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The exact evaluation of the Poisson and Binomial cumulative distribution and inverse (quantile) functions may be too challenging
or unnecessary for some applications, and simpler solutions (typically obtained by applying Normal approximations or exponential
inequalities) may be desired in some situations. Although Normal distribution approximations are easy to apply and potentially
very accurate, error signs are typically unknown; error signs are typically known for exponential inequalities at the expense of some
pessimism. In this paper, recent work describing universal inequalities relating the Normal and Binomial distribution functions is
extended to cover the Poisson distribution function; new quantile function inequalities are then obtained for both distributions.
Exponential bounds—which improve upon the Chernoff-Hoeffding inequalities by a factor of at least two—are also obtained for
both distributions.

1. Introduction

The Poisson and Binomial distributions are a good approx-
imation for many random phenomena in areas such as
telecommunications and reliability engineering, as well as the
biological and managerial sciences [1, 2]. Let 𝑌 ∼ Poi(𝑚) be
a Poisson distributed random variable having mean 𝑚 >

0, and let 𝑃{𝑌 ≤ 𝑘} represent the cumulative distribution
function (CDF) of 𝑌 with nonnegative integer support 𝑘 ∈

{0, 1, . . . ,∞}:

𝑃 {𝑌 ≤ 𝑘} = 𝑒
−𝑚

𝑘

∑

𝑖=0

𝑚
𝑖

𝑖!
. (1)

Similarly, let 𝑋 ∼ Bin(𝑛, 𝑝) be a Binomially distributed ran-
dom variable with parameters 𝑛 ∈ {1, 2, 3, 4, . . .} and 𝑝 ∈

(0, 1), and let 𝑃{𝑋 ≤ 𝑘} represent the CDF of 𝑋 for integer
support 𝑘 ∈ {0, 1, . . . , 𝑛}:

𝑃 {𝑋 ≤ 𝑘} =

𝑘

∑

𝑖=0

(
𝑛

𝑖
) 𝑝
𝑖

(1 − 𝑝)
𝑛−𝑖

. (2)

Also, let the 𝑅th quantiles of 𝑌 and 𝑋 for 𝑅 ∈ (0, 1) be
obtained from the functions 𝑄

𝑃

(𝑚, 𝑅) and 𝑄
𝐵

(𝑛, 𝑝, 𝑅):

𝑄
𝑃

(𝑚, 𝑅) = {min 𝑘 ∈ 𝑁 : 𝑃 {𝑌 ≤ 𝑘} ≥ 𝑅} , (3)

𝑄
𝐵

(𝑛, 𝑝, 𝑅) = {min 𝑘 ∈ 𝑁 : 𝑃 {𝑋 ≤ 𝑘} ≥ 𝑅} . (4)

Due to numerical and complexity issues, evaluation of the
exponential and Binomial summations in (1) and (2) through
recursive operations is only practical for small values of the
input parameters (𝑚 or 𝑛𝑝 and 𝑘). Instead, a better solution is
to evaluate the CDFs directly through either their incomplete
Beta/Gamma function representations which can be approxi-
mated to high precision by continued fractions or asymptotic
expansions [3]. With respect to the quantiles of the distribu-
tions given by (3) and (4), no methods to exactly evaluate
these functions without iterating the exponential/Binomial
sums—or alternately employing a search until the required
conditions are satisfied—seem to be known. Typically, a
binary search to determine the smallest 𝑘 satisfying (3) or (4)
evaluating the respective CDF at each step would be a
better general solution, given some initial upper bound for
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𝑘. Such methods (and related variants) are now employed
very effectively in modern commercial and research-based
statistical packages.

In some situations, one may desire simpler solutions to
either approximate or bound these quantities. Typically an
approximation can be obtained via the standard Normal dis-
tribution; the work of Mollenaar [4] contains a good descrip-
tion of several applicable variants. Although quickly applied
and potentially very accurate for large input parameters (due
to the central limit theorem), the sign of the approximation
errors is typically unknown. Exceptions are the inequality
of Bohman (see [1, page 169]), which always overestimates
the true Poisson probability, and the expressions recently
proposed by Zubkov and Serov for the Binomial distribution
[5]. Methods to obtain provable bounds with known error
signs (typically one would require to underestimate (1) and
(2), whilst overestimating (3) and (4) in most engineering
and computer science applications) principally include the
Bernstein/Chernoff/Hoeffding-type exponential probability
inequalities and their close variants [1, 2, 6, 7]. Although effec-
tive, one has to accept the unavoidable loss of accuracy with
these bounds.

Although the need for provable, accurate bounds has
been well documented in computer science, information
engineering, and reliability analysis applications ([1, 2] pro-
vide such discussions), the motivation for the current work
arose from a recent application in probabilistic schedulability
analysis for real-time systems described by Short and Proenza
[8]. In this work, the authors consider efficient admission
controls for providing probabilistic schedulability guarantees
for real-time messages traversing communication channels
with error arrival characteristics that can be approximated by
Poisson or Binomial distributions. Ultimately, it is required in
this application to evaluatemany upper tail quantiles (directly
corresponding to (3) or (4)) in a very short space of time by
a (possibly resource-constrained) embeddedmicrocontroller
or microcomputer. Clearly the use of a commercial statistical
package is not possible; several logarithmic inequalities
were instead developed for these purposes. Although the
bounds were shown to be tight in terms of relative errors
(which become vanishingly small as the input magnitude
becomes large), the absolute errors on the other hand become
increasingly large as the input parameters increase.Therefore,
one of the motivations for the current work was to tighten
these quantile inequalities, with the goal of making them
asymptotically near-exact in the input parameters. In this
paper such tighter bounds are obtained, along with several
other inequalities which may have a more general interest.

The remainder of the article is organized as follows.
In Section 2, the recent work on the categorization of the
Binomial with respect to theNormal distribution in [5] is first
extended to obtain universal inequalities (with known error
signs) relating the Poisson and Normal distribution func-
tions. Section 3 obtains asymptotically near-exact analytic
inequalities relating both the Poisson and Binomial upper
tail quantiles to the Normal quantiles. Improved Chernoff/
Hoeffding-type exponential inequalities are then obtained for
both distributions in Section 4. A brief summary is then given
in Section 5.

2. Distribution Function Inequalities

Consider the following recently proven universal inequality
on the distribution function of a Binomially distributed
random variable.

Theorem 1. Let 𝑋 ∼ Bin(𝑛, 𝑝) be a random variable with
parameters 𝑛 ∈ {1, 2, 3, 4, . . .} and 𝑝 ∈ (0, 1), where the integer
𝑛 represents the number of trials and𝑝 the probability of success
in each trial. Denoting the CDF of 𝑋 as 𝑃{𝑋 ≤ 𝑘} as per
(2), then, for 𝑘 = 0 and 𝑘 = 𝑛, one has the exact equalities
𝑃{𝑋 ≤ 0} = (1 − 𝑝)

𝑛 and 𝑃{𝑋 ≤ 𝑛} = 1, and for all 𝑛 > 0,
𝑝 ∈ (0, 1), and 𝑘 ∈ {1, 2, . . . , 𝑛 − 2} the following inequalities
hold:

Φ(sign (𝑘 − 𝑛𝑝) ⋅ √2𝑛𝐷(𝑝,
𝑘

𝑛
))

< 𝑃 {𝑋 ≤ 𝑘}

< Φ(sign (𝑘 + 1 − 𝑛𝑝) ⋅ √2𝑛𝐷(𝑝,
(𝑘 + 1)

𝑛
)) .

(5)

And for 𝑘 = 𝑛 − 1 one also has:

Φ(sign (𝑘 − 𝑛𝑝) ⋅ √2𝑛𝐷(𝑝,
𝑘

𝑛
)) < 𝑃 {𝑋 ≤ 𝑛 − 1} , (6)

where sign(𝑥) is the usual signum function with argument 𝑥,
Φ(𝑦) is the distribution function of a standard normal variable
with argument 𝑦, and the function𝐷(𝑝, 𝑐) = 𝑐 ⋅ ln(𝑐/𝑝) + (1 −

𝑐) ⋅ ln((1 − 𝑐)/(1 − 𝑝)).

Proof. Zubkov and Serov [5].

Although it was not explicitly denoted as such in [5], it is
easy to see that𝐷(𝑝, 𝑐) represents the Kullback-Leibler ( KL )

divergence between two Bernoulli variables with respective
probabilities of success 𝑝 and 𝑐; hence, 𝑛𝐷(𝑝, 𝑐) represents
the KL divergence of 𝑛 summed pairs of such variables.This
observation allows the relatively straightforward extension of
the above result to the case of a Poisson distributed random
variable, which is given inTheorem 2.

Theorem 2. Let 𝑌 ∼ Poi(𝑚) be a Poisson distributed random
variable with mean 𝑚. Let the distribution function 𝑃{𝑌 ≤ 𝑘}

be defined as in (1), with integer support 𝑘 ∈ {0, 1, . . . ,∞}. For
𝑘 = 0 and 𝑘 = ∞, one has 𝑃{𝑌 ≤ 0} = 𝑒

−𝑚 and 𝑃{𝑌 ≤

∞} = 1. For every other 𝑘 = {1, 2, 3, . . .} one has the following
inequalities:

Φ(sign (𝑘 − 𝑚) ⋅ √2𝐻 (𝑚, 𝑘))

< 𝑃 {𝑌 ≤ 𝑘}

< Φ (sign (𝑘 + 1 − 𝑚) ⋅ √2𝐻 (𝑚, 𝑘 + 1)) ,

(7)

where 𝐻(𝑚, 𝑘) is the 𝐾𝐿 divergence between two Poisson
distributed random variables with respective means 𝑚 and 𝑘:

𝐻(𝑚, 𝑘) = 𝑚 − 𝑘 + 𝑘 ⋅ ln(
𝑘

𝑚
) . (8)
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Proof. The cases 𝑘 = 0 and 𝑘 = ∞ are exact equalities which
are easily derived from the distribution function (1). For the
other cases, first we form the variable 𝑋 ∼ Bin(𝑛, 𝑝) with
some finite integer 𝑛 and𝑝 ∈ (0, 1), such that 𝑛𝑝 = 𝑚. Clearly,
this variable satisfies inequality (5) for any choice of 𝑛 − 2 >

𝑘 > 0. Now, suppose we increase 𝑛 by one and reduce 𝑝 such
that the constraint 𝑛𝑝 = 𝑚 still holds. Again, this variable
still satisfies inequality (5). Now, incrementally repeat this
procedure for increasing 𝑛 under the constraint that 𝑛𝑝 = 𝑚

indefinitely; in the limit as 𝑛 → ∞ one has the following:

lim
𝑛→∞

𝑛𝑝=𝑚

[𝑃 {𝑋 ≤ 𝑘} =

𝑘

∑

𝑖=0

(
𝑛

𝑖
) 𝑝
𝑖

(1 − 𝑝)
𝑛−𝑖

] = 𝑒
−𝑚

𝑘

∑

𝑖=0

𝑚
𝑖

𝑖!
.

(9)

With the identity above being the famous limit theorem
of Poisson, a contemporary description of which may be
found in [1]. Now consider the limit of the argument toΦ(𝑥);
observe that as 𝑛 → ∞ as the Bernoulli variables with suc-
cess probability 𝑝 = 𝑚/𝑛 become Poisson distributed with
mean 𝑛𝑝 = 𝑛𝑚/𝑛 = 𝑚, then it must also follow that as 𝑛 →

∞ the infinite number of Bernoulli variables with success
probability 𝑘/𝑛 must also become Poisson distributed with
mean 𝑛𝑘/𝑛 = 𝑘. Thus, the KL divergence of this infinite
number of Bernoulli variable pairs with respective success
probabilities𝑚/𝑛 and 𝑘/𝑛 becomes the KL divergence of two
Poisson distributions with respective means 𝑚 and 𝑘, which
is given by the function 𝐻(𝑚, 𝑘) = 𝑚 − 𝑘 + 𝑘 ⋅ ln (𝑘/𝑚) [9].
Thus, the following limit must hold:

lim
𝑛→∞

𝑛𝑝=𝑚

[𝑛𝐷(𝑝,
𝑘

𝑛
)] = 𝑚 − 𝑘 + 𝑘 ⋅ ln(

𝑘

𝑚
) . (10)

Noting that, as (5) holds at each step as 𝑛 is increased to
infinity, it must also hold in this limit for any 𝑘 = {1, 2, 3, . . .},
which implies the inequalities stated in (7).

As in the Binomial case, these relationships may be used
to bound the quantile of a Poisson random variable to a pair
of adjacent integers. However, given a desired𝑅, no analytical
expression for a corresponding 𝑘may be obtained due to the
presence of the term 𝑘 ln(𝑘/𝑚) in the expression for𝐻(𝑚, 𝑘).
A similar restriction occurs with 𝐷(𝑝, 𝑐) due to the presence
of multiple such terms involving 𝑐 and 𝑝 and their natural
logarithm. Slightly weaker inequalities having an analytical
form for the upper tail quantiles are thus obtained in the next
section.

3. Upper Tail Quantile Inequalities

Thefirst step in the Poisson quantile inequality is to obtain an
expressive bound on the function𝐻(𝑚, 𝑘) defined by (8).

Lemma 3. For any 𝑚 > 0 and 0 < 𝑘 < ∞, one has.

𝐻(𝑚, 𝑘) ≥ 𝐻
𝑏

(𝑚, 𝑘) = 6𝑚 + 3𝑘 − 3√3𝑚2 + 6𝑚𝑘. (11)

Proof. Observe that, for 𝑘 = 𝑚, 𝐻(𝑚,𝑚) = 𝐻
𝑏

(𝑚,𝑚) = 0.
Elementary calculations yield the first partial derivatives of
both functions with respect to 𝑘:

𝐻(𝑚, 𝑘)
󸀠

= ln(
𝑘

𝑚
) ,

𝐻
𝑏

(𝑚, 𝑘)
󸀠

= 3 − √
27𝑚
2

𝑚2 + 2𝑚𝑘
.

(12)

And observe again that, when 𝑘 = 𝑚, 𝐻(𝑚,𝑚)
󸀠

= 𝐻
𝑏

(𝑚,

𝑚)
󸀠

= 0. Now considering the sign of the derivatives, when
𝑘 > 𝑚 we have that𝐻(𝑚, 𝑘)

󸀠

> 0 since 𝑘/𝑚 > 1; we also have
that𝐻

𝑏

(𝑚, 𝑘)
󸀠

> 0 as the quantity𝑚
2

+2𝑚𝑘 > 3𝑚
2. Similarly,

for 𝑘 < 𝑚, 𝐻(𝑚, 𝑘)
󸀠

< 0 since 𝑘/𝑚 < 1 and 𝐻
𝑏

(𝑚, 𝑘)
󸀠

< 0 as
𝑚
2

+ 2𝑚𝑘 < 3𝑚
2. Thus, both functions are monotonically

decreasing in 𝑘 over the interval (0, 𝑚) and monotonically
increasing in 𝑘 over the interval (𝑚,∞].

A further application of the calculus yields the second
partial derivatives of 𝐻(𝑚, 𝑘) and 𝐻

𝑏

(𝑚, 𝑘) with respect to
𝑘:

𝐻(𝑚, 𝑘)
󸀠󸀠

= 𝑘
−1

,

𝐻
𝑏

(𝑚, 𝑘)
󸀠󸀠

=
27𝑚
2

(3𝑚2 + 6𝑚𝑘)
1.5

.

(13)

And it is easy to verify that both functions are positive for
all positive nonzero 𝑘 and 𝑚. Now, the objective is to show
that 𝐻(𝑚, 𝑘) ≥ 𝐻

𝑏

(𝑚, 𝑘) for the specified ranges of 𝑚 and
𝑘. Form the function 𝑓(𝑚, 𝑘) = (𝐻(𝑚, 𝑘)

󸀠󸀠

− 𝐻
𝑏

(𝑚, 𝑘))
󸀠󸀠.

Standard analytic techniques yield the two roots of 𝑓 as
𝑘 = 𝑚 and 𝑘 = −𝑚/8. As only the former root lies in the
interval of positive 𝑘 and 𝑚, 𝐻(𝑚, 𝑘)

󸀠󸀠 and 𝐻
𝑏

(𝑚, 𝑘)
󸀠󸀠 can

intersect only at this root which implies that the sign of the
function𝑓 can only (potentially) change once at this location.
Verification that 𝐻(𝑚, 𝑘)

󸀠󸀠 dominates 𝐻
𝑏

(𝑚, 𝑘)
󸀠󸀠 reduces to

demonstrating that, for arbitrary positive non-zero 𝑚,𝑓 > 0

for some 𝑘 satisfying 0 < 𝑘 < 𝑚 and also that 𝑓 > 0 for some
𝑘 > 𝑚. For simplicity, let us choose 𝑘 = 𝑚/2 and 𝑘 = 2𝑚:

𝑓(𝑚,
𝑚

2
) = (

2

𝑚
−

27

(6√6)𝑚

) =
0.1628 . . .

𝑚
> 0,

𝑓 (𝑚, 2𝑚) = (
1

2𝑚
−

27

(15√15)𝑚

) =
0.0352 . . .

𝑚
> 0.

(14)

Therefore, 𝐻(𝑚, 𝑘)
󸀠󸀠

≥ 𝐻
𝑏

(𝑚, 𝑘)
󸀠󸀠 for positive 𝑘 and 𝑚, with

equality occurring if and only if 𝑘 = 𝑚whence both functions
equal 𝑘−1.The lemma follows by observing that, when 𝑘 = 𝑚,
𝐻(𝑚,𝑚) = 𝐻

𝑏

(𝑚,𝑚) = 𝐻(𝑚,𝑚)
󸀠

= 𝐻
𝑏

(𝑚,𝑚)
󸀠

= 0, and
moving 𝑘 away from𝑚 either towards zero or infinity causes
a smaller corresponding increase in𝐻

𝑏

(𝑚, 𝑘) than in𝐻(𝑚, 𝑘)

due to the dominance of𝐻(𝑚, 𝑘)
󸀠󸀠 over 𝐻

𝑏

(𝑚, 𝑘)
󸀠󸀠.

Remarks. 𝐻
𝑏

(𝑚, 𝑘) provides a good quality bound over all
ranges of 𝑘 and 𝑚, but it is at its tightest when 𝑘 ≈ 𝑚; as the
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mean 𝑚 increases and the quantile clusters around the mean
(𝑘 ≈ 𝑚), the bound can be expected to be asymptotically very
tight. Although the right-hand side of (11) seems to have a
strange form, it allows one to obtain a tail quantile boundwith
a simple structure. Let Φ−1(𝑅) for 𝑅 ∈ (0, 1) be the inverse of
the standard normal CDF Φ(𝑥) (i.e., the “probit” function),
such thatΦ(Φ

−1

(𝑅)) = 𝑅. The inequality can be stated.

Theorem 4. Let 𝑌 ∼ Poi(𝑚) be a Poisson distributed random
variable with mean 𝑚, and let 1 > 𝑅 > 0.5. Then, one has the
following bound on the 𝑅th quantile of 𝑌:

𝑄
𝑃

(𝑚, 𝑅) ≤ ⌈𝑚 + Φ
−1

(𝑅)√𝑚 +
Φ
−1

(𝑅)
2

6
⌉ . (15)

Proof. Consider the lower inequality in (7), and suppose that
the left-hand side evaluates to 𝑅; this clearly implies 𝑅 >

𝑃{𝑌 ≤ 𝑘}. Since 𝑅 > 0.5, we are working in the upper tail
(𝑘 > 𝑚) and sign(𝑘 − 𝑚) = 1; thus, we seek an integer 𝑘 such
that the following holds true:

Φ(√2𝐻 (𝑚, 𝑘)) ≥ 𝑅. (16)

Applying the probit function to both sides of the equation,
then squaring both sides and dividing through by 2 isolates
𝐻 on the left hand side:

√2𝐻 (𝑚, 𝑘) ≥ Φ
−1

(𝑅) ,

𝐻 (𝑚, 𝑘) ≥

(Φ
−1

(𝑅))
2

2
.

(17)

Recalling that 𝐻(𝑚, 𝑘) ≥ 𝐻
𝑏

(𝑚, 𝑘), an integer 𝑘 which satis-
fies 𝐻

𝑏

(𝑚, 𝑘) ≥ Φ
−1

(𝑅)
2

/2 also clearly guarantees that 𝑃{𝑌 ≤

𝑘} > 𝑅. At this point, let us substitute into (17) the label
𝐶 = Φ

−1

(𝑅)
2

/2, let 𝑘 be real valued, assume an equality, and
replace 𝐻(𝑚, 𝑘) with the definition of𝐻

𝑏

(𝑚, 𝑘) from (11):

6𝑚 + 3𝑘 − 3√3𝑚2 + 6𝑚𝑘 = 𝐶. (18)

Simple rearrangement and squaring eliminate the square
root:

√27𝑚2 + 54𝑚𝑘 = 6𝑚 + 3𝑘 − 𝐶,

27𝑚
2

+ 54𝑚𝑘 = (6𝑚 + 3𝑘 − 𝐶)
2

.

(19)

Expanding the right hand side and then gathering terms leads
to a quadratic in 𝑘:

(9) 𝑘
2

− (6𝐶 + 18𝑚) 𝑘 − (𝐶
2

+ 9𝑚
2

+ 12𝐶𝑚) = 0. (20)

Taking the principle root (to ensure 𝑘 > 𝑚) gives:

𝑘 = 𝑚 + √2𝐶𝑚 +
𝐶

3
, (21)

from which (15) is recovered by employing the ceiling func-
tion to make 𝑘 integer and then substituting 𝐶 = Φ

−1

(𝑅)
2

/2

back into the resulting expression.

For the Binomial quantile, below is presented a cor-
responding bound for the Binomial upper tail quan-
tile 𝑄

𝐵

(𝑛, 𝑝, 𝑅). The inequality is very similar to that of
Theorem 4, but skewness correction terms now also appear.

Theorem 5. Let 𝑋 ∼ Bin(𝑛, 𝑝) be a Binomial distributed
random variable with parameters 𝑛 and 𝑝, and let 1 > 𝑅 > 0.5.
The following bound holds on the 𝑅th quantile of 𝑋:

𝑄
𝐵

(𝑛, 𝑝, 𝑅)

≤ [
[
[

𝑛𝑝 + √Φ−1 (𝑅) ⋅ [𝑛𝑝 (1 − 𝑝) + (1 − 2𝑝)
Φ
−1

(𝑅)
2

6
]

+ (1 − 2𝑝)
Φ
−1

(𝑅)
2

6
]
]
]

.

(22)

Proof. The proof proceeds upon almost identical lines to that
ofTheorem 4, except that the lower inequality in (5) provides
the starting point. The inequality on 𝐷(𝑝, 𝑐) given in (23)
below, which as shown by Janson [10] is valid for 𝑐 ≥ 𝑝

provides the analytical relaxation allowing the quantile to be
explicitly solved for:

𝐷(𝑝, 𝑐) ≥
(𝑐 − 𝑝)

2

2 (𝑛𝑝 (1 − 𝑝) + (1 − 2𝑝) ⋅ (𝑐 − 𝑝) /3)
. (23)

Simplifying the resulting expression leads to (22).

Observe that the Poisson upper tail quantile inequality
(15) is virtually identical to the expression obtained from
applying a Cornish-Fisher expansion with a continuity cor-
rection to the Poisson quantile [4]:

𝑄
𝑃

(𝑚, 𝑅) ≈ 𝑚 + Φ
−1

(𝑅)√𝑚

+
Φ
−1

(𝑅)
2

6
−

4

6
+ 𝑂(

1

√𝑚
) .

(24)

It is immediately seen fromTheorem 4 that, if overestimation
of the true quantile by a small factor is always desired, it suf-
fices to simply neglect the 4/6 correction and the contribution
of the asymptotic term in the above expansion.The sharpness
of (15) is evident as for sufficiently large 𝑚 the contribution
of the term𝑂(𝑚

−0.5

) → 0 and the gap between (15) and (29)
is always ≤1. A similar relationship holds between expression
(22) and the asymptotic expansion of the Binomial quantile
[4]. Practical experience with both quantile bounds indicates
that equalities can be achieved even for very small values of
standard deviation: Figure 1 gives an illustrative comparison
between the exact and bounded 𝑅th quantiles for a Poisson
process having a mean of𝑚(𝑡) = 0.1𝑡 for increasing values of
𝑡.

The sharpness of the bound is evident, and it may be
observed that the gap between the bound and the exact
quantile quickly reduces as 𝑡 (and hence the mean and
standard deviation) increases in both cases. This illustrates
the quick convergence to the observation that the asymptotic
gap is always ≤1.
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Figure 1: Comparison of the exact (blue) and bounded (green)
number of arrivals versus time 𝑡, for a Poisson process having
intensity 𝜆 = 0.1 for confidence probabilities 𝑅 = (1 − 10

−5

) and
𝑅 = (1 − 10

−9

).

4. Exponential and Logarithmic Inequalities

It is easy to verify the sharpness of the Poisson CDF
universal inequality presented in Section 2 (the sharpness of
the inequality for the Binomial distribution follows from the
discussions in [5]), and its form makes it relatively easy to
compute and implement; both the standard Normal CDF
Φ(𝑥) and its inverse Φ

−1

(𝑅) for the quantile inequalities can
be quickly calculated to machine precision by simple rational
approximations [3, 11]. Itmay still, however, be desired to have
simpler bounds that have closed forms (e.g., it may be needed
to algebraically manipulate a probability expression for the
probabilistic analysis of an algorithm). Firstly, observe that
the trivial inequality 1 − exp(−𝑥2/2) ≤ Φ(𝑥) for 𝑥 > 0 can
be used to recover the Chernoff exponential bound for the
Poisson upper tail CDF by substitution of 𝑥 with√2𝐻(𝑚, 𝑘).
The same inequality may be used to recover the bound of
Hoeffding [7] by replacing 𝑥 with √2𝑛𝐷(𝑝, 𝑘/𝑛). This leads
to consider the possibility of recovering tighter exponential
bounds which retain simple forms for these quantities,
employing known inequalities on the standard normal CDF.
To achieve this, consider first the quantity known as Mills’
ratio𝑀(𝑥), which is defined for real arguments 𝑥 in the usual
way:

𝑀(𝑥) =
1 − Φ (𝑥)

𝜙 (𝑥)
, (25)

where 𝜙(𝑥) = 𝑒
−0.5𝑥

2

/√2𝜋 is the standard normal density
function. For nonnegative 𝑥, it is known that𝑀(𝑥) is mono-
tonically decreasing in 𝑥 and achieves a maximum of √0.5𝜋

at 𝑥 = 0. Various simple inequalities are known for this
function; consider the simple upper bound 𝑀(𝑥) ≤ 𝑥

−1 for
𝑥 ≥ 0 proved by Gordon [12]. For small 𝑥, 𝑥−1 can become
larger than √0.5𝜋 and the basic bound can be improved by
selecting the smaller of these two values:

𝑀(𝑥) ≤ min{
1

𝑥
,√

𝜋

2
} . (26)

Expression (26) may be employed to sharpen the Cher-
noff/Hoeffding bounds considerably via the inequalities of
Theorems 1 and 2.

Corollary 6. Let𝑌 ∼ Poi(𝑚) be a Poisson distributed random
variable with mean 𝑚. For 𝑘 ≥ 𝑚, the following inequality
holds:

𝑃 (𝑌 ≤ 𝑘) > 1 −
𝑒
−𝐻(𝑚,𝑘)

max {2, √4𝜋𝐻 (𝑚, 𝑘)}

. (27)

Proof. Set 𝑥 = √2𝐻(𝑚, 𝑘). Then from Theorem 2 and (25)
and (26) we can write the following:

𝑃 {𝑌 ≤ 𝑘} > Φ (𝑥)

= 1 − 𝑀 (𝑥) 𝜙 (𝑥)

= 1 − 𝑀 (𝑥)
𝑒
−0.5𝑥

2

√2𝜋

≥ 1 −min{
1

𝑥
,√

𝜋

2
} ⋅

𝑒
−0.5𝑥

2

√2𝜋

.

(28)

Inequality (27) results after some further simplification.

Corollary 7. Let 𝑋 ∼ Bin(𝑛, 𝑝) be a Binomially distributed
random variable with parameters 𝑝 and 𝑛. For 𝑘 ≥ 𝑛𝑝, the
following inequality holds:

𝑃 (𝑋 ≤ 𝑘) > 1 −
𝑒
−𝑛𝐷(𝑝,𝑘/𝑛)

max {2,√4𝜋𝑛𝐷 (𝑝, 𝑘/𝑛)}

. (29)

Proof. Set 𝑥 = √2𝑛𝐷(𝑝, 𝑘/𝑛). The result follows from
Theorem 1 using the method of Corollary 6.

Expressions (28) and (29) are tighter than the correspond-
ing Chernoff/Hoeffding bounds by a factor of at least 2, due
to the presence of the additional denominator terms; in fact,
they are much tighter for larger deviations as the denomi-
nators under the exponential become ≫ 2. An illustration
of the improvement that is obtained by adopting expression
(29) over Hoeffding’s original bound is given in Figure 2.The
figure illustrates the improvement in the lower bound on the
distribution function that is obtained for increasing values of
the normalized argument 𝑛𝐷(𝑝, 𝑘/𝑛) in the range from 0 to
6.

Moving deeper into the tail, it is easy to verify that the
improvement is continually increasing; this can also be illus-
trated byway of a simple example. Suppose 𝑛 = 1000,𝑝 = 0.1,
and 𝑘 = 150. Then the true Binomial distribution function
has a value of 0.999999723 and Hoeffding’s inequality gives a
lower bound of 0.999995143. Application of (29) gives a value
of 0.999999608 which is an order of magnitude closer to the
true Binomial function; the complimentary probability has
been reduced by a factor of 12.399. . ., which is in fact the value
of the function√4𝜋𝐷(𝑝, 𝑘/𝑛) at this point. Extension of (29)
to cover the Poisson-Binomial distribution (i.e., a sum of 𝑛
nonidentically distributed Bernoulli variables having a mean
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Figure 2: Comparison of the improvement of the distribution func-
tion lower bound in terms of the normalized argument 𝑛𝐷(𝑝, 𝑘/𝑛)

between expression (29) (green) and Hoeffding’s inequality (red).

𝑛𝜇) is obtained by employing (29) with 𝑥 = √2𝑛𝐷(𝜇, 𝑘/𝑛), as
per Hoeffding [7]. Sharper inequalities for𝑀(𝑥) can be used
to improve these exponential bounds further, at the expense
of increased complexity.

Finally, observe that simple Chernoff-style logarithmic
quantile inequalities are obtained from (15) and (22) by using
the known relationships Φ

−1

(𝑅) ≤ √−2 ⋅ ln(2 ⋅ (1 − 𝑅)) for
𝑅 ∈ [0.5, 1) or the slightly sharper result of Chiani et al. [13]:

Φ
−1

(𝑅) ≤ √2 ⋅ ln(
1 + √1 + 16 ⋅ (1 − 𝑅)

8 ⋅ (1 − 𝑅)
). (30)

5. Conclusions

In this paper, some improved inequalities with a relatively
simple form have been developed for the Poisson and Bino-
mial distribution and quantile functions. Analysis and obser-
vations have helped to illustrate some improvements over
previous work and related bounds. The obtained expressions
should prove to be most useful in situations where provable
and accurate bounds having analytic or closed forms are
required and/or situations in which the use of commercial
statistical software packages is not possible (see [8] for
an example application arising in probabilistic real-time
analysis). As a final remark, it seems that an interesting bound
on the natural logarithm which to the authors’ knowledge
does not seem to have been previously described can also
be obtained as a direct corollary of Lemma 3, which slightly
sharpens similar bounds such as ln(𝑥) ≥ (2𝑥−2)/(𝑥+1) (see
[14, page 160]).

Corollary 8. For real 𝑥 ≥ 1,

ln (𝑥) ≥ 3 − √
27

1 + 2𝑥
, (31)

with equality occurring only for 𝑥 = 1 and the sign of inequality
reversed if 0 < 𝑥 < 1.

Proof. Replace 𝑘/𝑚 by 𝑥 in (12); the corollary follows directly
from Lemma 3 and some algebraic simplifications.
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