
An experimental
mixed reality using a
multimodal
approach lets users
play characters in
interactive narratives
as though acting on
a stage. Users
interact with
characters through
speech, attitude, and
gesture, enhancing
their immersion in
the virtual world. 

I
nteractive storytelling immerses users in
fantasy worlds in which they play parts
in evolving narratives that respond to
their intervention. Implementing the

interactive storytelling concept involves many
computing technologies: virtual or mixed reality
for creating the artificial world, and artificial
intelligence techniques and formalisms for gen-
erating the narrative and characters in real time. 

As a character in the narrative, the user com-
municates with virtual characters much like an
actor communicates with other actors. This
requirement introduces a novel context for mul-
timodal communication as well as several tech-
nical challenges. Acting involves attitudes and
body gestures that are highly significant for both
dramatic presentation and communication. At
the same time, spoken communication is essen-
tial to realistic interactive narratives. This kind of
multimodal communication faces several diffi-
culties in terms of real-time performance, cover-
age, and accuracy. 

We’ve developed an experimental system that
provides a small-scale but complete integration
of multimodal communication in interactive sto-
rytelling. It uses a narrative’s semantic context to
focus multimodal input processing—that is, the
system interprets users’ acting (the multimodal
input) in the mixed reality stage in terms of nar-
rative functions representing users’ contributions
to the unfolding plot.

System overview: The mixed reality
installation

Figure 1 shows the mixed reality system archi-
tecture. The system uses a “magic mirror” para-
digm, which we derived from the Transfiction
approach.1 In our approach, a video camera cap-
tures the user’s image in real time, and the
Transfiction engine extracts the image from the
background and mixes it with a 3D graphic
model of a virtual stage, which includes the sto-
ry’s synthetic characters. The system projects the
resulting image on a large screen facing the user,
who sees his or her image embedded in the vir-
tual stage with the synthetic actors.

We based the mixed reality world’s graphic
component on the Unreal Tournament 2003 game
engine (http://www.unrealtournament.com). This
engine not only renders graphics and animates
characters but, most importantly, contains a
sophisticated development environment for defin-
ing interaction with objects and character behav-
iors.2 It also supports integration of external
software through socket-based communication.

We use the Transfiction engine to construct
the mixed environment through real-time image
processing.3 A single (monoscopic) 2D camera
analyzes the user’s image in real time by seg-
menting the user’s contours. The segmentation’s
objectives are twofold: 

❚ It extracts the user image silhouette and
injects it into the virtual setting on the pro-
jection screen (without resorting to chroma
keying).

❚ At the same time, the Transfiction engine ana-
lyzes the extracted body silhouette to recog-
nize and track user behavior (position,
attitude, and gestures) and influence the inter-
active narrative accordingly. 

A detection module segments the video image
in real time and outputs the resulting image
together with other data, such as gesture recog-
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nition, that enable further processing. The cur-
rent detection module uses a 4 × 4 Walsh func-
tion Hadamard determinant and calculates the
transform on 4 × 4-pixel elements. Sliding the
box of two pixels aside allows taking decision on
2 × 2-pixel blocks. As a result, it can segment and
adequately detect objects’ boundaries and offers
some robustness to luminance variations. Figure
2 gives an overview of the change-detection
process with the Walsh-Hadamard transform.
First, the detection module calculates the back-
ground image’s Walsh-Hadamard transform. It
then compares the transform’s values for the cur-
rent and background images. When the rate of
change is higher than an established threshold,
the module sets the area as foreground. Because
shadows (which can be problematic because of
variable indoor lighting conditions) can corrupt
segmentation results, we remove them using
invariant techniques.4

Next, we composite the resulting video image
with the virtual environment image by mixing
the video channels captured by a separate com-
puter running a DirectX-based application. The
first stage involves isolating the user image from
its background using basic chroma keying. The
remaining stage attempts to solve the occlusion

problem by blending the user image with the vir-
tual environment image using empirical depth
information. The gesture-recognition module

31

July–Sep
tem

b
er 2004

BabelTech Speech
recognition

Natural
language

processing
TCP

Storytelling
engine

Unreal engine

Transfiction
engine

AI planning layer
(hierarchical task networks)

Rendered scene

Silhouette

UDP

TCP
Mixed
video
signals

Captured image

Capture

User
Projection screen

Figure 1. Mixed reality system architecture. The Transfiction engine  extracts the user’s image from the film captured by the video

camera and mixes it with a 3D graphic model of a virtual stage. The user views the resulting image on a large screen. 

Walsh-Hadamard
transform

Current image

Walsh-Hadamard
transform

Background image

Compare

Foreground object

Higher than
threshold?

Figure 2. Extracting the

user’s image from the

background.The

detection module uses a

Walsh-Hadamard

transform to compare

the background and

current images.  

Authorized licensed use limited to: Teesside University. Downloaded on January 25, 2010 at 05:52 from IEEE Xplore.  Restrictions apply. 



provides this information for the user as the
user’s relative distance to the camera; the game
engine provides it for the virtual environment.
Figure 3 illustrates the overall process whereby
the system composites several video image layers
in real time to produce the final image, which it
projects onto a screen in front of the user.

In the first prototype, the gesture detection
and recognition components share a normalized
system of coordinates, which we obtain through
calibration prior to running the system. This pro-
totype doesn’t deal with occlusion in mixed real-
ity, which is also set at calibration time. We’re
currently developing an occlusion management
system, which uses depth information provided
by the transfiction engine. 

The shared coordinates system lets us not only
position the user in the virtual image, but also
determine the relations between user and virtual
environment. To do this, we map the 2D bound-
ing box produced by the transfiction engine—
which defines the contour of the segmented user
character—to a 3D bounding cylinder in the

Unreal Tournament 2003 environment, which
represents the user’s position in the virtual world
(as Figure 4 shows). Relying on its basic mecha-
nisms, the Transfiction engine automatically gen-
erates low-level graphical events such as collisions
and object interaction.

The two subsystems communicate via TCP
sockets: the image-processing module, working
on a separate computer, regularly sends two types
of message to the graphic engine. The messages
update the user’s position and any recognized
gestures. The Transfiction engine transmits the
recognized gesture as a code for the gesture (for
example, a 2D vector indicating the direction of
pointing represents a pointing gesture). However,
contextual interpretation of the gesture occurs
within the storytelling system. 

The storytelling scenario in our experiments
is a James Bond adventure in which the user
plays the villain (the Professor). The narrative
properties of James Bond stories make them
good candidates for interactive storytelling
experiments; Barthes used them as a supporting
example in his foundational work in contem-
porary narratology.5 In addition, their reliance
on narrative stereotypes facilitates both narra-
tive control and users’ understanding of the
roles they’re to play. The basic storyline repre-
sents an early encounter between Bond and the
Professor. Bond’s objective is to acquire some
essential information, which he can obtain by
searching the Professor’s office, asking the
Professor’s assistant, or, under certain condi-
tions, deceiving or threatening the Professor
himself. The user’s actions as the Professor inter-
fere with Bond’s plan, altering how the plot
unfolds. 
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Interactive storytelling
We adapted the interactive storytelling tech-

nology used in these experiments from our pre-
vious work, described in detail elsewhere.6 Thus,
we only briefly overview the approach here,
focusing on the aspects most relevant to the sys-
tem’s mixed reality implementation, in particu-
lar multimodal user interaction. 

Interactive storytelling involves the real-time
generation of narrative actions such that the con-
sequences of user intervention result in the inter-
active storytelling system regenerating the story
with a modified environment. Narrative control dic-
tates that user intervention should modify the sto-
ry’s course, but only within the limits of the story’s
genre. Narrative control generally relies on a base-
line plot that defines possible character actions, but
imposes no unnecessary constraints on how the
actions can be combined to constitute a plot.

Our approach, character-based interactive story-
telling,6 centers on the virtual actors’ roles. We
based the artificial intelligence mechanism sup-
porting character behavior on a planning tech-
nology using hierarchical task networks (HTNs),
as illustrated in Figure 5.7 These representations
describe the character’s role as a plan using a
hierarchical decomposition of tasks into sub-
tasks. (Formally, HTNs are AND/OR graphs and
we can represent the solution plan as a subgraph
of the HTN.)

For instance, we can decompose an
information-gathering task into several options for

gaining access to that information, such as search-
ing files or getting it from another character. Each
of these tasks can be further decomposed—for
instance, to get information from another charac-
ter, the user’s character must approach it, establish
a relationship with it, convince it to handle the
information, and so on. HTN task decomposition
continues until reaching the terminal-action
level—that is, the level at which the synthetic char-
acter can visually perform actions in the virtual
world. The system thus uses an HTN planner to
select in real-time each character’s actions. Our
module implemented within the Unreal
Tournament 2003 sends an action’s failure back to
the planner, which produces an alternative solu-
tion. This mechanism is essential in interactive sto-
rytelling because user intervention often causes a
character’s planned action to fail, leaving it to pro-
duce an alternative solution that will lead the story
into new directions. 

To accommodate the mixed-reality context,
we adapted our previous character-based story-
telling framework to the new user-interaction
paradigm derived from the magic mirror
metaphor,8,9 which assumes greater user involve-
ment than other interactive storytelling
approaches. This greater involvement calls for
more flexible narrative control. In our support-
ing example, each situation represents a stage in
the encounter between Bond and the villain:
introduction, negotiation, and separation. In this
version, we’ve defined one HTN for each situa-
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tion rather than a single HTN encompassing the
entire scene. Figure 5 depicts the discussion
phase HTN. 

We adapted basic interactive storytelling
mechanisms to the greater user involvement.
HTNs are still based on the Bond role, but they
give a more explicit status to user intervention to
allow for the user’s regular, but unpredictable,
interaction, as the HTN representing the conver-
sation between Bond and the Professor illustrates.
This HTN incorporates several extensions to the
HTN used in our previous work. Some extensions
involve a novel use of the representation; others
required modifying the underlying planning
algorithm that uses the HTN to animate the vir-
tual character. For example, the HTN in the cur-
rent system uses mixed nodes that have both an
AND and an OR, letting us incorporate optional
actions while still limiting the representation’s
complexity (for example, in Figure 5, the HTN
makes the threat situation optional). We’ve also
incorporated the possibility of some user inter-
vention in the HTN itself. One required extension
allows a character to attempt an action only after
the planner tests for the compatible user action
(in this case, the Professor giving away the infor-
mation). This doesn’t prevent the user from per-
forming actions other than the one expected,
which will impact the character’s plan at anoth-
er level. In other words, this representation
departs from a strict character-based approach to
incorporate plot representation to accommodate
the higher level of user involvement.

Multimodal interaction
The user intervention is a multimodal input

consisting of a spoken utterance and an optional
body gesture interprets this multimodal unit in
context (that is, using knowledge about the plot
progression) to determine what kind of response
it is to the virtual characters’ actions.

Consider the joint recognition of a multimodal
speech act comprising an utterance analyzed

through speech recognition and a body gesture
processed by the transfiction engine. We catego-
rize the user’s attitude shown in Figure 6 as the
user sitting with his arms raised and partly extend-
ed (other categories include pointing gestures,
which can mean showing, giving, and so on). This
attitude is compatible with different interpreta-
tions, including greetings (“Welcome, Mr.
Bond!”), denial (“You must be joking, Mr. Bond”),
or challenge (“Shoot me and you’ll never know,
007!”). We interpret the correct meaning through
joint analysis of the user’s utterance and attitude. 

Traditional literature on multimodality focus-
es on the use of deictic gestures in natural lan-
guage instructions or dialogue10 and of gestures
in nonverbal communication.11 The narrative
context of interactive storytelling creates new
forms of gesture use, which in turn create new
multimodal combinations. The system supports
deictic gestures, such as when the user indicates
an object or a location in a multimodal utterance
(“Take a seat, Mr. Bond”).

Another type of gesture—physical gestures—
is on-stage physical interventions, such as grasp-
ing an object, slapping a character, or standing
in front of an object or character. To implement
physical gestures effects, we use the main mixed
reality mechanism—that is, a single coordinate
system that controls interaction through bound-
ing boxes in the virtual environment.

The most important gesture type is semiotic
gestures. Semiotic gestures include opening one’s
arms to welcome someone, raising a hand to
attract attention or call someone, raising both
arms in wonder or disbelief, and opening arms to
indicate ignorance. What distinguishes these ges-
tures from other nonverbal behaviors is that they
constitute isolated units associated with a precise
communicative function; in particular, a func-
tion that can be mapped to a narrative context
(unlike beat and other continuous and dynamic
gestures). 

Much controversy over the status of the vari-
ous modalities in terms of their semantic content
exists in the multimodal literature. A distin-
guishing characteristic of the interactive story-
telling context is that speech and semiotic
gestures can have comparable semantic content. 

Speech recognition
Speech is the only practical mode of commu-

nication between the user and the virtual actors
in an interactive storytelling context, in addition
to its being part of the narrative itself. Of course,
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formidable challenges associated with speech
understanding exist. In this context, we aim for
a modest level of robustness, although a princi-
pled approach would use the specific interactive
storytelling context to guide the speech inter-
pretation strategy.

We based the speech recognition component
on BabelTech’s Ear software developer’s kit sys-
tem, shown in Figure 7. The SDK can be used in
various modes, including multikeyword spotting
in an open loop. Multikeyword spotting involves
dynamically recognizing keywords from a prede-
fined set in any user utterance, regardless of the
utterance’s other contents. It provides robust
recognition of the utterance’s most relevant top-
ics in context without imposing constraints on
the user (such as the use of a specific phraseolo-
gy). One necessary step when using multikey-
work spotting is to provide a more integrated
definition of keywords as meaning units (for
example, “be_careful” or “pay_attention”).

User utterances occurring in this narrative
context are a specific type of speech act—that is,
an utterance with a specific impact on the hear-
er’s behavior. More importantly, a good mapping
exists between speech acts and narrative actions
(greetings, threats, requests, denials, and so on)
such that they constitute direct input into the
narrative representation.

Categorizing user utterances in terms of speech
acts—that is, recognizing the relevant speech act
from the speech recognition output, be it a set of
keywords or a more complex structure—is the key
problem. No universally agreed-on method to
identify speech acts exists. Practical approaches
in speech understanding have sought to either
detect surface-form cues (such as the occurrence
of “welcome” in greetings or wh-markers in ques-
tions) or derive the speech act from the utter-
ance’s casual structure (that is, identify the action
verb and its parameters). 

Our implementation uses both approaches in
parallel, while extending the shallow approach
to cue detection. When the natural-language pro-
cessing module doesn’t recognize an action verb
around which to instantiate an action template,
it looks for surface cues, which it maps to a
coarse-grained semantic category, such as
approval/disapproval, confirmation/denial, or
friendly/hostile (surface patterns such as “you
won’t,” “you’ll never,” and so on). The underly-
ing principle is to use coarse-grained semantic
categories that the module can directly map to a
speech act, which in turn the previously men-

tioned speech act can assimilate into a narrative
function according to its impact on the interac-
tive story. Although the use of coarse-grained cat-
egories doesn’t let us extract an occurrence’s
complete meaning, it does let us identify a glob-
al meaning in context, which should trigger an
appropriate behavior from the virtual actor.

We based the natural language interpretation
on a template-matching procedure, because the
use of multikeyword spotting precludes more
complete forms of syntax-based parsing. In tem-
plate filling procedures, the natural-language pro-
cessing module looks for certain action verbs or
substantives. Recognizing one of these words
activates a template, which then searches for key-
words corresponding to the action parameters.
To find a subject or object, for example, the tem-
plate might look for pronouns or proper names. 

To identify a relevant speech act, the natural-
language processing module uses the informa-
tion in the template, any surface cues
encountered, and the narrative context—that is,
the current stage of the plot. Implementing
speech act identification requires a set of pro-
duction rules. The narrative actions represented
in the plot model determine the number of tar-
get speech acts, which are thus limited in num-
ber, facilitating the mapping process. 

We’ve so far associated speech acts with spo-
ken utterances; in practice, they correspond to
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multimodal input, which includes both speech
and gesture. Although this doesn’t alter the
nature of the target speech acts, it requires pro-
cessing both modalities simultaneously, which
in turns supports more robust recognition.

Gesture recognition and multimodal
processing

To a large extent, the gesture recognition soft-
ware follows a philosophy that is not unlike that
of multikeyword spotting used for the speech com-
ponent. That is to say, a fixed set of parameters is
extracted from the image, which can be mapped
to previous characterization of user attitudes. A set
of semiotic gestures constitutes a gesture lexicon,
containing as many as 15 body attitudes, some of
which are represented in Figure 8. 

The gesture collection has a variety of sources:
literature, actors in relevant movies, and so on.
For each attitude, we collected and associated
data from the transfiction engine to the gesture
in the lexicon. We similarly associate the semi-
otic interpretation to the gesture. A gesture that
is ambiguous out of context receives several pos-
sible interpretations (Figure 6).

The representation of each semiotic gesture in
the lexicon is a set of descriptive features: dis-
tance between arm extremities, hand height, and

so on. A set of feature-value pairs describes each
gesture. While the Transfiction engine constant-
ly outputs tracking point coordinates, the gesture
recognition system derives in real time the val-
ues for each gesture feature from the tracking
points’ coordinates. The system uses each fea-
ture’s set of values to filter candidate gestures
from the gesture repository. Whenever it encoun-
ters a satisfactory match, it outputs the candidate
semiotic gesture or a set of candidate gestures,
such as {welcoming, denial}. The gesture recog-
nition system can then unify this semantic cate-
gory with those categories produced by the
speech recognition component. Figure 9, which
represents the temporal histograms correspond-
ing to certain gesture features aligned with the
spoken utterance, “You must be joking, Mr.
Bond!” illustrates this process.

By processing speech and gestures jointly, the
system implies that the open arms attitude serves
a denial narrative function. Users will thus inter-
pret the attitude as a negative answer to Bond’s
question, which corresponds to a failure of the
task in the corresponding HTN, shown in Figure
10 (on p. 38), leading to a new course of action.

Conclusion
Mixed reality is a significant departure from

other paradigms of user involvement, such as
pure spectator (with the ability to influence the
story)6 or Holodeck,12 in which an actor is
immersed in first-person mode. Although we’ve
yet to explore the practical implications of such
involvement, mixed reality interactive story-
telling brings new perspectives for user interac-
tion as well, with an emphasis on multimodal
interaction.

Human–computer interface research describes
the mode of appropriation used in our system (in
which the context leads the user to rediscover
modes of expression previously described) as hab-
itability. We can therefore conclude that acting
creates the condition for multimodal habitability.

Although the system is fully implemented, it
remains a proof-of-concept prototype. Thus it’s
still too early to perform detailed user evalua-
tions. However, grounding future evaluation pro-
cedures on the multimodal habitability notion is
appropriate. This suggests including an early
adaptation stage during which the user gets
acquainted with the system interface with mini-
mal guidance apart from the prior presentation
of original film footage. The subsequent evalua-
tion should be allowed to measure various forms
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of departure between the user’s expressions and
those characteristics of the original role within
the story genre. MM
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9), causing the

corresponding task in

Bond’s HTN to fail.
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