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Abstract 
Hippocampal atrophy in relation to Alzheimer’s disease (AD) is widely known.  

Whether neurons within hippocampal subfields are similarly affected in other ageing 

related dementias, particularly after stroke remains an open question.  We 

investigated hippocampal CA3 and CA4 pyramidal neuronal volumes and densities 

using 3-dimensional stereological techniques in post mortem samples from a total of 

67 subjects; post-stoke demented (PSD), non-demented stroke survivors (PSND) 

and PSD patients from the CogFAST cohort, elderly controls, and subjects 

diagnosed with vascular dementia, AD, and mixed AD and VaD. We found CA3 and 

CA4 neuronal volumes were reduced in PSD compared to PSND. The CA3 and CA4 

neuronal volumes were positively correlated with post-stroke global cognitive 

function, but were not associated with the burden of AD pathology. There were no 

changes in total neuronal densities from either subfield in any of the groups studied.  

Our results indicated that the selective reduction in CA4 and to a lesser extent CA3 

neuronal volumes was related to post-stroke cognitive impairment and ageing-

related dementias. This suggests that CA4 neurons were more vulnerable to disease 

processes, and supports our previous finding that a reduction in hippocampal 

neuronal volume predominantly reflects vascular mechanisms as being causative of 

dementia after stroke. 

 

 
Key words: Alzheimer’s disease; hippocampus; neuron; post-stroke dementia; 

stroke; vascular dementia  
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Introduction 
Stroke is a major risk factor for dementia (1), and up to 50% of initially non-demented 

stroke survivors will ultimately go on to develop delayed post-stroke dementia (PSD) 

(2). However, the underlying mechanisms which increase the vulnerability of stroke 

survivors to delayed PSD months to years after a stroke are unclear.  Medial 

temporal lobe atrophy and hippocampal neurodegeneration are key factors in 

dementia, particularly Alzheimer’s disease (AD) but little is known how these 

degenerating structures associated with learning and memory change in dementias 

caused by vascular disease.  

We previously found the volumes of CA1 and CA2 hippocampal neurons were 

related to post-stroke cognitive function, and that delayed PSD subjects had 10-20% 

smaller neuronal soma volumes than non-demented stroke survivors (PSND) and 

age-matched controls. CA1 and CA2 neuronal volumes were similarly reduced in 

patients with vascular dementia (VaD), AD and mixed AD with VaD (3).  We 

reasoned this reduction in neuronal volume reflected disease processes causing 

changes in neuronal morphometry, resulting in disrupted hippocampal circuitry and 

cognitive impairment.  The finding that neuronal volumes were equally reduced in 

CA2 as was surprising as neurons in the CA1 subfield are selectively vulnerable to 

damage after hypoxia and in AD, whereas the CA2 is considered to be more 

resistant to damage (4-6). This therefore suggests that neurons in the other 

hippocampal subfields may also be similarly affected.  

 

Pyramidal neurons in the CA3 and CA4 form extensive contacts with CA1 and CA2 

as part of the hippocampal circuit, and CA3 neurons are particularly closely 

physiologically linked to CA1 through the Schaffer collaterals synapsing on CA1 
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dendrites as part of the classical trisynaptic hippocampal circuit (7). CA3 and CA4 

neurons are also exposed to similar pathological insults as the CA1 and CA2 due to 

their close proximity within the hippocampal formation. Therefore, we investigated 

neuronal volume and density in CA3 and CA4 to determine whether neuronal 

changes within these subfields were also implicated in the pathogenesis of post-

stroke and ageing-related dementias.   

 

Methods 
Subject Selection, Clinical Diagnosis and Tissue Acquisition 
Neuronal volumes and densities were measured in the CA3 and CA4 subfields of the 

same hippocampal sections studied previously. Subject demographics and 

pathological findings are presented in Table 1. Analysis was performed on post-

mortem hippocampal tissue from 24 subjects from the prospective Cognitive 

Function After Stroke (CogFAST) study (8). Non-demented stroke survivors >75 

years old were recruited 3 months post-stroke, and received annual clinical 

assessments and neuropsychological testing from baseline 3 months post-stroke, 

including the Cambridge Assessment of Mental Disorders in the Elderly CAMCOG 

test, which generated subscores for cognitive domains including memory and 

executive function (9, 10). To investigate the effects of different disease processes, 

analysis was also carried out in 12 cognitively normal elderly controls, 11 VaD, 10 

mixed AD and VaD, and 10 AD subjects. Final diagnoses of dementia was assigned 

based on Diagnostic and Statistical Manual of Mental Disorders Third Edition 

Revised (DSM III-R) criteria for dementia, and established neuropathological 

diagnostic criteria. Haematoxylin and eosin staining was used for assessment of 

structural integrity and infarcts, cresyl fast violet and luxol fast blue for cellular and 
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myelin loss, Bielschowsky silver impregnation for Consortium to Establish A Registry 

for Alzheimer’s Disease (CERAD) rating of neuritic plaques (11), and tau 

immunohistochemistry for Braak staging of neurofibrillary tangles (12).  A diagnosis 

of VaD was made based on the presence of multiple or cystic infarcts, lacunae, 

microinfarcts and small vessel disease with Braak stage < III (13).  A diagnosis of AD 

was made when there was significant Alzheimer-type pathology (Braak stage V–VI 

and moderate to severe CERAD score) in the absence of severe vascular pathology. 

A diagnosis of ‘mixed dementia’ was made when there was evidence of VaD with 

AD. In patients from the CogFAST study, the burden of global vascular pathology 

was also calculated from the sum of ratings of vascular lesions (including 

arteriolosclerosis, amyloid angiopathy, perivascular space dilation, myelin loss and 

infarcts) in the hippocampus, frontal lobe, temporal lobe and basal ganglia to 

generate a score /20 (VD., RK.), as described in detail in (14). Control subjects were 

selected if they demonstrated no evidence of cognitive impairment or any 

neurological or psychiatric disease.   Neuropathological examination of the control 

samples were confirmed to have no significant pathology. 

 

Tissue Acquisition  
Brain tissues were acquired from the Newcastle Brain Tissue Resource (Newcastle, 

UK), except four control cases which were obtained from the Medical Research 

Council London Brain Bank for Neurodegenerative Diseases (Institute of Psychiatry, 

London, UK). Ethical approval and permission for post-mortem research using brain 

tissue was granted for this project. Three 30µm thick sections were cut from pre-

defined paraffin-embedded blocks of the hippocampus according to the Newcastle 

Brain Map (15), at the level of the pre-geniculate nucleus and the pulvinar at which 
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the emergence of the ventricle is visible. Sections were stained using cresyl fast 

violet to visualize neuronal cell bodies and nucleoli, and checked for quality and 

staining consistency. All cases were collected, treated and analysed in a 

standardized manner to minimize differential effects from processing and staining. 

Stereological Analysis  
Stereological analysis of neuronal soma volumes and densities was carried out using 

identical equipment and techniques described previously (3). Slides were coded so 

analysis was carried out blind to disease group. Sections were viewed using a X2.5 

objective and the reference areas were delineated using stereological analysis 

software (Visiopharm Integration System, Hørsholm, Denmark). CA3 and CA4 

subfields were defined according to The Human Hippocampus (16), where the CA4 

was completely enclosed by the dentate gyrus, and CA3 began at the opening of the 

dentate gyrus where neurons became densely packed in a curve leading to the 

thinner  band of CA2 neurons (Figure 1). 3D stereological analysis of neuronal 

volume and density was carried out at X100 magnification. Pyramidal neuronal 

density was estimated using the optical disector method (17). Each disector frame 

had an x-y area of 2548.66µm2 and a depth of 18µm, excluding a guard volume 

≥4µm from the top and bottom of each section, measured using a Heidenhain z-axis 

microcator accurate to 0.5µm (Heidenhain GB Ltd, London, UK). Pyramidal neurons 

were identified using established criteria, i.e. characteristic triangular soma, with 

darkly stained single nucleolus (18). Neuronal soma volume was measured using an 

independent uniform random orientated nucleator probe when the nucleolus came 

into focus as the probe was traversed through the z axis (19). An average of 116 

neurons (±2SE = 5) in CA3 and 106 (±2SE = 8) neurons in CA4 were analysed per 

subfield per case. Coefficient of error values were within the acceptable range 
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demonstrating a high level of precision (neuronal volume in CA3 p=0.052 and CA4 

p=0.073, neuronal density in CA3 p=0.051 and CA4 p=0.07)(20). Further details of 

equipment used are described in (3). 

Statistical analyses 
Statistical analyses were conducted using SPSS Version 19.0. Data were checked 

for normal distribution and homogeneity of variance using the Shapiro-Wilk test and 

Levene’s tests. Group means were analysed using one-way ANOVA with post-hoc 

Tukey’s HSD. Correlations were performed using Pearson’s rank correlation. Results 

were considered significant when p<0.05.  

 

Results 

Subject demographics  

Subject demographics are presented in Table 1. and the clinical features of post-

stroke subjects are presented in Table 2.  Fixation length and post-mortem delay 

(PMD) were different across all groups [F (5,83) = 2.9, p = 0.019] and [F (5, 56) = 

2.7, p = 0.028] respectively. Post-hoc comparisons using the Tukey HSD test 

indicated that the control group mean PMD was shorter than PSD (p = 0.054), and 

the MD group mean fixation time was significantly longer than PSD (p = 0.015). 

However, neither was correlated with CA3 or CA4 neuron measurements. There 

were no differences in age between groups. There were no differences between 

PSD and PSND in CERAD, Braak or vascular pathology scores.  Majority of the PSD 

cases met pathological criteria for VaD whereas four samples had some AD 

pathology and were classed as mixed VaD with AD (21). 
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Neuronal densities and volumes 
Neuronal densities were greater in CA3 than CA4 in all groups (p < 0.001). There 

were no differences in CA3 or CA4 neuronal densities between groups.  Neuronal 

volumes were greater in CA4 than CA3 in all groups (p < 0.01) except PSND (p = 

0.059).  

 

CA3 neuronal volumes were different between the groups [F (5, 60) = 6.3, p < 

0.001]. Compared to controls, CA3 neuronal volume was reduced in PSD (p = 0.065) 

and mixed dementia (p < 0.001). Compared to the PSND group, CA3 neuronal 

volumes were reduced in PSD (p = 0.043), MD (p < 0.001). Mixed dementia CA3 

neuronal volumes were lower than VaD (p = 0.04)(Figure 1). 

 

CA4 neuronal volumes also differed between groups [F = (5, 61) = 9.4, p < 0.001]. 

Compared to controls, CA4 neuronal volumes were reduced in PSD (p < 0.001), 

mixed dementia (p < 0.001), AD (p = 0.001), and there was a trend to significance 

with the VaD group (p = 0.089). Compared to the PSND group, CA4 neuronal 

volumes were reduced in PSD (p = 0.001), mixed dementia (p < 0.001), and a trend 

to significance in AD (p = 0.052). Neuronal volumes in CA4 in mixed dementia were 

lower than in VaD (p = 0.025).  

 

Neuronal volume group means are presented as a percentage of control means in 

Supplementary Table S1. There were no differences in neuronal volumes or 

densities between male and female subjects. 



Gemmell E et al. 2013 

9 
 

Clinicopathological correlations in stroke survivors 
The CA3 and CA4 neuronal volumes were positively correlated with CAMCOG 

scores (r = 0.526, p = 0.012 and r = 0.572, p = 0.004 respectively). There were no 

correlations between neuronal volume and memory or executive function subscores.  

Neuronal density was not correlated with CAMCOG scores. Neither CA3 nor CA4 

neuronal volumes were correlated with AD pathology (Braak staging or CERAD 

scores), global vascular pathology, or age. Correlations between neuronal volumes 

and CAMCOG scores remained significant when corrected for age. 

Correlations between hippocampal subfields  
Neuronal volumes in CA3 and CA4 were positively correlated across all subjects (r = 

0.718, p < 0.001), and also correlated with previous neuronal volume measurements 

in CA1, CA2 and ECV (Table 3). In the post-stroke subjects only, neuronal volumes 

were positively correlated between CA3 and CA4 (r = 0.718, p < 0.001), CA3 and 

CA1 (r = 0.612, p = 0.002), CA3 and CA2 (r = 0.418, p = 0.024), CA4 and CA1 (r = 

0.750, p = 0.005) and CA4 and CA2 (r = 0.619, p = 0.002). 

 

Neuronal densities in CA3 were not correlated with densities in CA4. However, CA3 

neuronal densities were positively correlated with ECV neuronal densities (r = 0.481, 

p < 0.001), and CA4 neuronal densities were also correlated with CA1 neuronal 

densities (r=0.317, p=0.003). In the post-stroke subjects only, CA3 neuronal 

densities were correlated with ECV neuronal density (r=0.503, p0.02). There were 

trends towards negative correlations between neuronal volume and density in CA3 (r 

= -0.373, p = 0.08) and CA4 (r = -0.403, p = 0.051).  
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Discussion 
We found novel evidence of reduced neuronal volumes in hippocampal subfields 

CA3 and CA4 in post-stroke and ageing-related dementias. The CA3 and CA4 

neuronal volumes were reduced by ~20% in PSD patients compared to non-

demented stroke survivors and elderly controls, and neuronal volumes were related 

to post-stroke cognitive function. These results support those we previously found in 

CA1 and CA2, where neuronal volumes were also reduced by 10-20% in the 

dementia groups. Taken together, these findings suggest that neurons within all 

hippocampal CA subfields are similarly affected in PSD, and reflect pathological 

mechanisms contributing to cognitive decline. 

 

The other dementia groups also had reduced neuronal volumes compared to 

controls and PSND. CA3 and CA4 neuronal volumes were reduced in mixed 

dementia, and CA4 neuronal volumes were reduced in AD and there was a trend in 

VaD. We did not find any relationships between neuronal volumes and AD pathology 

including amyloid or neurofibrillary tangle burden (Braak stage or CERAD score), 

which suggests a role for non-AD-specific processes in neuronal volume loss. 

However, the mixed dementia group had the most severely reduced neuronal 

volumes in all CA subfields, indicating that both vascular and neurodegenerative 

disease processes may have exacerbated mechanisms causing neuronal soma 

shrinkage.  

 

CA3 and CA4 neuronal volumes were related to stroke survivors’ global cognitive 

function but not memory scores, unlike our previous study which reported CA1 and 

CA2 neuronal volumes were associated with memory function. This may reflect 

differing roles of the CA3/CA4 neurons compared to CA1/CA2 neurons in 
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hippocampal information processing, as CA1 forms major outputs from the 

hippocampus and has been shown to be able to function independently of CA3 

inputs (7, 22).   

 

Our findings suggest that reduced neuronal volumes contribute to hippocampal 

atrophy widely observed in post-stroke, vascular and neurodegenerative dementias 

(23-28), particularly in early stages of cognitive impairment prior to significant neuron 

loss. However, the finding that CA3 neuronal volumes were not reduced in AD and 

VaD subjects may suggest that CA3 neurons were more resistant to disease specific 

insults inflicted by either vascular or neurodegenerative disease. In the MD group, 

the coexistence of both AD and CVD processes resulted in the most severely 

reduced neuronal volumes in all CA subfields including CA3. This may simply reflect 

damage to CA3 neurons caused by collective insults from both disease processes, 

or alternatively it may reflect increased damage to remote susceptible neurons which 

communicate with CA3 neurons, resulting in increased loss of targets and 

deafferentation. This may have caused the retraction of processes and loss of axo-

dendritic arbour in CA3 neurons, which has previously been implicated in the cause 

of neuronal volume loss. (29, 30). 

 

Neuron volumes in all CA subfields were significantly correlated with one another. 

The strongest correlations were generally found between adjacent subfields (CA4 - 

CA3, CA4 - CA2, CA3 - CA2 and CA2 - CA1), which make up the major connections 

within the hippocampal circuit (7). These relationships may be due to similar levels of 

exposure to disease processes, or may reflect secondary morphological changes to 

neurons, caused by loss of connections from or to the neurons they contact. Loss of 
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axo-dendritic arbour has been suggested to cause reductions in neuronal soma 

volume in dementia (30), and studies have found synapse loss to be an important 

correlate of cognitive impairment in dementia (31). However, further work is needed 

to determine whether neuronal soma volume changes reflect loss of axo-dendritic 

arbour and/or synapses in PSD.  

 

We did not find any differences in CA3 and CA4 neuron density in PSD, VaD, mixed 

dementia or VaD compared to controls. Interpretation of this finding is limited by the 

use of neuron density rather than total neuron numbers as an indicator of neuron 

loss, as discussed in detail previously (3). However, studies of other brain disorders 

including depression and HIV-AIDS with cognitive dysfunction have also reported 

reductions in neuronal volumes without neuron loss (32, 33). Our results build on 

these findings, suggesting that neuronal volume reductions can occur in response to 

a variety of disease processes, resulting in changes to neuronal morphology and 

cognitive dysfunction even without significant neurodegeneration.  

 

Although this study was of a relatively substantial size for a study of human brain 

tissue, it would require greater numbers to investigate the relationship between the 

observed neuronal changes and factors such as age, risk factors and number and 

size of infarcts. There were no associations between neuronal shrinkage and age, 

however as this study only investigated neuronal volumes in 75+ year olds, further 

work in younger controls without age-associated neuropathology would be required 

to determine whether neuronal volume loss also occurs in normal ageing. We did not 

find any associations between the number of vascular risk factors and neuronal 

changes in PSND and PSD subjects, which may have been limited by the sample 
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size, as a previous study of the whole CogFAST cohort (n ~400) found that the 

presence of two or more vascular risk factors was a predictor of dementia (21).  We 

also found that it was not possible to accurately establish whether further strokes 

had occurred at follow-up, therefore in this subgroup of subjects it was not possible 

to investigate relationships between lesion number and hippocampal neuronal 

changes.  A further limitation of this study was that tissue from controls, VaD, MD 

and AD subjects was collected from parallel prospective studies rather than part of 

the CogFAST study.  However, the robust results demonstrating differences between 

the PSND and PSD subjects within the same cohort and almost equal burden of 

vascular pathology at baseline, were not attributable to differences in tissue 

processing or other unforeseen factors.  Furthermore, all tissue was collected, 

treated and analyzed in a standardised manner to minimize differential tissue effects 

from processing and staining all cases, allowing accurate and valid comparisons to 

be made. 

 

These findings provide further evidence that hippocampal neuronal soma volumes 

are decreased in delayed PSD and ageing related dementias, and that reduced 

neuronal volumes are associated with impaired cognitive function. CA4 neuronal 

volumes were similarly decreased in AD and VaD, indicating that neuronal volume 

loss occurred as a response to pathological mechanisms in distinct disease 

aetiologies. We did not find any significant differences in CA3 or CA4 neuron density 

between controls, PSND and dementia groups.  Taken together, our findings 

suggest that the selectively reduced neuronal volumes reflect mechanisms 

contributing to dementia and post-stroke cognitive impairment even in the absence 
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of significant neuron loss or AD pathology.  Further work is needed to establish the 

underlying vascular mechanism driving neuron volume loss.  
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Tables 

Table 1. Demographic details of the subjects.   

 Controls PSND PSD VaD Mixed AD 

N 12 13 11 11 10 10 

Age, years 
Mean 
(range) 

81.9  
(72-92) 

84.5 
(80-94) 

88.7 
(80-98) 

86.4 
(71-97) 

84.6 
(76-93) 

82.4 
(70-91) 

PMD, hours 
Mean 
(range) 

22.9  
(8-48) 

44.8  
(24-96 ) 

40.4  
(10-96) 

51.2 
(24-84) 

34.6 
(11-63) 

40.9  
(6-72) 

       

Section thickness, 
µm 

Mean ±2SE 

25.1 
(1.4) 

26.3 
(0.4) 

27.1  
(0.2) 

27.3  
(1.6) 

25.9  
(2.4) 

25.8  
(1.6) 

Braak Stage * 
Mean 
(range) 

0-1 2.8  
(1-5) 

2.3 
(0-4) 

2.1 
(1-4) 

4.4 
(1-6) 

5  
(4-6) 

CERAD score * 
Mean 
(range) 

0-1 1.6  
(0-2) 

1  
(0-3) 

1.2 
(0-2) 

2.4 
(1-3) 

3 
(3) 

Vascular pathology 
Mean 
(range) 

N/A 12.5  
(10-16) 

11.5  
(8-16) 

N/A N/A N/A 

 
* indicates significant (p<0.05) differences found between group means . 

Abbreviations: PSND = post-stroke non-demented; PSD = post-stroke dementia; 

VaD = vascular dementia; mixed = mixed VaD and Alzheimer’s disease; AD = 

Alzheimer’s disease; PMD = post-mortem delay, CERAD = Consortium to Establish 

a Registry for Alzheimer’s disease score; n, number, N/A = no data available. 
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Table 2. Clinical findings in post-stroke subjects.  

 
PSND PSD 

Time from baseline-death 
(mo), Mean ±2SE 68.5 (32.6) 54.2 (14.4) 
Total CAMCOG score (/100), 
Mean (range) 88.5 (76-98) 63 (24-80) 
Memory subscore (/27), Mean 
±2SE 22 (1.18) 17.3 (3.6) 
Executive function subscore 
(/28), Mean ±2SE 16.9  9.6 (3) 
Hemisphere with visible lesion 
on CT, (right, left, both none) (3, 1, 3, 4) (2, 4, 2, 2) 
 
Abbreviations:  CAMCOG = Cambridge Assessment of Mental Disorders in the 

Elderly; mo = months; PSND = Post-stroke non-demented; PSD = post-stroke 

dementia. 
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Table 3. Neuronal volume correlations between all regions 

 

 CA3 CA2 CA1 ECV 

CA4 r = 0.718,   
p < 0.001 

r = 0.627,  
p < 0.001 

r = 0.462,  
p < 0.001 

r = 0.373,  
p = 0.001 

CA3 - r = 0.555,  
p < 0.001 

r = 0.386,  
p < 0.001 

r = 0.325,  
p = 0.005 

CA2 - - r = 0.406,  
p < 0.001 

r = 0.311,  
p = 0.012 

CA1 - - - r = 0.231,  
p = 0.05 

 
 
r represents Pearson’s correlation coefficient. 
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Figure legends 

Figure 1 CA3 and CA4 subfields in the human hippocampus, stained using cresyl 

fast violet. 

 

Figure 2 Neuronal volumes in CA1-4 and ECV. PSND = post-stroke non-demented, 

PSD = delayed post-stroke dementia, VaD = vascular dementia, MD = mixed 

vascular and Alzheimer’s dementia, AD = Alzheimer’s disease; *indicate difference 

to controls, + indicate difference compared to PSND; black = p<0.05, grey = p<0.1. 

 

Figure 3. CA4 neuronal volume vs total CAMCOG score. O = Post-stroke non-

demented, x = Post-stroke dementia. 

 

 

 


