reusable (non-recursive)
Definitions provides local (let-style) abstractions for names.

Figure 2 depicts a simplified version of our EMV1 contactless implementation: the
simplification is the lack of many user-defined functions, which will appear in §3. This
is a deliberate simplification (EMV1 has other complexities, as illustrated in [15], and
elided here): our point is to illustrate that with an abstracted version of the protocol,
certain security goals of interest are already breached (see §4.1).

To complete a payment, a card C needs to endorse the payment information
(ACPayload) and this can be verified by both the terminal T and the card issuer iss.
The card never exchanges messages directly with issuers, but only using the terminal as
an intermediary.

In Types section we define the following identifiers: the Agents (C,T,iis), a
component of the payload PDOL which abstracts information about the payment (e.g.
amount, date, etc) and a Nonce. The issuer identifier (iis) is a constant (first letter low-
ercase), therefore, by convention in AnB, it is considered trusted. We assume that the
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Protocol: emv_visa_k3_simple AnB
Types:

Agent C,T,iss;
Number PDOL,Nonce,empty;
Function [Agent, Number -> SeqNumber] fcnSeqNo;
Function [Agent -> PublicKey] sk;
SymmetricKey ShkCiss

Definitions:
ACPayload: T,PDOL,fcnSeqNo(C,Nonce);
AC: {|ACPayload|}ShkCiss;
SDAD: {ACPayload}inv(sk(C))

Knowledge:
C: C,iss,sk,inv(sk(C)),fcnSeqNo;
T: T,sk;
iss: iss,C,sk,empty;
C,iss agree ShkCiss

Actions:
T -> C: T, PDOL
C -> T: SDAD,AC,C
T -> iss: PDOL,AC,C

Goals:
T weakly authenticates C on ACPayload
iss weakly authenticates C on ACPayload
ShkCiss secret between C,iss
inv(sk(C)) secret between C

Fig. 2. AnBx Protocol Example

issuer systems are uncompromised. Variable identifiers (first letter uppercase) of type
Agents can be impersonated by the intruder, while variables of type Number represent
abstract values which are different at every run of the protocol.

To illustrate the use of function abstraction, fcnSeqNo is used to represent the capa-
bility of agents to generate sequence numbers (used typically in the interaction between
the card and the issuer). Public key cryptography is modelled using a function sk, map-
ping agents to public keys, with the purpose of representing the public keys used for
digital signature. Therefore, sk(C) is the public key of agent C, whilst inv(sk(A)) is
the corresponding private key. This key is is added to the initial knowledge of agent
C, while function sk is known by all agents representing the capability of retrieving a
certified public key from a keystore or public repository.

Use of cryptographic expressions is shown in section Definitions. AC represents
the payload (ACPayload) encrypted with ShkCiss, the symmetric key agreed between
the card and the issuer. We assume that the issuer and the card had agreed on a session
key (ShkCiss) prior to the protocol run. An example of asymmetric encryption is SDAD,
the digital signature of the payload, obtained encrypting the ACPayloadwith the private
key of the card.

The actions are written in order of exchange, for a message from the source to the
target agent. The next action must always be a response from the target of the previous
action to another agent.

In the first action, the terminal sends its identity and the information about the pay-
ment options back to the card. We have shortened the (application selection) EMV1
protocol sequence here for simplicity. Then the card replies with the digital signature of
the payload, which is encrypted with their pre-shared key (ShkCiss). The digital sig-
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nature is used by the terminal to authenticate the card, while the ciphertext is forwarded
to the card issuer, which uses the pre-shared key to authenticate the card, validate and
authorise the payment request.

This description of the protocol actions, describes how knowledge is accreted as a
result of the protocol execution. Crucial to this process is the intruder knowledge. It
is characterised as what is knowable by a malicious party attempting to interfere with
the protocol by either impersonation or passively listening to communication. Differ-
ent tools will define different knowledge acquisition rules for the intruder, which will
determine its threat capability, where a commonly implemented approach follows the
Dolev-Yao model [16].

The Goals section can specify goals of the following type:

Weak Authentication : B weakly authenticates A on M and are defined in terms
of non-injective agreement [34];

Authentication : B authenticates A on M and are defined in terms of injective
agreement on the runs of the protocol, assessing the freshness of the exchange;

Secrecy : M secret between A1,...,An and are intended to specify which agents
are entitled to learn the secret message M at the end of a protocol run.

For EMV1, we illustrate goals of interest based on our understanding of the protocol.
The first two goals represent the terminal and the issuer authenticating the card on
the payment information endorsement (ACPayload): payment authorisation request is
made by a legitimate card and not by an attacker. Moreover, the protocols would like
to achieve freshness, i.e., the same authorisation request cannot be used twice and the
issuer is able to link each authorisation with the correct payment request. The two final
goals states that various keys must remain secret.

3.2 From specification to the model

Following our methodology, after the user writes the AnB protocol that is well-formed
(i.e. no type or name violations, knowledge provisos for message exchange are valid,
etc.), we translate it to its VDM semantics. For the user-defined functions, VDM library
implementations are required. In what follows, we describe the complete AnB model for
EMV1, including these abstract functions, together with an excerpt of the underlying
VDM state and abstract functions module.

EMV1 Visa kernel 3 contactless requirements are given in [23]. The document
describes the Visa-specific contactless protocol, which is a variation/simplification of
other common kernel features [22].

First, we read and understood these requirements. In the practice we envisage, pro-
tocol experts ought to know (or at least have a good idea of) what they are trying to
describe. Second, we thought about what security goals would be of interest. Different
from other protocols, such as Mondex [28], where security goals were clearly defined
from the outset, such goals are not explicitly declared in the EMV1 requirements [22],
yet we assume practitioners will know what goals to check; we added some we found
relevant below in §4.1. Finally, before constructing the AnB model for EMV, we create
UML sequence diagrams to illustrate the key stages/players as described by the require-
ments.
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3.3 EMV1 Kernel 3

Our model of EMV Visa kernel 3 considers three agents: a card issuer iss, a card C and
a terminal (i.e. card reader) T. When the card is issued, it is preloaded with a unique
pre-shared asymmetric key that is used to run a key agreement protocol which generates
the session key ShkCiss, whose computation is based on the transaction counter. The
pre-shared key is known only by the card issuer and the card itself. The session key
can be used to ensure that the communication between card and issuer is secure, even
though the two agents during a protocol run never exchange messages directly but only
through the terminal. The protocol, using the DDA authorisation technology, assumes
that the issuer can be trusted. In other words, it is assumed that the issuer systems are not
compromised by the intruder, and that for legitimate cards pre-shared keys and session
keys with the issuer are stored securely and kept secret.

Along with the ability to encrypt data with the session key, the card is also able
to digitally sign messages that can be used to authenticate the card with the termi-
nal. We use a number of abstraction functions in AnB actions to represent protocol
functionality beyond simple message exchanges between parties through user-defined
functions (e.g. fcnAgree, fcnCVM, fcnUsage, etc). We also use definitions to name
commonly used message expressions (e.g. CardVisaCap, TermTransVisaCap, etc).
We illustrate here the actions performed during the protocol run, and we will describe
the result of the security analysis in §4.1.

1. T → C: cmdListApps

The terminal asks the card the list of applications (cmdListApps) (i.e. different EMV
Kernels) it is able to run (e.g. Visa, MasterCard, etc.).

2. C → T: C,respVisa

The card replies with its identity and the application it intends to run, in this case Visa
- respVisa. A card could store different kernels for different card issuers.

3. T → C: fcnSelect(C,respVisa)

The terminal tells the card to start running the Visa program, by sending the selec-
tion message fcnSelect(C,respVisa). fcnSelect is a function implemented by
the EMV kernel, and it abstracts the request as part of the message exchange.

4. C → T: CardVisaPDOL,CardVisaCap

The card replies with the meta information it requires for engaging in a transaction
(i.e. CardVisaPDOL contains transaction date, amount, currency, country, etc.) and what
verification methods the card is capable of performing. That is, CardVisaCap contains
the card verification methods (CVM) to be used (e.g. online pin number, or offline
signature, etc). It is defined as fcnCVM(C,respVisa), where fcnCVM abstracts the
card computing its verification method for the requested application.

5. T → C: PDOL,TermTransVisaCap

The terminal replies with the actual PDOL, a list of values corresponding to the
CardVisaPDOL request list (PDOLDate, PDOLAmount, PDOLCountry, PDOLCurrency,
etc). It includes the unpredictable number PDOLUPN generated by the terminal
and used to identify the transaction. Moreover, the terminal send to the card
TermTransVisaCap, which is the intersection between the general terminal capabil-
ities as well as transaction specific capabilities. It is defined by the abstraction function
fcnCVM(T,fcnCVM(T,TermUsageValid)), where TermUsageValid is defined as
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fcnAgree(fcnUsage(C,respVisa),fcnUsage(T,respVisa)). That is, fcnUsage
returns the usage scenarios for both card and terminal for the requested Visa Kernel 3
application, whereas fcnAgree ensures that there is an agreeable choice between them.
Usage examples include information where the transaction is taking place (e.g. shop,
ATM, etc.) as well as kernel-specific limits (e.g. maximum value limit before going on-
line, maximum overall limit per contactless transaction, etc.). The innermost application
of fcnCVM to the result of usage agreement between card and terminal determines the
transaction-specific capabilities between both parties, whereas the outermost applica-
tion of fcnCVM ensures this transaction-specific agreement is within what’s generally
possible for the terminal.

6. C → T: fcnAgree(CardVisaCap,TermTransVisaCap),SDAD,AC

The card is now ready to start the transaction, provided the capabilities between card
and terminal within chosen transaction are agreed
(fcnAgree(CardVisaCap,TermTransVisaCap)). The other two components are
SDAD and AC. SDAD is a message digitally signed by the card containing the applica-
tion cryptogram payload (ACPayload), which is composed by the terminal transaction
data required by the card (PDOL), the card unique sequence number (CSN) per applica-
tion, and the card unpredictable number CUPN. The second component is the application
cryptogram (AC), which is a ciphertext of the PDOL and CSN encrypted with the session
key ShkCiss, and it serves as an acknowledgement from the card held by the terminal.
Since the key is only known to the card and the issuer, only the issuer will be able to
decrypt this message.

7. T → iss: PDOL,AC,C

In the last step, the terminal forwards the information to the issuer including the PDOL,
AC and the card identity. This represents the terminal “cashing” in its ”I owe you”’s
given by the card for the transaction.

3.4 EMV1 user-defined functions in VDM

The user defined functions for our EMV1 model are interpreted/implemented within
our VDM formal semantics of AnB abstract functions, which include cryptographic
primitives (i.e., the default environment for our AnB semantics specify pk, sk, etc.).
They exist in the context of certain types and a global state.

Listing 1.1 provides the highlights of types defined for our AnB abstract functions
for EMV1. We abuse the VDM notation slightly here: record fields of the same type
are separated by commas to save space; “. . .” represent types/invariants that may have
more fields/predicates. These types (and functions), have been thoroughly investigated
in [25] and key findings were presented in [18].

For instance, the Card type models the card identity (i.e. its 16-digit number), its
card verification methods per application, and if a card has more than one application
(e.g. Visa Debit, MasterCard Credit). The verification method is defined by choosing the
adequate CVM (Cardholder Verification Method) value (e.g online pin-verified, offline
signature, etc.) and usage value (e.g. POS-terminal, ATM, etc.).

Note this abstracts away underlying cryptographic verification technologies actually
employed like CDA, SDA, or DDA. That means we are assuming the AnB cryptographic
primitives’ implementation would be assigned to one of these schemes, which makes
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them transparent (and orthogonal) to what we are capturing, which is the flow of control
and information between protocol entities in order to ensure certain security goals.�
types Id = seq1 of char;
Card :: id: Id cvm: map App to CardCVM ...
inv mk_Card(-, cvm) == cvm <> {|->};

CardCVM :: x, y: nat cap: seq1 of (CVM * Usage)
inv mk_CardCVM(x, y, cap) == x <= y and
(forall i in set domain[CVM, Usage] (elems cap) &
i subset VALID_CVM) and
range[CVM, Usage] (elems cap) subset VALID_USAGE;

Terminal :: id: Id use: set1 of Usage
cvm: map App to CVM
inv mk_Terminal(-, cvm, use) == cvm <> {|->} and
(forall i in set rng cvm & i subset VALID_CVM) and
use subset VALID_USAGE;
� �

Listing 1.1. VDM types used by EMV1 AnB user-defined functions

The AnB type system is too weak to represent what we need, hence the need for
using VDM types. These types provide an interpretation for the space of possible values
for the parameters of AnB functions (see Listing 1.2) like fcnSelect, fcnUsage, etc.
Other details aside, the point of Listing 1.2 is to illustrate how we concretely represent
AnB abstract functions within our method framework.

This VDM model needs to be written once (most likely by a formal methods expert)
for a variety of EMV1 protocols. Given EMV invariants are not mathematically deep,
but rather simple if numerous (something common in industrial models), the required
expertise is not onerous. We tested this hypothesis by having a good MSc student with-
out formal background develop most of the necessary EMV1 user-defined libraries for
another EMV protocol (relay resistance) [35].�
fcnSelect(a: Agent, app: App) r: App
pre (is_Card(a) => app in set dom a.cvm) and post r = app;

(is_Terminal(a) => app in set dom a.cvm)

fcnUsage: (a: Agent, app: App) r: (App * Usage)
pre pre_fcnSelect(a, app)
post r.#1 = app and (is_Card(a) => r.#2 in set (range (elems a.cvm(app).cap))) and

(is_Terminal(a) => r.#2 in set a.use);
� �
Listing 1.2. AnB user-defined functions for EMV1 given in VDM

For instance, function fcnSelect insists that the chosen agent application must
have cardholder verification methods (CVM) validation criteria in order for it to be
selected, and given this test passes, the result is the given application. This illustrates
the underlying checking, in this case rather simple, under which conditions the first
stage of the protocol can operate.

In general, the precise documentation of various conditions of all EMV protocol
stages is at the heart of our methodology. Cumulatively, this forms the compound con-
ditions for every specific successful protocol run. More importantly, it can also be used
for further investigation through test case generation that is minimal with accountable
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coverage, or to have proof obligations about the individual satisfiability of each step
(i.e. are the given contracts sound?).

For instance, in order to query the expected usage for a chosen agent applica-
tion (fcnUsage), the input parameters must have passed the conditions for selection
(pre fcnSelect) first. That being the case, the result is the usage present within the
corresponding agent type structure. This use of (precondition) referencing makes pro-
tocol state dependencies easily accounted for.

Overall, we model these functions and their underlying state (i.e. card, terminal, and
transaction internal states), hence encoding all necessary invariants, pre/postconditions
for the protocol’s functional correctness.

This is different from OFMC because we can make claims about the underlying
expected protocol specification via the VDM functional correctness model of protocol
transparent functions and state. Moreover, when problems are discovered by a VDM
simulation or proof, we have to identify whether this is a problem for AnB (i.e. some-
thing about the information flow that OFMC missed), or a problem within the transpar-
ent function’s behaviour themselves. The former strengthens the verification capability
of AnB tools, whereas the latter strengthens and precisely documents the underlying
assumptions about required transparent functions.

Given the nature of their use, the specification of these transparent functions are
a more onerous job. That is because they are capturing the underlying system state
and updates, and their verification will require theorem proving, yet these can be done
once for a family of AnB security protocols. A concrete example of such verification of
transparent functions for a family of protocols are the public-key cryptography primi-
tive functions in AnB (e.g. pk and inv), which must represent an injective relationship
between public and private keys.

Because we have a direct formal semantics of AnB in VDM as well, a number of
further verification and specification opportunities arise, and we are working on inte-
grating those within our methodology in Figure 1.

4 Results and Extensions

In our simulation environment for the AnB language semantics, we have explicit defi-
nitions for the pre-defined (cryptographic) and user-defined (EMV1 protocol specific)
transparent functions, as well as the other parts of the EMV1 common kernel can per-
form. This enables us to perform a number of interesting analyses. This model is used
to investigate the consistency of requirements, identify descriptive errors, and generate
test cases for our POS-terminal emulator capable of performing transactions with both
EMV contact and contactless protocols.

The AnB protocol semantics, defined in VDM, provides the knowledge accumulated
by each agent, including our model of the intruder capabilities, as a result of execut-
ing the protocol according to the language semantics. This is a different strategy from
other AnB tools [4, 5]: we explicitly model allowed behaviours by each AnB program
constructs as defined by the language semantics in VDM, rather than by observing ex-
changed messages in a translated (IF-notation [4]) format. Arguably, our approach pri-
oritises safety before security. Another way to look at such differences is that we do not
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encode AnB in other languages (e.g. CSP [34] or IF-notation) for these languages’ tool
consumption and limitations. Instead, we represent the underlying AnB semantic state
and operational semantics transitions using VDM (i.e. our approach consists among
other things in defining the semantics of AnB in VDM-SL).

We derive VDM test cases to exercise key (or if possible all) specification entities
(e.g., type invariants, pre and postconditions, etc.). We also derive proof obligations that
if/when discharged demonstrate the correctness of the model as a whole: without the
proofs we have a debugging/testing tool, whereas with such proofs we have a verified
functionally correct abstract execution environment for the specific EMV1 protocol of
interest.

We have already worked with the Isabelle/HOL theorem prover to discharge VDM
proofs, and are currently translating key aspects of EMV’s infrastructure to be proved.
To ensure proofs in different logics (i.e., VDM’s LPF and Isabelle’s HOL) can be ad-
dressed properly, we follow ideas from [41, 27].

Moreover, we can also use other available tools to perform further security analy-
sis (e.g. the AnBx compiler translates AnB to ProVerif [8]), as well as code generation
for a concrete implementation in Java that we plan to deploy to real terminals and run
on real cards, all this within our Eclipse-based AnBx IDE [29]. Overall, all this gives
a valuable exploration and testing platform for protocol experimentation and prototyp-
ing. These implementations and their generated test cases can also serve as oracles to
real implementations including the myriad complexities involved in an actual EMV1
protocol stack.

4.1 Security Analysis

The security goals we considered in our modelling (§3.3) are exactly the four goals de-
scribed in Figure 2. The only difference is that for the authentication goals we consider
SDADPayload, which contains few more components than just ACPayload.

We analysed the protocol with the OFMC model checker. This tool uses the AVISPA
Intermediate Format IF [3] as “native” input language, which allows to describe secu-
rity protocols as an infinite-state transition system using set-rewriting. The major tech-
niques employed by OFMC are the lazy intruder, which is a symbolic representation of
the intruder, and constraint differentiation, which is a search-reduction technique that
integrates the lazy intruder with ideas from partial-order reduction achieving a reduction
of the search space associated without excluding attacks (or introducing new ones).

As the terminal is capable of engaging only in one session at a time, we tested
initially the protocol run only for one session. For each goal, our findings were:

– Goal: T authenticates C on SDADPayload
This goal implies that the terminal is able to authenticate the transaction request en-
dorsed by the card. This goal seems problematic to achieve for two reasons. First,
the terminal does not always have an identifier that can be sent by the terminal
to the card. Second, the ACPayload that is signed with the private key of C does
not include the terminal identity T, therefore it is not possible to prove the injec-
tive agreement, i.e. the intention of the card to endorse a message intended for the
terminal. A possible fix, if the terminal has an identifier, is simply to add T to the
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definition of ACPayload. Moreover, at the first step (as in the protocol in Figure
2) the terminal should send its identifier to the card. This vulnerability can be ex-
ploited as shown in attacks, such as [9]: the attacker pre-generates authorisation
codes on its own terminal, then goes to a merchant and replies that authorisation
code. This will trick the merchant terminal to accept the transaction, hence enabling
goods to be taken for free.

– Goal: iss authenticates C on ACPayload
This goals implies that the card issuer is able to authenticate the transaction request
endorsed by the card. We found that this goal is satisfied. Therefore, the asymmetric
encryption mechanism (using the session key ShkCiss) seems sufficiently robust.

– Goal: ShkCiss secret between C,iss
This goal implies that the session key ShkCiss is kept confidential during the pro-
tocol run. This goal is also satisfied, as the key never leaves the card during the
protocol execution. Therefore, as long as the card is uncompromised (i.e. keys are
stored securely) this goal is satisfied.

– Goal: inv(sk(C)) secret between C
This goal implies that the private asymmetric key of the card used for signature
remain secret after the protocol run. Again, this goal is satisfied for the same reason
of the previous goal.

We also tested the protocol for two parallel sessions, and found that the second goal
can be satisfied only for the weak authentication, but not for the injective agreement.
Since a terminal does not engage in parallel session, this is not a problem for now, but
if, in the future, terminals will be able to handle contactless payments in parallel, this
might be a matter of concern, as a transaction authorisation can be used twice, unless
mechanisms of prevention are enforced (e.g. counters).

5 Conclusion and Future Work

In this paper, we presented a new methodology that puts industry-accepted languages
(AnB) and state-of-the-art formal reasoning tools (OFMC, ProVerif, Overture/VDM, Is-
abelle/HOL, etc) to the analysis of payment protocols. In particular, this is motivated
by our current work collaborating with EMVCo on the development of their upcom-
ing EMV R©2nd Generation (EMV2) specifications. Given the current confidentiality of
EMV2, we illustrated the methodology with EMV1 Kernel 3 for contactless payments.
Many of the tools and techniques presented are not new. The key of what is novel is a
mixture between how we put these tools together, what new theories (e.g. executable
formal semantics of AnB in VDM), and new tools (e.g. formal simulation of EMV1&2
kernels) are being used by industry.

With the upcoming developments in the “FinTech” industry as a result of not only
EMV2 but also PSD2 and Open Banking APIs, our aim is to enable the dependable de-
velopment of payment protocols faster and cheaper, with an accountable demonstration
of why that is the case. This follows in the footsteps of a proven approach by Altran
Praxis: we took considerable inspiration from their work on Tokeneer, as well as our
own work on Mondex [28].
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We are currently working on publishing the details of the novel AnB semantics,
which will enable an extended set of goal verifications automatically beyond what is
possible at the moment. Moreover, we could also work on the automatic generation
of the reference implementation, including the user-defined functions, from the VDM
model rather than directly from the AnB model. The workflow presented in Figure 1
is currently being applied within the EMV2 protocol. Further details appear in another
paper in these proceedings [26], yet a number of technical details had to be removed
until EMV2 becomes public due to non-disclosure agreement restrictions.
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4. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for security pro-

tocols. International Journal of Information Security 4(3), 181–208 (2005)
5. Basin, D., Keller, M., Radomirovic, S., Sasse, R.: Alice and Bob meet equational theories.

In: Logic, Rewriting, and Concurrency, pp. 160–180. LNCS 9200, Springer (2015)
6. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interoperable implementations

of security protocols. In: IEEE Computer Security Foundations Workshop (2006)
7. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: Computer

Security Foundations Workshop, IEEE. pp. 0082–0082. IEEE Computer Society (2001)
8. Blanchet, B., Smyth, B., Cheval, V.: ProVerif 2.00: Automatic cryptographic protocol veri-

fier, user manual and tutorial (2018)
9. Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S., Anderson, R.: Chip and skim:

cloning EMV cards with the pre-play attack. In: S&P. pp. 49–64. IEEE (2014)
10. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV channel

establishment protocol. In: CCS. pp. 373–386. ACM (2013)
11. Bugliesi, M., Modesti, P.: AnBx-Security protocols design and verification. In: Automated

Reasoning for Security Protocol Analysis and Issues in the Theory of Security: Joint Work-
shop, ARSPA-WITS 2010. pp. 164–184. Springer (2010)
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