
Automated Specification Discovery

via User-Defined Predicates

Guanhua He1, Shengchao Qin1⋆, Wei-Ngan Chin2 and Florin Craciun3

1Teesside University 2National University of Singapore 3Babes-Bolyai University

Abstract. Automated discovery of specifications for heap-manipulating programs

is a challenging task due to the complexity of aliasing and mutability of data

structures. This task is further complicated by an expressive domain that com-

bines shape, numerical and bag information. In this paper, we propose a com-

positional analysis framework in the presence of user-defined predicates, which

would derive the summary for each method in the expressive abstract domain,

independently from its callers. We propose a novel abstraction method with a bi-

abduction technique in the combined domain to discover pre-/post-conditions that

could not be automatically inferred before. The analysis does not only prove the

memory safety properties, but also finds relationships between pure and shape do-

mains towards full functional correctness of programs. A prototype of the frame-

work has been implemented and initial experiments have shown that our approach

can discover interesting properties for non-trivial programs.

1 Introduction

In automated program analysis, certain kinds of program properties have been well ex-

plored over the last decades, such as numerical properties in linear abstraction domain,

and shape properties for list-manipulating programs in separation domain. However,

previous works have not yet automatically analysed program properties involving com-

plex mixed domains, particularly for programs with sophisticated data structures and

strong invariants involving both structural and pure (numerical and content) informa-

tion. For example, it is still non-trivial to discover program properties, such as a list

becoming sorted during the execution of a program, a binary search tree remaining

balanced before and after the execution of a procedure, or the elements of a list remain

unchanged after reversing the list. This difficulty is not only due to sharing and mutabil-

ity of data structures under manipulation, but is also due to closely intertwined program

properties, such as structural numerical information (length and height), symbolic con-

tents of data structures (bag of values), and relational numerical information (sortedness

and balancedness).

In addition to classical shape analyses (e.g. [4, 14, 24]), separation logic [22] has

been applied to analyse shape properties in recent years [5, 8, 26]. These works can au-

tomatically infer method specifications in the shape domain. Some other works such

as [17, 18] also incorporate simple numerical information into the shape domain to al-

low automated synthesis of properties like data structure size information.

However, these previous analyses mainly deal with predesignated data structure

properties with fixed numerical templates, such as pointer safety for lists and list length

⋆ Corresponding author: shengchao.qin@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322323721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


information. To overcome this limitation, we propose in this paper a compositional

program analysis in a combined abstract domain with shape, numerical and bag infor-

mation. Our analysis not only handles both functional correctness and memory safety

together, but can also discover relationships between shape and pure (numerical and

bag) domains. Unlike traditional approaches [18] which usually analyse the shape first

before turning to pure properties, our approach analyses programs over both domains

at the same time. This is very necessary as verifying functional correctness for certain

programs may require us to consider both shape and pure information at the same time.

Without pure information, a shape analysis may not be able to find useful program

specifications (an example is the merge procedure discussed in [5]). Our approach

can handle this kind of programs smoothly, and we will illustrate our method using the

merge example in Section 2.

Our analysis is compositional. It analyses a program fragment without any given

contextual information, and it analyses each method in a modular way independent of its

callers. To generate the summary (pre-/post-conditions) for each method, our analysis

adopts a new bi-abduction mechanism over the combined domain, which generalises

the bi-abduction technique proposed by Calcagno et al. [5] to a more expressive abstract

domain. In summary, this paper makes the following contributions:

– We have designed a compositional analysis to discover full program specifications

(in the form of pre-/post-conditions involving shape, numerical and bag properties)

with user-given data structure predicates.

– For such an analysis, we have designed a bi-abductive abstract semantics which in-

corporates a generalised bi-abduction procedure to facilitate specification discovery

over the combined abstract domain.

– In addition to a normal abstraction function, we have also proposed a novel abduc-

tive abstraction function over the combined domain. This new abstraction function

allows us to find stronger method specifications that are often necessary for the

successful verification for higher level of functional correctness.

– We have built a prototype system and conducted some initial experiments, which

help confirm the viability and precision of our solution in inferring non-trivial pro-

gram specifications.

2 The Approach

In this section we give some preliminaries and illustrate our approach via an example.

2.1 Preliminaries

Separation Logic. Separation logic [22] extends Hoare logic to support reasoning about

shared mutable data structures. It provides separation conjunction (∗) to form formulae

like p1 ∗ p2 to assert that two heaps described by p1 and p2 are domain-disjoint.

User-defined Predicates. In our analysis, users are allowed to define inductive predi-

cates in separation logic to specify both separation and pure properties of recursive data

structures. For example, given a data structure data Node { int val; Node next; },

one can define a predicate for a list with its content as



llB(root, n, S) ≡ (root=null∧n=0∧S=∅)∨
(∃v, q, n1, S1 · root7→Node(v, q)∗llB(q, n1, S1)∧n1=n−1∧S=S1⊔{v})

The parameter root for the predicate llB is the root pointer referring to the list. The

length and content of the list are denoted resp. by n and the bag S, and ⊔ indicates multi-

set (bag) union. If one wants to verify a sorting algorithm, they can specify a non-empty

sorted list as follows:

sllB(root, mi, mx, S) ≡ (root7→Node(mi, null)∧mi=mx∧S={mi})∨
(root7→Node(v, q)∗sllB(q, m1, mx, S1)∧v=mi∧v≤m1∧m1≤mx∧S=S1⊔{v})

where it keeps track of the minimum (mi) and maximum (mx) values in the list as

well as the bag of all values (S). Note that we use a shortened notation that unbound

variables, such as q, v, m1 and S1, are implicitly existentially quantified.

Such predicates play an important role in our analysis as (i) they are used to help

specify desired properties about data structures under manipulation, and (ii) they serve

as a guide for our analysis to discover desired program specifications. To reduce the

burden of supplying such predicates, we have defined a library of predicates covering

popular data structures and variety of properties.

Entailment. In our work we make use of the separation logic prover SLEEK [7] to prove

whether one formula ∆′ in the combined abstract domain entails another one ∆: ∆′⊢∆∗R.

R is called the frame which is useful for our analysis. For instance, by entailment proof

∃y·x 7→node(vx, y)∗llB(y, n, S) ⊢ llB(x, m, S1)∗R

We can generate the frame R as m=n+1∧S1=S⊔{vx}.

Bi-Abduction. In an earlier work [5], a bi-abductive entailment is proposed for the

shape domain: given two shape formulae G, H, the bi-abduction G ∗ [A]✄ H ∗ [F] infers

the anti-frame A and the frame F along the entailment proof. An example taken from

[5] is
x 7→null∗z 7→null∗[list(y)]✄ list(x)∗list(y) ∗ [z 7→null]

where the list(·) predicate describes acyclic, null-terminated singly-linked lists. In

the current work, we will generalise such bi-abductive reasoning to the combined do-

main (involving shape, user-defined predicates, numerical and bag information). A sim-

ple example of the generalised bi-abductive reasoning is

∃y·x 7→node(vx, y)∗y 7→node(vy, null)∗[A]✄ sllB(x, mi, mx, S)∗[F]

where A ≡ (vx≤vy) and F ≡ (mi=vx∧mx=vy∧S={vx, vy}).

2.2 An Illustrative Example

We illustrate our analysis approach via the merge method (used in the merge-sort),

which has been declared as an unverifiable example in [5], since their analysis does

not keep track of data values stored in the list during their shape analysis. The method

(Fig. 1) merges two sorted lists into one sorted list. Automated specification discovery

for merge is tricky due to two facts: (1) only one input list is fully traversed; (2) both

input lists are required to be sorted. For (1), if we apply the shape abduction [5], we

can only discover two disjoint lists (for precondition) - one ending with null and one

ending with an unknown pointer, which cannot guarantee the memory safety of the

method. For (2), if an analysis cannot infer that the two input lists are sorted, it will



1 Node merge(Node x, Node y)

2 {

3 if (x == null) {

4 return y;

5 } else if (y == null) {

6 return x;

7 } else

8 if (x.val <= y.val) {

9 Node t = x.next;

10 x.next = merge(t, y);

11 return x;

12 } else {

13 Node t = y.next;

14 y.next = merge(x, t);

15 return y;

16 } }

Fig. 1. Merging two sorted lists.

not be able to discover that the output list is sorted, which will not be sufficient for one

to verify the functional correctness of the enclosing merge-sort method. The two input

lists being unsorted also causes the unknown pointer problem mentioned above. To

overcome these difficulties, we propose a compositional analysis in a combined shape

and pure domain, where program properties over the combined domain are processed at

the same time during the analysis. Our analysis adopts a novel bi-abduction mechanism

to help discover program preconditions in the combined domain.

For the merge example, the shape predicate selected for our analysis is slsB

which keeps track of the minimal (mi) and maximal (mx) values, bag of values (S)

and tail pointer (p) of a sorted list segment.

slsB(root, mi, mx, S, p) ≡ (root7→Node(mi, p)∧mi=mx∧S={mi})∨
(root7→Node(mi, q)∗sllB(q, m1, mx, S1, p)∧mi≤m1∧m1≤mx∧S=S1⊔{mi})

Our analysis aims at finding a sound and precise specification (summary) of the method.

Starting from an initial specification (Pre0≡emp,Post0≡false), our analysis iterates

the method body by symbolic execution a number of times until a fixed point is reached

for the pre-/post-condition pair. During the symbolic execution, we use a pair of states

(infP, Curr) to keep track of the precondition that the analysis has discovered (infP)

so far and the current state the execution has reached (Curr), respectively. If the current

abstract state does not meet the precondition required by the current program command,

we use an abductive inference mechanism (mentioned in the previous subsection) to

synthesise a candidate precondition as the missing precondition.
For the merge example, the initial specification (Pre0≡emp,Post0≡false) allows

the analysis to skip the branches with recursive calls to merge. The symbolic execution
in the first fixpoint iteration starts from state (infP≡emp,Curr≡emp), since the analysis
assumes no prior knowledge about the starting program state. To enter line 4, the con-
dition x==null needs to be met by the current abstract state. We apply abduction and
discover x=null which is then added to the precondition. Similarly, we have y=null

from the second branch. After the first iteration, a summary is found as

(Pre1≡(x=null ∨ y=null),Post1≡(x=null∧res=y ∨ y=null∧res=x)) (1)

where res denotes the return value. Using this new summary for recursive calls to
merge, symbolically executing the method body again (but with an updated starting
state (infP≡Pre1,Curr≡Pre1) yields the summary (Pre2, Post2):

(Pre2 ≡ x=null ∨ y=null ∨ x7→Node(xv1, xp1)∗y7→Node(yv1, yp1)
∧(xv1≤yv1∧xp1=null ∨ xv1>yv1∧yp1=null),

Post2≡ x=null∧res=y ∨ y=null∧res=x ∨ x7→Node(xv1, xp1)∗y7→Node(yv1, yp1)
∧(xv1≤yv1∧res=x∧xp1=y ∨ xv1>yv1∧res=y∧yp1=x))

(2)
After the third iteration of symbolic execution, we generate a precondition as:



x=null ∨ y=null ∨ x7→Node(xv1, xp1)∗y7→Node(yv1, yp1)
∧ (xv1≤yv1∧xp1=null ∨ xv1>yv1∧yp1=null)

(3)

∨x7→Node(xv1, xp1)∗xp1 7→Node(xv2, xp2)∗y7→Node(yv1, yp1)
∧ (xv1≤yv1∧(xv2≤yv1∧xp2=null ∨ xv2>yv1∧yp1=null))

(4)

∨x7→Node(xv1, xp1)∗y7→Node(yv1, yp1)∗yp1 7→Node(yv2, yp2)
∧ (xv1>yv1∧(xv1≤yv2∧xp1=null ∨ xv1>yv2∧yp2=null))

(5)

Branch (4) says that the program only touches the second node of x list (the list referred
to by x) if xv1≤yv1. Furthermore, if xv2≤yv1, xp2 should be null; otherwise yp1
must be null to guarantee the termination of the method and memory safety. Branch
(5) states a similar condition when touching the second node of y list. The information
kept in this formula is very precise, but keeping such a level of details will not allow
the analysis to scale up. According to the given predicate slsB, we could abstract
the shape of the x list (and that of the y list) to be a sorted list segment. However, the
formula itself does not contain sufficient information for us to carry out this abstraction,
i.e. the sortedness information about the x list (and the y list) is missing. This missing
information is the numerical relation between xv1 and xv2 in the x list (and that between
yv1 and yv2 in the y list). In other words, we need to use abduction to discover xv1≤xv2
(resp. yv1≤yv2) during the abstraction from the shape of the x list (resp. the y list) to a
sorted list segment in the branch (4) (resp. (5)), e.g. for the x list:

x7→Node(xv1, xp1)∗xp1 7→Node(xv2, xp2)∗[xv1≤xv2]✄ slsB(x, xv1, xv2, xS1, xp2)∗R

The inspiration for this abductive abstraction comes from the definition of the predicate

slsB. We use such predicates to help infer data structure properties that are anticipated

from some program code. Note that a standard abstraction would only be able to obtain

an abstraction of an ordinary list segment without any sortedness information.
By applying such an abductive abstraction against the predicate slsB and then

joining the branches with the same shape, the precondition from two iterations becomes:

x=null ∨ y=null ∨ slsB(x, xmi0, xmx0, xS0, xp0) ∗ slsB(y, ymi0, ymx0, yS0, yp0)
∧ (xmx0≤ymx0 ∧ xp0=null ∨ xmx0>ymx0 ∧ yp0=null)

Continuing the analysis, the fixed point of the program summary (Pre,Post) is reached:

Pre≡x=null ∨ y=null ∨ slsB(x, xmi0, xmx0, xS0, xp0)∗
slsB(y, ymi0, ymx0, yS0, yp0)∧(xmx0≤ymx0∧xp0=null∨xmx0>ymx0∧yp0=null),

Post≡x=null∧res=y ∨ y=null∧res=x ∨ slsB(x, xmi1, xmx1, xS1, xp1)
∗slsB(y, ymi1, ymx1, yS1, yp1)∧xS0⊔yS0=xS1⊔yS1∧xmi1=xmi0∧ymi1=ymi0∧
(xmi0≤ymi0∧res=x∧xp1=y∧xmx1≤ymi1∨xmi0>ymi0∧res=y∧yp1=x∧ymx1≤xmi1

The essential steps to terminate the search for suitable preconditions are abstraction

and widening. Both operators are tantamount to weakening a state, and they are over-

approximations and are sound for the synthesis of postconditions. However, when such

steps are applied to the synthesis of preconditions, it may make the precondition too

weak for the program to establish the postcondition. So after the analysis, we shall use

a forward analysis process to check the discovered summary (a similar process is also

carried out in [5]).

From this example, we observe that the memory safety is not only related to the

shape of data structures, but may also relate to data values stored in them. For the

merge example, our analysis can find that one input list is traversed to its end, i.e. until

null is reached, and the other input list is partially traversed till it reaches an element



that is larger than the maximal value of the former list. As captured in the inferred

precondition, the rest of the list will not be accessed by the program. Similarly, the

inferred postcondition captures a fairly precise specification that represents the merged

list using two list segments that either begins from x or from y, depending on which of

the two input lists contains the smallest element.

3 Language and Abstract Domain

To simplify presentation, we employ a strongly-typed C-like imperative language in

Fig. 2 to demonstrate our approach. A program Prog written in this language consists

of declarations tdecl, which can be data type declarations datat (e.g. Node in Section 2),

predicate definitions spred (e.g. llB and slsB), as well as method declarations meth.

The definitions for spred and mspec are given later in Fig. 3. We assume that methods

come with no specifications (i.e. no mspec∗ part), and our proposed analysis will dis-

cover them. Our language is expression-oriented, and thus the body of a method (e) is

an expression formed by program constructors. Note that d and d[v] represent respec-

tively heap-insensitive and heap sensitive commands. kτ is a constant of type τ . The

language allows both call-by-value and call-by-reference method parameters, separated

with a semicolon (;). These parameters allow each iterative loop to be directly converted

to an equivalent tail-recursive method, where mutations on parameters are made visible

to the caller via pass-by-reference. This technique of translating away iterative loops is

standard and is helpful in further minimising our core language.

Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred

datat ::= data c { field∗ } field ::= t v t ::= c | τ
meth ::= t mn ((t v)∗; (t v)∗) mspec∗ {e} τ ::= int | bool | void
e ::= d | d[v] | v:=e | e1; e2 | t v; e | if (v) e1 else e2
d ::= null | kτ | v | new c(v∗) | mn(u∗; v∗)
d[v] ::= v.f | v1.f :=v2 | free(v)

Fig. 2. A Core (C-like) Imperative Language.

Our specification language (in Fig. 3) allows (user-defined) shape predicates spred

to specify program properties in our combined domain. Note that such predicates are

constructed with disjunctive constraints Φ. We require that the predicates be well-

formed [7]. The first parameter of a predicate is the pointer referring to the data struc-

tures itself. A conjunctive abstract program state σ has mainly two parts: the heap

(shape) part κ in the separation domain and the pure part π in convex polyhedra do-

main and bag (multi-set) domain, where π consists of γ, φ and ϕ as aliasing, numerical

and multi-set information, respectively. kint is an integer constant. The square symbols

like ❁, ⊑, ⊔ and ⊓ are multi-set operators. The set of all σ formulae is denoted as

SH (symbolic heap). During the symbolic execution, the abstract program state at each

program point will be a disjunction of σ’s, denoted by ∆. Its set is defined as PSH. An

abstract state ∆ can be normalised to the Φ form [7].

Using entailment [7], we define a partial order over these abstract states:

∆ � ∆′ =df ∆′ ⊢ ∆ ∗ R



spred ::= p(root, v∗) ≡ Φ Φ ::=
∨

σ∗ σ ::= ∃v∗·κ∧π
mspec ::= requires Φpr ensures Φpo

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
κ ::= emp | v 7→c(v∗) | p(v∗) | κ1 ∗ κ2 π ::= γ ∧ φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1=b2 a ::=s1=s2 | s1≤s2
s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1❁B2 | B1⊑B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1⊔B2 | B1⊓B2 | B1−B2 | ∅ | {v}

Fig. 3. The Specification Language.

where R is the (computed) residue part. And we also have an induced lattice over these

states as the base of fixpoint calculation for our analysis.

The memory model of our specification formulae can be found in [7]. In our analy-

sis, variables include both program and logical variables.

4 Generalised Bi-Abduction for the Combined Domain

We present a new bi-abduction procedure over the combined domain (which generalises

the previous bi-abduction [5] over only the shape domain).

Given σ and σ1, the bi-abduction procedure σ ∗ [σ′] ✄ σ1 ∗ σ2 (shown in Fig. 4)

aims to find the anti-frame part σ′ and the frame part σ2 such that σ ∗ σ′ ⊢ σ1 ∗ σ2

where σ and σ1 can be the current program state and the precondition of next instruc-

tion, respectively. Our abduction procedure can handle more than one predicates in the

analysis, while the shape abduction [5] caters for only one specified shape predicate

domain. Another advance is that we can infer numerical and bag properties together

with the shape formulae as the anti-frame to improve the precision of the analysis.

σ 0 σ1 ∗ true σ1 ⊢ σ ∗ σ′ σ ∗ σ′ ⊢ σ1 ∗ σ2

σ ∗ [σ′]✄ σ1 ∗ σ2

Residue

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ0 ∈ unroll(σ) data no(σ0) ≤ data no(σ1)

σ0 ⊢ σ1 ∗ σ
′ or σ0 ∗ [σ

′
0]✄ σ1 ∗ σ

′ σ ∗ σ′ ⊢ σ1 ∗ σ2

σ ∗ [σ′]✄ σ1 ∗ σ2

Unroll

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ1 ∗ [σ
′
1]✄ σ ∗ σ′ σ ∗ σ′ ⊢ σ1 ∗ σ2

σ ∗ [σ′]✄ σ1 ∗ σ2

Reverse

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ ∗ σ1 ⊢ σ1 ∗ σ2

σ ∗ [σ1]✄ σ1 ∗ σ2

Missing

σ 0 σ1 ∗ σ
′
1 ∗ true σ1 ∗ σ

′
1 0 σ ∗ true σ ⊢ σ′

1 ∗ true
σ ∗ [σ′]✄ σ1 ∗ σ

′
2 σ ∗ σ′ ⊢ σ1 ∗ σ

′
1 ∗ σ2

σ ∗ [σ′]✄ (σ1 ∗ σ
′
1) ∗ σ2

Remove

Fig. 4. Bi-Abduction rules.

The 1st rule Residue triggers when the LHS (σ) does not entail the RHS (σ1) but

the RHS entails the LHS with some formula (σ′) as the residue. This rule is quite general

and applies in many cases. For instance, if LHS is emp (σ), RHS is x 7→Node(xv, xp)(σ1),

the RHS can entail the LHS with residue x 7→Node(xv, xp)(σ′). The abduction then



checks whether σ plus the frame σ′ implies σ1 ∗ σ2 for some σ2 (emp in this example),

and returns x 7→Node(xv, xp) as the anti-frame.

The 2nd rule Unroll deals with the case where neither side entails the other, e.g. for

slsB(x, xmi, xmx, xS, null) as LHS and ∃p, u, v·x 7→Node(u, p) ∗ p 7→Node(v, null)
as RHS. As the shape predicates in the antecedent σ are formed by disjunctions ac-

cording to their definitions (like slsB), its certain disjunctive branches may imply σ1.

As the rule suggests, to accomplish abduction σ ∗ [σ′]✄ σ1 ∗ σ2, we first unfold σ
(σ0 ∈ unroll(σ)) and try entailment or further abduction with the results (σ0) against σ1.

If it succeeds with a frameσ′, then we confirm the abduction by ensuringσ ∗ σ′ ⊢ σ1 ∗ σ2.

For the example above, the abduction returns ∃u, v·xS={u, v} as the anti-frame σ′ and

discovers the nontrivial frame u=xmi∧ v=xmx ∧ u≤v as σ2. The function data no re-

turns the number of data nodes in a state, e.g. it returns 1 for x 7→Node(v, p)∗llB(p, n, T).
This syntactic check prevents unlimited number of times of unrolling from happening

when the abduction procedure invokes this rule recursively. The unroll unfolds all shape

predicates once in σ, normalises the result to a disjunctive form (
∨n

i=1 σi), and returns

the result as a set of formulae ({σ1, ..., σn}).

The 3rd rule Reverse handles the case where neither side entails the other, and the

2nd rule does not apply, e.g. ∃p, u, v, q·x 7→Node(u, p)∗p 7→Node(v, q) as LHS and ∃xS·
slsB(x, xmi, xmx, xS, xp) as RHS. In this case the antecedent cannot be unfolded as it

contains only data nodes. As the rule suggests, it reverses two sides of the entailment

and applies the second rule to uncover the constraints σ′
1 and σ′. Then it checks that the

LHS (σ), with σ′ added, does entail the RHS (σ1) before it returns σ′. For the example

above, the anti-frame is inferred as u≤v.

When an abduction procedure is conducted, the first three rules should be attempted

exhaustively in the given order; if they do not succeed in finding a solution, then the

rule Missing is invoked to add the consequence to the antecedent, provided that they are

consistent. It is effective for situations like x 7→Node( , ) 0 y 7→Node( , ), where we

should add y 7→node( , ) to the LHS directly. In our analysis, we assume that different

variables refer to different nodes unless aliasing is suggested in the program code. For

example, the if-statement if (x == y){c} suggests that x and y are aliased in code c.

Note that when the third rule is applied, the abduction procedure in the premise, namely

σ1∗[σ′
1
]✄σ∗σ′, is not allowed to apply the third rule again. This is to prevent an infinite

number of applications of the third rule.

If the first four rules fail, the Remove rule then tries to find a part of consequent (σ′
1)

which is entailed by the antecedent. The abduction is then applied to the remaining part

of the consequent (σ1) to discover the anti-frame (σ′). For example, the bi-abduction

question llB(x, n, S)∧n>2∗[σ′]✄ x 7→Node(v1, p1) ∗ y 7→Node(v2, p2) ∗ σ2 needs this

rule to remove x 7→Node(v1, p1) from consequent before applying the Missing rule to

find the anti-frame σ′ = y 7→Node(v2, p2).

Our earlier work [20] gives a restricted form of abduction focusing on discovering

pure information with the assumption that either complete or partial shape informa-

tion is available. Our bi-abduction algorithm presented here generalises it to cater for

full specification discovery scenarios, whereby, we do not have the hints to guide the

analysis anymore due to the absence of shape information in pre/post-conditions; but at

the same time we can have more freedom as to what missing information to discover.



One observation on abduction is that there can be many solutions of the anti-frame σ′

for the entailment σ ∗ σ′ ⊢ σ1 ∗ σ2 to succeed. Therefore, we define “quality” of anti-

frame solutions with the partial order � given in the previous section, i.e. the smaller

(weaker) one is regarded as better. We prefer to find solutions that are (potentially lo-

cally) minimal with respect to � and consistent. However, such solutions are generally

not easy to compute and could incur excess cost (with additional disjunction in the anal-

ysis). Therefore, our abductive inference is designed more from a practical perspective

to discover anti-frames that should be suitable as preconditions for programs, and the

partial order � sounds more like a guidance of the decision choices of our abduction

implementation, rather than a guarantee to find the theoretically best solution.

5 Analysis Algorithm

Our proposed analysis algorithm is given in Fig. 5. It takes three input parameters: T as

the set of method specifications that are already inferred, the procedure to be analysed

t mn ((t x)∗; (t y)∗) {e}, and a pre-set upper bound n on the number of shared logical

variables that we keep during the analysis.

As in a standard abstract interpretation framework, our analysiscarries out the fixed-

point iteration until a fixed-point (Prei,Posti) (for some i) is reached. To infer the

pre-conditions, our abstract semantics is equipped with bi-abduction over the combined

domain. To allow the discovery of more precise preconditions, our abstraction proce-

dure is also equipped with abduction, yielding the novel abductive abstraction (absa)

for precondition discovery. The postcondition inference still employs the normal ab-

straction mechanism (abs).1

We first set the precondition as emp and postcondition as false which signifies

that we know nothing about the method (line 1). Then for each iteration, a forward bi-

abductive analysis is employed to compute a new pre-/post-condition (line 4) based on

the current specification. The analysis performs abstraction on both pre-/post-conditions

obtained to maintain the finiteness of the shape domain. The obtained results are joined

with the results from the previous iteration (line 6), and a widening is conducted over

both to ensure termination of the analysis (line 7). If the analysis cannot continue due to

a program bug, or cannot keep the number of shared logical variables/cutpoints (counted

by cp no) within a specified bound (n), then a failure is reported (line 8). At the end of

each iteration, the inferred summary is used to update the specification of mn (line 9),

which will be used for recursive calls (if any) of mn in next iteration. Finally we judge

whether a fixed-point is already reached (line 10). The last few lines (from line 11)

ensure that inferred specifications are indeed sound using a standard abstract semantics

(without abduction). Any unsound specifications will be ruled out.

Intuitively, the join† operator is applied over two abstract states, and tries to find a

common shape as an abstraction for the separation part of both states. If such common

shape is found, it performs convex hull and bag join for the pure parts. Otherwise it

keeps a disjunction of the two states. The widen† is analogous to join† . The difference

is that we expect the heap portion of the first state is subsumed by the second one, and

1 The analysis uses lifted versions of these operations (indicated by †), which will be explained

in more detail later.



Fixpoint Computation in the Combined Domain

Input: T , t mn ((t x)∗; (t y)∗) {e}, n
Local: i := 0; Prei := emp,Posti := false;
1 T ′ := T ∪ {t mn ((t x)∗; (t y)∗) requires Pre0 ensures Post0 {e}};

2 repeat

3 i := i+ 1;

4 (Prei,Posti) := |[e]|AT ′(Prei−1,Prei−1);

5 (Prei,Posti) := (absa
†(Prei), abs

†(Posti));

6 (Prei,Posti) := (join†(Prei−1,Prei), join
†(Posti−1,Posti));

7 (Prei,Posti) := (widen†(Prei−1,Prei),widen
†(Posti−1,Posti));

8 if Prei=false or Posti=false or cp no(Prei)>n or cp no(Posti)>n
· then return fail end if

9 T ′ := T ∪ {t mn ((t x)∗; (t y)∗) requires Prei ensures Posti {e}};

10 until T ′ does not change

11 Post = |[e]|T ′Prei;

12 if Post = false or Post 0 Posti ∗ true then return fail

13 else return T ′

14 end if

Fig. 5. Main analysis algorithm.

then it applies the pure widening for the pure part. The formal definitions of join† and

widen† and other details are left in our report [13] due to page limit.

Bi-Abductive Abstract Semantics. As shown in Fig. 5, our analysis employs two ab-
stract semantics: a bi-abductive abstract semantics (i.e. the one equipped with abduc-
tion) (line 4), and an underlying abstract semantics (i.e. the one without abduction)
(line 11). We first give the definition of the underlying semantics. Its type is defined as

|[e]| : AllSpec → PSH → PSH

where AllSpec contains procedure specifications. For some program e and its given

precondition ∆, the semantics calculates the postcondition |[e]|T ∆, for a given set of

method specifications T .

The essential constituents of the underlying semantics are the basic transition func-
tions from a conjunctive abstract state (σ) to a conjunctive or disjunctive abstract state
(σ or ∆) below:

unfold(x) : SH → PSH[x] Unfolding

exec(d[x]) : AllSpec → SH[x] → PSH Heap-sensitive execution

exec(d) : AllSpec → SH → PSH Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each element has x
exposed as the head of a data node (x7→c(v∗)), and PSH[x] contains all the (disjunctive)

abstract states, each of which is composed by such conjunctive states. Here unfold(x)
rearranges the symbolic heap so that the cell referred to by x is exposed for access

by heap sensitive commands d[x] via the second transition function exec(d[x]). The

third function defined for other (heap insensitive) commands d does not require such

exposure of x.

The unfolding function is defined by the following two rules:



σ ⊢ x7→c(v∗) ∗ σ′

unfold(x)σ  σ

σ ⊢ p(x, v∗) ∗ σ′ p(root, v∗)≡Φ

unfold(x)σ  σ′ ∗ [x/root, u∗/v∗]Φ

The symbolic execution of heap-sensitive commands d[x] (i.e. x.fi, x.fi := w, or

free(x)) assumes that the rearrangement unfold(x) has been done prior to execution:

σ ⊢ x7→c(v1, .., vn) ∗ σ
′

exec(x.fi)(T )σ  σ ∧ res=vi

σ ⊢ x7→c(u∗) ∗ σ′

exec(free(x))(T )σ  σ′

σ ⊢ x7→c(v1, .., vn) ∗ σ′

exec(x.fi := w)(T )σ  σ′ ∗ x7→c(v1, .., vi−1, w, vi+1, .., vn)

The symbolic execution rules for heap-insensitive commands are as follows:

exec(k)(T )σ =df σ ∧ res=k

exec(x)(T )σ =df σ ∧ res=x

isdatat(c)

exec(new c(v∗))(T )σ =df σ ∗ c(res, v∗)

t mn ((ti ui)
m
i=1; (t

′
i vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′
i/ui]

m
i=1 ◦ [y

′
i/vi]

n
i=1 σ ⊢ ρΦpr ∗ σ′

ρo = [ri/vi]
n
i=1 ◦ [x

′
i/u

′
i]
m
i=1 ◦ [y

′
i/v

′
i]
n
i=1 ρl = [ri/y

′
i]
n
i=1 fresh logical ri

exec(mn(x1, .., xm; y1, .., yn))(T )σ  (ρlσ
′) ∗ (ρoΦpo)

The first three rules deal with constant (k), variable (x) and data node creation (new c(v∗)),
respectively, while the last rule handles method invocation. The test isdatat(c) returns

true iff c is a data node. In the last rule, the call site is ensured to meet the precondi-

tion of mn, as signified by σ ⊢ ρΦpr ∗ σ′. In this case, the execution succeeds and the

post-state of the method call involves mn’s postcondition as signified by ρoΦpo.

A lifting function † is defined to lift unfold’s domain to PSH:

unfold†(x)
∨

σi =df

∨
(unfold(x)σi)

and this function is overloaded for exec to lift both its domain and range to PSH:

exec†(d)(T )
∨

σi =df

∨
(exec(d)(T )σi)

Based on the transition functions above, we can define the abstract semantics for a

program e as follows (where loops are already translated into tail-recursions):

|[d[x]]|T ∆ =df exec†(d[x])(T ) ◦ unfold†(x)∆
|[d]|T ∆ =df exec†(d)(T )∆
|[e1; e2]|T ∆ =df |[e2]|T ◦ |[e1]|T ∆
|[x := e]|T ∆ =df [x′/x, r′/res](|[e]|T ∆) ∧ x=r′ fresh logical x′, r′

|[if (v) e1 else e2]|T ∆ =df (|[e1]|T (v∧∆)) ∨ (|[e2]|T (¬v∧∆))

We shall now present the definitions of our bi-abductive abstract semantics. Its type is

|[e]|A : AllSpec → (PSH × PSH) → (PSH × PSH)

It takes a piece of program code and a specification table, and maps a pair of (dis-
junctive) set of symbolic heaps to another such pair (where the first in the pair is the
accumulated precondition and the second is the current state). It relies on the following
two basic functions:

Unfold(x) : (SH× SH) → (PSH × PSH)
Exec(ds) : AllSpec → (SH× SH) → (PSH × PSH)



The definitions of both functions are given below:

Unfold(x)(σ′, σ) =df

if (σ∗[σm]✄ x 7→c(y∗)∗true for fresh logical vars y∗) ∧ (σ′∗σm 0 false)
then let ∆=unfold(x)(σ∗σm) in (σ′∗σm,∆)
else (σ′, false)

Exec(ds)(T )(σ′, σ) =df let ∆=exec(ds)(T )σ in (σ′, ∆)
where ds is either d[x] or d, except for procedure call

t mn ((ti ui)
m
i=1; (t

′
i vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′
i/ui]

m
i=1 ◦ [y

′
i/vi]

n
i=1 σ ∗ [σ′

1]✄ ρΦpr ∗ σ1 σ′∗σ′
1 0 false

ρo = [ri/vi]
n
i=1 ◦ [x

′
i/u

′
i]
m
i=1 ◦ [y

′
i/v

′
i]
n
i=1 ρl = [ri/y

′
i]
n
i=1 fresh logical vars ri

Exec(mn(x1..m; y1..n))(T )(σ′, σ) =df (σ′ ∗ σ′
1, (ρoΦpo)∗(ρlσ1))

The Unfold function firstly tests (using bi-abduction) whether the node x7→c(y∗) is in

σ, if not, abduction is applied to find the missing σm. If σ′ and σm do not contradict, it

unfolds σ ∗ σm to expose x (via the unfold function defined earlier in this section), and

adds σm to precondition. Otherwise, it returns false for the current state.

The Exec function symbolically executes the command ds (via the exec function

defined earlier in this section) and translates the current state σ to a disjunction of new

states ∆. The special case is the method invocation, which may require bi-abduction to

be applied for the current state. When the method mn is invoked, we take its current

specification (Φpr, Φpo) from T , and substitute the formal parameters ui and vi by the

current arguments x′
i and y′i respectively. Note that prime notations x′

i and y′i denote the

current values of xi and yi in the current state σ. Then we apply bi-abduction from the

current state σ to the precondition ρΦpr. If it succeeds, the discovered missing state σ′
1

will be propagated back to the precondition σ′ to help make the symbolic execution to

succeed. The postcondition of mn, Φpo is substituted by ρo in order to be added to the

current state. Since the variables yi are call-by-reference, we let ri to be the intermediate

variables, while the variables y′i denote the latest values.

A lifting function † is defined to lift Unfold’s and Exec’s domains:

Unfold†(x)
∨
(σ′

i, σi) =df

∨
(Unfold(x)(σ′

i, σi))

Exec†(ds)(T )
∨
(σ′

i, σi) =df

∨
(Exec(ds)(T )(σ′

i, σi))

Based on the above functions, the bi-abductive abstract semantics is defined as follows:

|[d[x]]|AT (∆′,∆) =df Exec†(d[x])(T ) ◦ Unfold†(x)(∆′,∆)

|[d]|AT (∆′,∆) =df Exec†(d)(T )(∆′,∆)

|[e1; e2]|
A

T (∆′,∆) =df |[e2]|
A

T ◦ |[e1]|
A

T (∆′,∆)

|[x := e]|AT (∆′,∆) =df [x′/x, r′/res](|[e]|AT (∆′,∆ ∧ x=r′)) fresh logical x′, r′

|[if (v) e1 else e2]|
A

T (∆′,∆) =df (|[e1]|
A

T (∆′, v∧∆)) ∨ (|[e2]|
A

T (∆′,¬v∧∆))

Abductive Abstraction. As we mentioned earlier in themerge example, to verify such

programs may require very precise preconditions that a standard abstraction mechanism

may fail to achieve. To cater for such a need, we design a novel abductive abstraction

function absa, which equips abstraction with an abductive reasoning capacity where

necessary. In such scenarios, user-specified predicates can offer some guidance in the



abstraction in order to discover extra data structure properties for precondition. The new

abductive abstraction function is given as follows:

absa(σ ∧ x0=e) =df σ[e/x0]

absa(σ ∧ e=x0) =df σ[e/x0]

x0 /∈ Reach(σ)

absa(H(c)(x0, v
∗) ∗ σ) =df σ ∗ true

p2(u
∗
2) ≡ Φ H(c1)(x, v

∗
1) ∗ σ1 ⊢ p2(x, v

∗
2) ∧ π2

Reach(p2(x, v
∗
2) ∧ π2 ∗ σ3) ∩ {v∗1} = ∅

absa(H(c1)(x, v
∗
1) ∗ σ1 ∗ σ3) =df p2(x, v

∗
2) ∧ π2 ∗ σ3

p2(u
∗
2) ≡ Φ H(c1)(x, v

∗
1) ∗ σ1 0 p2(x, v

∗
2) ∧ π2

H(c1)(x, v
∗
1)∗σ1∗[σ

′]✄ p2(x, v
∗
2)∧π2 Reach(p2(x, v

∗
2)∧π2∗σ3)∩{v

∗
1}=∅

absa(H(c1)(x, v
∗
1) ∗ σ1 ∗ σ3) =df p2(x, v

∗
2) ∧ π2 ∗ σ3

where H(c)(x, v∗) denotes x7→c(v∗) if c is a data node or c(x, v∗) if c is a predicate.

The function Reach(σ) returns all pointer variables which are reachable from free vari-

ables in the abstract state σ. The first two rules eliminate logical variables, and the third

rule drops heap garbage that is unreachable from program variables. The fourth rule

combines shape formulae and eliminate logical pointer variables which are not reach-

able from other program variables. The predicate p2 is selected from the user-defined

predicates environments and it is the target shape to be abstracted to.

The last rule applies when the state H(c1)(x, v
∗
1 ) ∗ σ1 cannot be abstracted to the

predicate p2 using standard abstraction but can be abstracted to predicate p2 with the

help of abductive reasoning. When applying such an abstraction function during the

precondition discovery, the extra information σ′ discovered by abduction will be prop-

agated back to the precondition to improve the precision.

The lifting function is applied for absa to lift both its domain and range to disjunctive

abstract states PSH: absa
†
∨

σi =df

∨
absa(σi), allowing it to be used in the analysis.

The soundness and termination of our analysis are given in the technical report [13].

6 Experiments and Evaluation

We have implemented a prototype system and evaluated it over a number of heap-

manipulating programs to test the viability and precision of our approach. Our experi-

mental results were achieved with an Intel Core 2 Quad CPU 2.66GHz with 8GB RAM.

We have also defined a library of predicates covering popular data structures and variety

of properties. These properties can be grouped in the following categories: MS (memory

safety): all memory accesses are safe, no dangling/null pointers dereferences; SC (same

content): the content of the final data structure remains the same as that of the input

data structure; IN (insertion): the input data is inserted into the final data structure; SO

(sorted): data structures are sorted according to a criterion, eg. in case of a list each

node’s content is less than or equal to its successor’s; BS (binary search): data structures

are binary search trees; DL (double-linked list): data structures are double-linked lists;

and AL (AVL tree): data structures are AVL trees. The predicates required as input by

our tool can be selected from the library or can be supplied by users, according to the

input program data structures and the properties of interest. Usually, the upper bound

of cutpoints is set to be twice the number of input program variables to improve the

precision. Some of our results are presented in Table 1.



Prog. LOC Time Prop

Singly Linked List

create 10 1.12 MS

delete 9 1.20 MS/SO

insert 9 1.16 MS/SO/IN

traverse 9 1.35 MS/SO/SC

length 11 1.28 MS/SO/SC

append 11 1.47 MS/SO/SC

take 12 1.28 MS/SO/SC

reverse 13 1.72 MS/SC

filter 15 2.37 MS/SO

Sorting algorithm

insert sort 32 2.72 MS/SC/SO

merge sort 78 4.18 MS/SC/SO

quick sort 70 5.72 MS/SC/SO

select sort 45 3.16 MS/SC/SO

Prog. LOC Time Prop

Doubly Linked List

create 15 1.47 MS/DL

append 24 2.53 MS/DL/SC/SO

insert 22 2.32 MS/DL/IN/SO

Binary Search Tree

create 18 2.58 MS/BS

delete 48 4.76 MS/BS

insert 22 3.57 MS/BS/IN

search 22 2.78 MS/BS/SC

height 15 1.56 MS/BS/SC

count 17 1.63 MS/BS/SC

flatten 32 2.74 MS/BS/DL/SC/SO

AVL Tree

insert 114 27.57 MS/BS/AL/IN

delete 239 34.42 MS/BS/AL

Table 1. Experimental Results. The column LOC is for the number of program lines; Time

expresses our tool running time (in seconds); Prop denotes the inferred specification properties.

In comparison to previous approaches, the first observation concerns the precision

of our analysis. Since our tool uses a combined domain it can discover more expressive

specifications to guarantee memory safety and functional correctness. For example in

case of the take program which traverses the list down for a user-specified number n of

nodes, we can find that the input list length must be no less than n. However the previ-

ous tools based on shape domains (like Abductor [5]) can only discover a precondition

that requires the input list to be non-empty which would not be sufficient to guarantee

memory safety. Moreover more complex functional properties regarding the data struc-

tures content (like SO for merge program but in general for all sorting programs) can

also not be discovered by the previous tools (like Abductor) based on a simple shape

domain. There are other tools (like Xisa [6] or Thor [18]) that can work on a combined

domain but require certain annotations to guide their analysis. Thor [18] requires shape

information for each input parameter and Xisa [6] requires shape information for pro-

gram variables used in loops. Since our shape domain includes tree data structures, our

tool is able to discover complex functional specifications for binary search trees and

AVL trees in contrast to the previous approaches. For example in case of the flatten

program our tool is able to discover that the input data structure is a binary search

tree while the output data structure is a sorted doubly linked list having the same data

content (values stored inside the nodes) as that of the input.

The second observation regarding our experimental results is that the analysis may

discover more than one correct specification for some programs. For example, given

two predicates, ordinary linked list and sorted list, we can obtain two specifications for

most of the sorting algorithms. When there are more than one user-supplied predicate

definitions, the analysis can have multiple choices during the abstraction. Multiple spec-

ifications can be useful in program verification, e.g. the sorted version for the append

method, where the two input lists and the output list are all sorted, is useful in the ver-

ification of quick sort, while the sorted list version for the insert method is also

useful to help verify the functional correctness of insert sort.



7 Related Work and Conclusion

Dramatic advances have been made in synthesising specifications for heap-manipulating

programs. The local shape analysis [8] infers loop invariants for list-processing pro-

grams, followed by the SpaceInvader/Abductor tool to infer full method specifications

over the separation domain, so as to verify pointer safety for larger industrial codes [5,

26]. The SLAyer tool [9] implements an inter-procedural analysis for programs with

shape information. A combination of shape and bag abstraction is used in [25] to verify

linearizability. Compared with them, our abstraction is more general since it is driven

by predicates and is not restricted to linked lists. To deal with size information (such

as number of nodes in lists/trees), Thor [18] transfers a heap-processing program to

a numerical one, so that size properties can be obtained by further analysis. A simi-

lar approach [10] combines a set domain (for shape) with its cardinality domain (for

corresponding numerical information) in a more general framework. Compared with

these works, our approach can discover specifications with stronger invariants such as

sortedness and bag-related properties, which have not been addressed in the previous

works. The analyses [6, 19, 20] can all handle shape and numerical information over a

combined domain, but require user given preconditions for the program whereas here

we compute the whole specification at once. Recently, Rival and Chang [23] propose

an inductive predicate to summarise call stacks along with heap structures in a context

of a whole-program analysis. In contrast our analysis is modular.

There are also other approaches that can synthesise shape-related program invari-

ants. The shape analysis framework TVLA [24] is based on three-valued logic. It is ca-

pable of handling complicated data structures and properties, such as sortedness. Guo et

al. [11] report a global shape analysis that discovers inductive structural shape invariants

from the code. Kuncak et al. [15] develop a role system to express and track referencing

relationships among objects. Hackett and Rugina [12] can deal with AVL-trees but is

customised to handle only tree-like structures with height property. Bouajjani et al. [2,

3] propose a program analysis in an abstract domain with SL3 (Singly-Linked List

Logic) and size, sortedness and multi-set properties. However, their heap domain is re-

stricted to singly-linked list only, and their shape analysis is separated from numerical

and mutli-set analyses. Compared with these works, separation logic based approaches

benefit from the frame rule with support for local reasoning.

There are also approaches which unify reasoning over shape and data using either a

combination of appropriate decision procedures inside Satisfiability-Modulo-Theories

(SMT) solvers (e.g. [21, 16]) or a combination of appropriate abstract interpreters inside

a software model checker (e.g. [1]). Compared with our work, their heap domains are

mainly restricted to linked lists.

Conclusion. We have reported a program analysis which automatically discovers pro-

gram specifications over a combined separation and pure(numerical and bag) domain.

The novel components of our analysis include an abductive abstract semantics and an

abductive abstraction mechanism (for precondition discovery)in the combined domain.

We have built a prototype system and the initial experimental results are encouraging.

Acknowledgement. This work was supported in part by EPSRC project EP/G042322.



References

1. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Concretizing

the convergence of model checking and program analysis. In: CAV (2007)

2. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: On inter-procedural analysis of programs

with lists and data. In: PLDI (2011)

3. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: Abstract domains for automated reason-

ing about list-manipulating programs with infinite data. In: VMCAI (2012)

4. Bozga, M., Iosif, R., Lakhnech, Y.: Storeless semantics and alias logic. In: PEPM (2003)

5. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means

of bi-abduction. J. ACM 58(6) (2011)

6. Chang, B.Y.E., Rival, X.: Relational inductive shape analysis. In: POPL (2008)

7. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag

properties via user-defined predicates in separation logic. Sci. of Comp. Prog. 77 (2012)

8. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic. In:

TACAS (2006)

9. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with separated heap ab-

stractions. In: SAS (2006)

10. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes.

In: Shao, Z., Pierce, B.C. (eds.) POPL (2009)

11. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion synthesis.

In: PLDI (2007)

12. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In: POPL

(2005)

13. He, G., Qin, S., Chin, W.N., Craciun, F.: Automated specification discovery in a com-

bined abstract domain - reseach report. (2012), http://pls.tees.ac.uk/˜guan/

fullspec/techreport.pdf

14. Jonkers, H.: Abstract storage structures. In: Algorithmic Languages (1981)

15. Kuncak, V., Lam, P., Rinard, M.C.: Role analysis. In: POPL (2002)

16. Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verification using smt

solvers. In: POPL (2008)

17. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Thor: A tool for reasoning about shape and arith-

metic. In: CAV (2008)

18. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Automatic numeric abstractions for heap-

manipulating programs. In: POPL (2010)

19. Qin, S., He, G., Luo, C., Chin, W.N., Chen, X.: Loop invariant synthesis in a combined

abstract domain. Journal of Symbolic Computation 50 (2013)

20. Qin, S., Luo, C., Chin, W.N., He, G.: Automatically refining partial specifications for pro-

gram verification. In: FM (2011)

21. Rakamaric, Z., Bruttomesso, R., Hu, A.J., Cimatti, A.: Verifying heap-manipulating pro-

grams in an smt framework. In: ATVA (2007)

22. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS (2002)

23. Rival, X., Chang, B.Y.E.: Calling context abstraction with shapes. In: POPL (2011)

24. Sagiv, M., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM

Trans. Program. Lang. Syst. 24(3) (2002)

25. Vafeiadis, V.: Shape-value abstraction for verifying linearizability. In: VMCAI (2009)

26. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scal-

able shape analysis for systems code. In: CAV (2008)




