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In many digital video applications, video sequences suffer from jerky movements between successive frames. In this paper, an
integrated general-purpose stabilization method is proposed, which extracts the information from successive frames and removes
the translation and rotation motions that result in undesirable effects. The scheme proposed starts with computation of the optical
flow between consecutive video frames and an affine motion model is adopted in conjunction with the optical flow field obtained
to estimate objects or camera motions using the Horn-Schunck algorithm.The estimated motion vectors are then used by a model-
fitting filter to stabilize and smooth video sequences. Experimental results demonstrate that the proposed scheme is efficient due to
its simplicity and provides good visual quality in terms of the global transformation fidelitymeasured by the peak-signal-noise-ratio.

1. Introduction

Video captured by cameras often suffers from unwanted jit-
tering motions. In general, this problem is usually dealt with
by means of compensation for image motions. Most video
stabilization algorithms presented in the recent literature try
to remove the image motions by either totally or partially
compensating for all motions caused by camera rotations or
vibrations [1–9]; therefore the resultant background remains
motionless. The motion models described in [1, 2] proposed
a pyramid structure to compute the motion vectors with an
affinemotionmodel representing rotational and translational
camera motions. Hansen et al. [3] described an image
stabilization scheme which uses a multiresolution, iterative
process to calculate the affine motion parameters between
levels of Laplacian pyramid images.The parameters obtained
through the refinement process achieve the desired accuracy.
The method presented in [4] used a probabilistic model with
a Kalman filter to reduce the motion noises and to obtain
stabilized camera motions. Chang et al. [5] used the optical
flow between consecutive frames based on the modification
of themethod in [6] to estimate the cameramotions by fitting
a simplified affinemotionmodel. Tsubaki et al. [7] developed
a method that uses two threshold parameters to describe

the velocity and the frequency of oscillations of unstable
video sequences. More recently, Zhang et al. [8] proposed a
3D perspective camera model based method, which works
well in situations where significant depth variations exist
in the scenes and the camera undergoes large translational
movement. The technique developed in [9] adopted a spa-
tially and temporally optimized approach to achieve high-
quality camera motion on videos where 3D reconstruction
is difficult or long feature trajectories are not available. The
technique formulates stabilization as a spatial-temporal opti-
mization problem that finds smooth feature trajectories and
avoids visual distortion.

In this paper, an integrated video stabilization scheme
is proposed, which primarily has two objectives. First of
all, rather than developing novel and complicated individual
algorithms, it aims to simplify the stabilization process by
integrating the well-researched techniques, such as motion
estimation, motion modeling, and motion compensation,
into a new single framework that is of modular nature and
can reduce the complexity for implementation, particularly
in hardware. Secondly, the scheme aims to provide better
performance in terms of the global transformation fidelity (a
typical measure of stabilization performance), compared to
other existingmethods.This is achieved by combining optical
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Figure 1: Flowchart of the video stabilization scheme.

flow estimation with motion models to increase accuracy of
estimation. The scheme is based on estimating the motion
field between consecutive frames using the Horn-Schunck
algorithm [10]. An iterative process based on a coarse-
to-fine technique is adopted here. The motion vectors are
firstly estimated using the block matching method between
two consecutive fields and then the dense motion field is
estimated using the motion vectors and the Horn-Schunck
algorithm. By fitting an affine motion model, the motion
parameters of the model are computed and smoothed. Thus,
by analyzing the directions of motion vectors and their stan-
dard deviations as well as using previously stabilized frame or
a reference frame, the imagemotions caused by three-dimen-
sional rotation and translation can be determined and the
current video frame can be stabilized.

The rest of this paper is organized as follows. In the next
section, we present an overview of the proposed video stabi-
lization scheme. Sections 3, 4, 5, and 6 describe in detail key
components of the scheme, namely, optical flow field estima-
tion, motion model fitting, motion parameter smoothening,
and motion compensation.The experimental and simulation
results of the proposed method are presented in Section 7.
Finally, the conclusions are drawn in Section 8.

2. Overview of the Video Stabilization Scheme

The flowchart of the proposed stabilization scheme is shown
in Figure 1, which integrates four key components: optical
flow field estimation, motion model fitting, motion param-
eters smoothening, and motion compensation. Each of these
components will be analytically presented in detail in the fol-
lowing sections.

3. Optical Flow Estimation Technique

The accuracy of the stabilization scheme mainly depends
on the motion vectors produced during the interframe
motion estimation.Here, a coarse-to-fine technique is used to
perform block correlation, initially at a coarse scale, and then
to interpolate the resulting estimates before they pass through
iterations ofHorn and Schunck’s optical flowalgorithm.Opti-
cal flow is an approximation of the local image motion based
upon local derivatives in a given sequence of images. That is,
in two dimensions, it specifies how much each image pixel
moves between adjacent images, while, in three dimensions,
it specifies how much each volume voxel moves between
adjacent volumes.
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To estimate optical flow of any pixel (𝑥, 𝑦) in an image,
we use the “intensity constancy” assumptionwhich states that
the intensity of any pixel on any object in an image remains
constant with time; that is,

𝐼 (𝑥, 𝑦, 𝑡) = 𝐼 (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) . (1)

Assuming small motions between consecutive frames (small
𝛿𝑥 and 𝛿𝑦), we can perform a first-order Taylor series
expansion on 𝐼(𝑥, 𝑦, 𝑡) in (1) to obtain

𝐼 (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡)

= 𝐼 (𝑥, 𝑦, 𝑡) +
𝜕𝐼
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𝛿𝑥 +

𝜕𝐼

𝜕𝑦
𝛿𝑦 +

𝜕𝐼

𝜕𝑡
𝛿𝑡 +H.O.T.

(2)

H.O.T. are the higher order terms of the Taylor series, which
we assume to be small and can safely be ignored. Using (1)
and (2), we can obtain

𝜕𝐼

𝜕𝑥
V
𝑥
+
𝜕𝐼

𝜕𝑦
V
𝑦
+
𝜕𝐼

𝜕𝑡
= 0 (3)

or

𝐼
𝑥
𝑢 + 𝐼
𝑦
V + 𝐼
𝑡
= 0, (4)

where 𝐼
𝑥
= 𝜕𝐼/𝜕𝑥, 𝐼

𝑦
= 𝜕𝐼/𝜕𝑦, 𝐼

𝑡
= 𝜕𝐼/𝜕𝑡, 𝑢 = 𝛿𝑥/𝛿𝑡, and

V = 𝛿𝑦/𝛿𝑡.
Equation (4) has two variables, 𝑢 and V, which means

that, for an image with 𝑁 pixels, there will be 𝑁 equations
with 2𝑁 variables. Hence additional constraints are required
to solve these equations. Horn and Schunck proposed to use
the smoothness constraint; that is, to find 𝑢, V, and their
derivatives, we minimize the following energy function:
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= ∬
Ω

[(𝐼
𝑥
𝑢 + 𝐼
𝑦
V + 𝐼
𝑡
)
2

+𝜆
2

(𝑢
2

𝑥
+ 𝑢
2

𝑦
+ V
2

𝑥
+ V
2

𝑦
)] 𝑑𝑥 𝑑𝑦,

(5)

where 𝜆 controls the weight given to the smoothness con-
straint andΩ denotes the image domain. Also we assume that
𝑢 and V are zero at the boundaries of the image domain. The
minimization of (5) is achieved using calculus of variations
and the approximation of the Laplacian:

∇
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(6)

The derivatives of brightness are estimated from the discrete
set of image brightness measurements as follows:
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where 𝑖 and 𝑗 are the grid space intervals and 𝑘 is the image
frame sampling period.The local averages 𝑢 and V are defined
as follows:
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We can compute a new set of velocity estimates (𝑢𝑛+1, V𝑛+1)
per frame from the estimated derivatives and the average of
the previous velocity estimates (𝑢𝑛, V𝑛) by
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(9)

At the iteration 𝑛 = 0, the initial values of 𝑢 and V are set equal
to zero.

Inmotion estimation, there are occasions that themotion
vectors produced fall outside normal values. When a motion
vector is above a certain value, it is characterized as an outlier.
The above method is very sensitive to outliers; that is, it
is prone to produce outliers or unexpected data. Therefore,
an alternative value has to be considered to substitute these
outliers. Here, themedian value of motion vectors is adopted.
This is because, among geometric mean, harmonic mean,
standard deviation, median and trim-mean, all of which have
been applied and tested, themedian and trim-mean are found
to be the most robust, that is, resistant to outliers.

4. Motion Model Fitting

A camera projects a three-dimensional world point onto a
two-dimensional image point.Themotion of the cameramay
be regarded as a singlemotion such as rotation, translation, or



4 Advances in Multimedia

Frame 1 Frame 2

Synchronization

Frame 3

Model
fitting

Model
fitting

Stabilized
frame 1

Stabilized
frame 2

Stabilized

Original video sequence

Stabilized video sequence

Frame i Frame i + 1

Model
fitting

Model
fitting

Stabilized
frame i

Frame i − 1

frame i − 1

Figure 2: Compensation process to stabilize video sequence.

zoom or a combination of any two or three of these motions.
Such camera motion can be well categorized by a set of
parameters. In our case, the first frame of a video sequence
is used to define the reference coordinate system, and a
two-dimensional affine model is used to estimate a paramet-
ric form describing the displacement of the video content
between consecutive frames by identifying the correspon-
dence between local invariant features. The affine model was
employed since it is more resilient to noisy data and it can
represent all the basic camera motions which often occur in
video applications. If we denote a pixel position in the first
frame by (𝑥, 𝑦) and the corresponding position in the second
frame by (𝑥, 𝑦), the two-dimensional affine motion model
can be formulated as

(
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2
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where the motion parameters 𝑎
1
, 𝑎
2
control the scaling and

rotation (𝑎
1
= cos 𝜃 and 𝑎

2
= sin 𝜃 if there is only rotation; 𝜃
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3
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the horizontal and vertical translations.
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estimate the simplified affine motion between the two frames
from the𝑁motion vectors by solving the following overcon-
strained linear equation:
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The affine motion parameters are obtained through solving
this linear equation by the least-square solution. Equation
AX = Y has least square solution if A𝑡A is invertible and

rank(A) = 4. In this case, the least square solution X is given
by X = (A𝑡A)−1A𝑡Y.

5. Motion Parameters Smoothing

In order to produce high quality stabilized video sequences,
the motion parameters obtained need to be smoothed. This
can be achieved by space-domain filtering. Different types
of filters have been applied and tested. These include the
recursive Kalman filtering which removes camera vibrations,
the moving average filter that smoothes data by replacing
each data with the average of the neighboring data defined
within a span, and the locally weighted scatterplot smoothing
which uses weighted linear regression to smooth data. In our
scheme, the Savitzky-Golay filter [11, 12] is used to process
the originally estimated affine global motion parameters as
it is a generalized moving average filter with the properties of
simplicity and efficiency for implementation.

6. Global Motion Compensation

Motion compensation is performed frame by frame using
previously stabilized frames (apart from the first frame) and
their corresponding global smoothed parameters; that is,
the first stabilized frame is obtained by compensating the
first original frame with its corresponding smoothed affine
motion parameters; the second stabilized frame is achieved
by compensating the first stabilized frame with its corre-
sponding smoothed affine motion parameters, and so forth.
The block diagram of this compensation process is shown in
Figure 2. Due to utilization of the first original frame (rather
than a previously stabilized one) at the very beginning of
the process, an error will be produced and propagated to the
subsequent frames. In order to mitigate this effect, synchro-
nization is performed to control the error as follows. For the
frame 𝑖, the unsmoothed motion parameters are compared
with the smoothed motion parameters. If the result of the
comparison is less than a threshold (synchronization distance
threshold), the original frame 𝑖 − 1 together with the corre-
sponding smoothedmotion parameters are used to obtain the
stabilized frame 𝑖, that is, synchronizing the stabilized frame
𝑖 with the original frame 𝑖 − 1; otherwise the stabilized frame
𝑖 − 1 with the corresponding smoothed motion parameters is
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Figure 3: Example of stabilization results from the stabilization scheme proposed: (a) original frameNo. 14 of the video sequence “MyOffice”;
(b) dense optical flow field-estimatedmotion vectors between frames 14 and 15; (c) difference between original frames 14 and 15; (d) difference
between stabilized frames 14 and 15.

used to obtain the stabilized frame 𝑖.The higher the threshold
is, the more synchronized the stabilized video sequence
would bewith the original video sequence, therefore reducing
errors. In order to guarantee quality of the stabilized output
video, regardless of the error control described above, a
synchronization frame is enforced every 30 frames.

7. Simulation Results

In order to evaluate the effectiveness and performance of the
stabilization scheme proposed, the simulations are carried
out using a range of the QCIF format (176 pixels by 144 lines)
video sequences captured. Figure 3 shows the stabilization
results from the captured video sequence “My Office.” Fig-
ure 3(a) shows an original frame (no. 14) from the video
sequence. The frame clearly contains the “tremor effect,”
which is deliberately introduced into the video sequence. Fig-
ure 3(b) shows the optical flow field, which is estimated from
frames 14 and 15. The random vectors detected, as shown in
the figure, are due to zooming in/out effects produced during

the video recording. Since it is very difficult to visually dis-
tinguish two consecutive frames, here we compare the dif-
ference between two original frames (numbers 14 and 15) to
the difference between two corresponding stabilized frames,
as shown in Figures 3(c) and 3(d). The results of another
experiment from the video sequence “Jerky” are shown in
Figure 4. Similarly, the frames 14 and 15 of the sequence are
used here. From these experiments, it is obvious that the
stabilized frames in Figures 3(d) and 4(d) have much less
motion (white pixels/regions) than the original frames in
Figures 3(c) and 4(c) do. This demonstrates that, after the
stabilization process, a significant amount of the undesirable
movements have been compensated.

Since dynamic processes, such as stabilization, cannot
be illustrated with still images, we present and compare in
Figure 5 the three motion parameters (rotation, horizontal,
and vertical displacements) of the first 80 frames of the video
sequence “My Office.” The comparisons between original
(blue curve) and smoothed (red curve) motion parameters
show that all three motion parameters have been smoothed
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Figure 4: Experimental results from the video sequence “Jerky”: (a) original frame no. 14; (b) dense optical flow field-estimated motion
vectors between frames 14 and 15; (c) difference between original frames 14 and 15; (d) difference between stabilized frames 14 and 15.

for the length of the video sequence, therefore reducing the
unwanted movements captured during the generation of the
video. It is also shown that the parameter smoothing process
has been improved with synchronization. Without this syn-
chronization (green curve), accumulated estimation errors
will increase significantly after a certain number of frames.
The difference between the red and green curves indicates
clearly that the parameter smoothing process is synchronized
at frames 7, 13, 25, 41, 57, and 73 in order to correct the
accumulated estimation errors, which occur at these frame
locations on the green curves.

In order to objectively and quantitatively evaluate the
performance of the scheme proposed, we use global trans-
formation fidelity (GTF) [13] as a measure of how well
stabilization compensates the motion of a camera; that is,
how precisely the motion model fits the actual camera
motion. Here, the Peak-Signal-Noise-Ratio (PSNR) between
two frames is used to measure the GTF, which is defined as

PSNR (𝑓2, 𝑓1) = 10 log 255
2

MSE (𝑓2, 𝑓1)
, (12)

where MSE (mean squared error) measures the average
difference between the two frames𝑓1 and𝑓2. Figure 6 shows
the performance comparison in terms of PSNR between the
proposed stabilization scheme and the well-known Gray-
Coded Bit-Plane Matching based stabilization method [14,
15], which uses simple Gray-coding and has low computa-
tional load for hardware implementation, therefore being of
equivalent complexity to that of the proposed scheme. The
calculations of PSNR in the figure make use of the first 50
frames of “MyOffice” sequence,which contains the anticlock-
wise camera rotation of 90 degrees.TheGTF (PSNR) is calcu-
lated between the reference frame (the first frame in this case)
and the currently stabilized frame. It can be observed from
the GTF curves that the proposed stabilization procedure
performs significantly better than the Gray-Coded Bit-Plane
Matching during the first 10 frames which correspond to
the rotation part of the sequence. This result is anticipated
because the Gray-Coded Bit-Plane Matching method does
not compensate for rotation very well. The GTF of the
proposed scheme drops from frame to frame since each fol-
lowing frame has less overlap with the reference frame. After
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Figure 5: Original and smoothed motion parameters of the video “My Office.”
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Figure 6: GTF of the video sequence “My Office,” measured by
PSNR.

about 40 frames, the sequence almost does not overlap with
the reference frame.

8. Conclusions

This paper presents a general-purpose video stabilization
scheme, aiming at a simple and effective solution for a
wide range of video-based applications. The scheme features
integration of optical flow and motion model based motion
estimation, space-domain filtering, and motion compensa-
tion, thus offering an efficient computation method for video
stabilization. It is successfully implemented inMATLAB.The
simulation result shows that the scheme is effective for a
broad range of real-time applications. Compared to other
video stabilization methods, it has the advantages of simplic-
ity and robustness while maintaining better or comparable
performance in terms of the global transformation fidelity
measured by PSNR.
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