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Abstract 

 

Depression is among the most common behavioural and psychological symptoms of 

dementia, and leads to more rapid decline and higher mortality. Treatment for depression in 

dementia has centred on conventional antidepressant drug treatment based around the 

monoamine hypothesis of depression. However, recent major studies have suggested that 

conventional antidepressant treatments that aim to correct underlying deficits in monoamine 

neurotransmitters are not effective for depression in dementia. Post-mortem studies have also 

suggested that depression in dementia does not arise from serotonergic or noradrenergic 

abnormalities, or indeed from the degenerative pathology associated with Alzheimer’s 

disease. In contrast, considerable recent evidence has suggested that alterations in 

glutamatergic transmission may contribute to the pathophysiology of depression. This 

supports the view that treatment-resistant depressed patients, such as many dementia patients, 

may benefit from agents affecting glutamate transmission. This review will thus draw 

together the wealth of pathological data examining the basis of depression in Alzheimer’s 

disease and relate this to current thinking on treatment, with the aim of generating discussion 

on potential novel therapeutic strategies.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder affecting an estimated 

35.6 million people worldwide [1]. Whilst AD is mainly characterized by progressive 

memory loss, as well as deficits in orientation, spatial awareness comprehension and 

language, the frequently occurring non-cognitive symptoms of dementia, termed the 

behavioural and psychological symptoms of dementia (BPSD), have gained increasing 

recognition due to their substantial physical, emotional and financial impact on patients and 

their carers [2]. Depression is one of the most common BPSD, occurring in about 20% of 

AD, 30% of vascular dementia and 40-50% of dementia with Lewy bodies patients, where its 

high prevalence has led to it being added as a supportive diagnostic feature [3]. The presence 

of depression in dementia has been associated with more rapid decline [4], higher mortality 

[5] and earlier institutionalisation [2]. Reciprocally, depression in late-life is frequently 

accompanied by deficits in performance in aspects of cognitive function [6], with an 

increased risk of mild cognitive impairment associated with depressive symptoms over time 

[7]. Whilst depression in dementia is not currently recognized as a single clinical entity, a 

substantial body of pathophysiological and epidemiological data suggest depression and 

dementia seem inextricably linked [8-10] and likely share risk factors and common 

pathophysiological pathways [11, 12]. Several cross-sectional and longitudinal studies have 

found an association between late-life depressive symptoms and subsequent cognitive decline 

to mild cognitive impairment and dementia [12-14]. A recent systematic review and meta-

analysis found a two-fold increase in risk of dementia in depressed patients [15], and it has 

been suggested that greater than 10% (nearly 3.6 million) AD cases worldwide could be 

attributed to depression [16]. Such findings suggest the symptomatic manifestation of 

depression is not merely a psychological reaction to the awareness of dementia but may 

derive from neurobiological changes in common brain areas, which may act as either 

prodromal state preceding impending cognitive deficits, or an independent risk factor for the 

development of AD. The possible differences in the pathogenesis of late-life depression in 

dementia, when compared against depression in younger patients, may also explain the 

apparent lack of efficacy of conventional antidepressant drug therapy for depression in 

dementia. Recent findings from two major studies [17-19] have suggested that, contrary to 

previous belief, monoamine-based antidepressant treatment is not effective for depression in 

dementia. The poor prognosis and the lack of knowledge into the etiological and 

neurobiological processes has highlighted the urgent need for research into the pathological 

and molecular correlates of the causes of depression within the context of dementia. This 

review therefore seeks to appraise the current knowledge of the neuropathological and 

neurobiological causes of depression in AD, with the aim of offering potential avenues for 

antidepressant treatment.  

 

The pathophysiological basis late-life depression 

 

Neuroanatomy 

Early primate studies identified networks of limbic, striatal and prefrontal brain regions 

associated with affective function [20-22]. These findings have been supplemented by 

clinical, neuroanatomical and imaging studies, which have helped characterize the 

behavioral, cognitive and visceral manifestations of mood disorders [23-25]. Five segregated, 



parallel striatal-thalamocortical circuits have been delineated in primates, three of which have 

been associated with cognitive and emotive function in humans: the anterior cingulate cortex 

(ACC)-nucleus accumbens (ACC circuit), dorsolateral prefrontal cortex (DLPFC)-head of 

caudate nucleus (DLPFC circuit), orbitofrontal cortex (OFC)-head of caudate nucleus (OFC 

circuit) circuits (25). The DLPFC circuit is associated with regulating executive functions, 

such as problem solving, organization, working memory, and intellectual function and action 

(30, 32). The OFC circuit is thought to integrate limbic and emotional information into 

behavioral response, and is involved in sensory integration (33). The ACC circuit is an 

important component of reward and motivational systems in the brain. Lesion studies have 

shown that akinetic mutism is closely related to lesions to the ACC [26], manifesting as a 

wakeful state of profound apathy, with indifference to pain, thirst, or hunger. 

Findings from numerous imaging and post-mortem morphological studies have led to a 

reappraisal of the pathophysiological basis of major depression in late-life, suggesting that 

neurodegenerative and vascular mechanisms may play a significant part in the manifestation 

of symptoms [27]. Multiple structural magnetic resonance imaging (MRI) data have revealed 

volumetric reductions in grey matter structures associated with affective function, including 

the hippocampus [28, 29], OFC [30-32], caudate nucleus [33, 34] and amygdala [35]. 

Furthermore, a recent systematic meta-analysis of 17 magnetic resonance imaging (MRI) 

studies examining volumetric changes in brain regions associated with affective function 

revealed significant volume reductions in the OFC, putamen, and thalamus in patients with 

late-life depression [36].  Neuroimaging studies have also found increased white matter 

hyperintensities in several key areas involved in affective circuitry in late-life depression 

patients. Hyperintensities are more common in late-life depression than in younger patients 

[37, 38] or control subjects [37, 39]. Large-scale cross-sectional studies have also reported 

that basal ganglia lesions [40] and subcortical white matter changes [41] are associated with 

depression, especially in the elderly. However, as imaging remains hampered by limitations 

in spatial resolution, which precludes the measurement of cellular components in circuitry 

involved in affective regulation, post-mortem neuromorphometry studies have offered the 

most suitable approach for the identification of discrete changes in the brain microstructure in 

depression.  

 

Neuropathology 

Advances in stereological methodology, e.g. the ‘optical disector’ (for the measurement of 

particle density) and the ‘nucleator’ (for the measure of particle volume) techniques, as well 

as technology, with the advent of sophisticated computer-based image analysis methods, has 

allowed the reliable assessment of potential alterations in neuronal and glial cell populations 

in post-mortem tissue taken from depressed patients. In general, studies conducted in cortical 

tissue taken from younger or mixed-age groups have revealed regional-specific decreases in 

packing density of glial cells in the DLPFC (BA 9) [42], subgenual [43] and supragenual [44] 

ACC and rostral OFC (BA 47) [42]. Such findings appear to contrast with studies conducted 

in tissue taken from cortical areas from patients exclusively aged 60 years or over, where no 

changes have been found in glial cell density in the DLPFC (BA 9) [45], caudal OFC (BA 

11) [46] or subgenual ACC [47].  

 

Unlike the disparity in glial cell pathology between the marked reductions in younger and 

mixed-age depression groups and the notable preservation in older patients, pathological 



changes to neurons appear more discrete and of a more similar magnitude between younger 

and late-life depressed patients. A study examining neuronal density in all six layers of the 

rostral OFC (BA 47) found significant reductions in layers 3 and 5 in late-life depressed 

patients [42]. The study also found a negative correlation between age and overall density in 

both depressed and control groups. However, these findings were not replicated in a 

subsequent study in late life depression in the caudal OFC (BA 11) [46]. In the DLPFC, 

evidence of pyramidal cell pathology was found through a reduction in volume through all 

layers, specifically in layers 3 and, more prominently, layer 5 [45]. However, again, these 

findings were not replicated; no changes were found in neuronal morphology in the DLPFC 

in depressed patients versus control [48]. No neuronal changes have been found in late-life 

depression in the subgenual ACC [47].   

A greater degree of inconsistency has been found in neuronal morphology in the subcortical 

structures in depressed patients than cortical regions. Significant increases in neuronal density 

have been noted in the CA1-CA3 subfields of the hippocampus, as well as the dentate gyrus, 

with corresponding decreases in neuronal cell body volume (51). These findings were not 

replicated in a more recent study [49]; however, the study did report a decrease in total 

hippocampal volume in a subset of recurrent/chronic depressed patients and an increase in 

pyramidal cell density with duration of depressive illness in the CA1 subfield, as well as an 

increase in granule cell and glial cell density in the dentate gyrus in patients taking 

antidepressant drugs [49]. Such findings may indicate an antidepressant medication-related 

increase in dentate gyrus granule cell proliferation. However, recent findings dispute such an 

effect [50]. Furthermore, a study of other limbic regions found no significant difference in 

neuronal density was found in the amygdala and entorhinal cortex in late-life depressed 

patients versus age-matched controls [51]. However, a significant reduction was found in 

glial cell populations in the amygdala [51]. A significant reduction in neuronal density, but 

not volume, has been found in the head of caudate nucleus. Reductions found in both the 

dorsomedial and ventrolateral aspects of the caudate nucleus, may have functional relevance 

due to connectivity with cortical affective circuitry. Pyramidal projection neurons emanating 

from layer 5 of the DLPFC and OFC send afferents to dorsomedial and ventrolateral aspects 

of the caudate nucleus, respectively. Thus, selective damage to pyramidal neurons in layer 5 

of the DLPFC [45] and OFC [42] may indicate disturbances in affective frontal-subcortical 

circuitry signaling in late-life depression [52].  Such changes are in accordance 

microstructural alterations described earlier in the white matter adjacent to the prefrontal 

cortex [53-56]. Diffusion tensor imaging-based investigation has also revealed increased 

mean diffusivity in prefrontal areas in late-life depression, indicating impaired white matter 

tract integrity [55]. Furthermore, a large neuroimaging study has reported a significant 

correlation between increased white matter lesion volume (particularly in frontal areas) and 

reduced caudate nucleus volume in late-life depression [57]. Taken together, these findings 

indicate that the dorsal prefrontal-striatal, as well as reciprocal thalamocortical, axonal tracts 

mediating affective function, may be particularly prone to damage from extraneous factors, 

such as vascular or inflammatory events [52]. Accordingly, the presence of white matter 

hyperintensities has been correlated with ischemic pathology. Deep white matter 

hyperintensities were identified and examined microscopically and whilst some lesions in 

controls cases were likely to be non-ischemic in origin, all hyperintensities in late-life 

depressed cases were demonstrated to be ischemic and most apparent in the DLPFC [58]. 

However, periventricular lesions were found to be of a non-ischemic origin and more likely a 

result of disruption of the ependymal lining of the ventricles [59].  

 



Neurobiology 

The hypothalamic-pituitary-adrenal (HPA) axis is a major part of the neuroendocrine system 

that modulates stress response. Depression has long been associated with hypercortisolemia 

(such as found in Cushing’s syndrome), non-suppression on the dexamethasone test, 

increased vasopressin production in cells of the hypothalamic paraventricular nucleus and 

loss of circadian rhythm regulating HPA function [60]. Moreover, aging itself has been 

shown to produce a similar pattern of events [61], meaning HPA dysfunction is heightened in 

late-life depression [62]. Animal studies have revealed that the hippocampus is specifically 

prone to the toxic effects of prolonged glucocorticoid exposure [63]. The hippocampus 

contains the highest concentration of glucocorticoid and mineralocorticoid receptors in the 

brain, which are critical regulators of dendritic spine development and plasticity [64]. 

Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived 

neurotrophic factor (BDNF). As BDNF has been shown to promote neuroplasticity, cell 

survival, hippocampal neurogenesis and cellular excitability, it has been hypothesized that 

specific adverse effects of glucocorticoids may be mediated via BDNF expression and 

signaling events [65]. Thus, higher cortisol levels have been shown to lower BDNF in the 

hippocampus, with antidepressants reversing the change [66]. Furthermore, in the absence of 

concomitant stress exposure, glucocorticoid exposure has been shown to result in memory 

disturbance [67-69].  Hippocampal atrophy has been frequently reported in depression in the 

elderly [70, 71] and amnesic deficits are prominent feature in late-life depression on detailed 

cognitive assessment. Thus, a speculative link could be made between HPA dysfunction and 

the amnestic aspects of late-life depression. However, at least partial, recovery of the brain 

atrophy has been shown to occur following cessation of corticosteroid administration [72, 

73]. Thus, the atrophy observed in hypercortisolemia cannot be deemed comparable with that 

found neurodegenerative disorders, and may represent a contributory rather than a causative 

factor in hippocampal damage and corresponding memory impairment [60]. 

 

The pathological basis of AD 

 

Senile plaques and neurofibrillary tangles (NFTs) are considered the key pathological 

hallmarks of AD. Early studies identified the presence of β-amyloid (Aβ) in tightly-packed 

deposits in the brain parenchyma and vessel wall [74, 75], coupled with genetic studies 

identifying mutations in genes encoding amyloid precursor protein (APP) [76] and later those 

for presenilin 1 and 2  [77], were proposed to result in Aβ-containing plaques and the 

development of early-onset familial dementia. Such findings were incorporated into the 

‘Amyloid Cascade Hypothesis’, which postulated Aβ deposition as the initial pathological 

event, leading to the formation of senile plaques and then to neurofibrillary tangles, neuronal 

cell death, and ultimately dementia [78]. Particular cleavage of APP by secretase enzymes is 

thought to induce Aβ plaque formation. When APP is first cleaved by β secretase, followed 

by γ secretase, the Aβ (1-40) or (1-42) molecule is produced via the amyloidogenic pathway, 

with the Aβ (1-42) variant less soluble and more toxic [79]. Amyloid monomers aggregate to 

form toxic soluble oligomers, believed to mediate perturbation of synaptic connections and 

network dysfunction, and are associated with dystrophic neurites, activated microglia and 

reactive astrocytes [80, 81]. Extracellular Aβ-containing plaques follow stereotypical patterns 

of pathological progression, beginning exclusively in the neocortex, then spreading to 

allocortical brain regions, the diencephalic nuclei, striatum and cholinergic nuclei and 



affecting the brainstem and cerebellum later in disease progression [82, 83]. NFTs are formed 

from the intracellular aggregation of the hyperphosphorylated microtubule-associated protein, 

tau. In normally functioning neurons, tau stabilizes microtubules forming the cellular 

cytoskeleton through the process of phosphorylation and dephosphorylation.  Aβ interacts 

with signaling pathways that regulate the phosphorylation of tau [84], resulting in a 

hyperphosphorylated state and the polymerization with other tau molecules. In this 

pathogenic state, paired helical filaments are formed, which result in the accumulation of 

neurofibrillary tangles and toxic species of soluble tau, thus impeding normal neuronal 

function by disrupting axonal transport and eventually leading to cell death [85, 86]. As with 

plaque formation, NFTs have a well-recognized pattern of progression in AD, with 

neurofibrillary pathology progressing from the transentorhinal to entorhinal and hippocampal, 

and finally the neocortical regions [82, 87].  

Whilst Aβ has been shown to play a fundamental role in AD pathogenesis, it remains unclear 

whether it is a primary driver in the disease trajectory. For instance, Aβ plaque density does 

not correlate with the severity of dementia [88, 89]. Furthermore, though it is widely assumed 

that NFTs are intrinsically involved in AD pathogenesis, there remains insufficient evidence 

to implicate them as the instigator of the neurodegenerative process. Indeed, some have 

speculated that Aβ plaque aggregates [90] and NFTs [91] may actually play a protective role, 

manifesting as a result of adaptive mechanisms to preserve endangered neurons. The apparent 

latency period between the appearance of AD pathology and clinical symptomatology has 

suggested that Aβ accumulation and NFT may occur upstream in the disease process, 

combining to trigger, or occur in tandem to, synaptic dysfunction, which may lead to 

cognitive impairment directly or indirectly via neurodegenerative processes [92].  

Vascular dysfunction has long been known play a significant role in the pathophysiology of 

both AD [93, 94] and late-life depression [95, 96]. Preclinical and clinical imaging data has 

suggested deterioration of vasculature may precede cognitive decline and morphological 

changes in neuronal populations in AD. The lack of clearance of Aβ leads its accumulation in 

blood vessels and parenchyma. The resulting pathological state, cerebral amyloid angiopathy 

(CAA), is associated with cognitive decline and is one of the major hallmarks of AD 

pathology, occurring in >90% of AD-type dementias [93, 97] CAA lesions are thought to 

originate in the occipital lobe, followed by the frontal lobe, temporal lobe and parietal lobe 

[98-101]. White matter lesions, frequently resulting from ischemic insult, commonly occur in 

patients with suspected CAA, and are more marked in individuals with cognitive impairment 

[102]. Subcortical cerebrovascular disease may contribute to cognitive and behavioral 

deficits, via infarct damage located in frontal-subcortical circuitry, detailed earlier [20-22]. 

Furthermore, Binswanger’s syndrome has been postulated to cause slow, progressive 

cognitive impairment through hypoperfusion and demyelination of the deep white matter 

[103, 104]. Thus, it could be postulated that subcortical atrophic changes resulting from CAA 

could represent a potential mechanistic point of intersection between AD and late-life 

depression. Nevertheless, the lack of systematic studies assessing the possible psychiatric 

impact of CAA [105] has highlighted the considerable need for studies examining this 

relationship.   

 

 

 

 

 

Depression, mild cognitive impairment and dementia: a similar disease trajectory?  



 

Putative neuropathological links between late-life depression, mild cognitive impairment and 

AD have been established from several angles. Such findings have supplemented clinical and 

epidemiological data that has placed depression in a continuum of events, either as a 

prominent risk factor or early manifestation of AD. AD patients with a history of major 

depression have been shown to have a greater number of hippocampal neuritic plaques and 

neurofibrillary tangles at autopsy than AD patients who had not experienced depression 

during life [106]. AD patients with a history of depression also demonstrated a more rapid 

cognitive decline than those who did not [106]. The presence of pathological hallmarks of 

AD, as well as alpha-synuclein and cerebrovascular pathology, has been demonstrated in late-

onset depressed patients with a varying degree of cognitive impairment [107]. Imaging of Aβ 

deposits using the Pittsburgh compound-B radiotracer (PiB) has revealed that tracer retention 

in half of depressed subjects with MCI (3 if 6) fell within the range of AD patients. PiB 

retention was comparable in two depressed subjects with normal cognitive ability and non-

depressed cognitively normal subjects [108]. A further study using 2-(1-[109]ethylidene) 

malononitrile ([(18)F]FDDNP) positron emission tomography to label amyloid and tau 

protein binding revealed significantly higher binding in the posterior cingulate and lateral 

temporal regions in late-life depressed patients [109]. Sun et al (2008) elaborated on Aβ 

involvement in late-life depression by examining the ratio between Aβ40 and Aβ42 plasma 

peptide [11]. Previous data [110, 111] has revealed that low concentration of Aβ42 combined 

with high Aβ40 levels increases the risk of developing AD. Accordingly, Sun et al found that 

late life-depression subjects had lower plasma Aβ42 levels and a higher Aβ40:Aβ42 ratio than 

age-matched controls, in the absence of cardiovascular disease or antidepressant treatment. 

Depressed subjects with a high Aβ40:Aβ42 ratio also had greater impairment in memory, 

visuospatial ability and executive function, whereas depressed patients with a more 

comparable Aβ ratio did not have significant memory deficits [11]. Nevertheless, several 

pathological studies have failed to associate cognitive impairment in depression with plaque 

or tangle pathology [112-114] and it is likely that cognitive aspects of late-life depression 

arise from several inter-related pathophysiological mechanisms, which result in a wide-range 

of deficits requiring focused treatment strategies.  

 

Monoaminergic systems in depression and AD 

 

Changes to subcortical nuclei have long been thought to play a primary role in late-life 

depression and AD pathogenesis. AD is associated with degeneration of subcortical 

populations, particularly cholinergic and monoaminergic systems. Long and poorly 

myelinated axons, which project extensively to hippocampal and cortical regions, are 

particularly prone to damage in AD [115]. Early reports noted significant reductions in 

nucleolar volume and total RNA levels in both serotonergic and norepinephrinergic neurons 

in the brainstem of AD patients [116, 117]. Moreover, a reduction in inhibitory G-protein-

linked 5-HT1A receptors has been found in postmortem hippocampal tissue taken from AD 

patients with depression [118]. Selective vulnerability of brainstem monoaminergic nuclei 

has been demonstrated in AD, with the rostral raphè especially prone to tangle formation, 

whereas others exhibit plaque and tangle expression [119]. Nevertheless, several studies 

examining late-life depression within the context of AD have proved more equivocal, with 

pathological changes frequently not varying between AD patients with depression and those 

without. A consistent loss of 5-HT neurons has been found in AD patients [112, 120]. 

However, when these patients were subdivided into depressed and non-depressed groups, no 



difference in the number of neurons was found between the two groups [112]. Similarly, 

though reductions in the binding of protein that aids the function of 5-HT, the 5-HT 

transporter, have been found in AD no greater reductions were found between the AD groups 

with depression and those without [121]. Furthermore, although a significant loss of 

norepinephrinergic pigmented neurons was found in the locus ceruleus in AD, no 

supplementary loss of neurons was found in patients with depression and AD [122]. A recent 

study also found no association between brainstem tangles and depressive symptoms. 

However, a lower density of tyrosine hydroxylase-immunoreactive neurons in the ventral 

tegmental area was associated with higher level of depressive symptoms, suggesting a role 

for the mesolimbic dopamine system in late-life depressive symptoms. The mesolimbic 

dopaminergic ventrotegmental-nucleus accumbens pathway plays a crucial role in reward and 

associations have been made between components of the circuit and mood regulation (for a 

detailed review, see Nestler and Carlezon, 2006) [123]. However, post-mortem studies of the 

dopaminergic system in depression have been scarce and, perhaps unsurprisingly, have 

provided conflicting results. Nevertheless, given the high prevalence of depression in 

neurodegenerative disorders significantly affecting dopaminergic transmission – depression 

occurs in 50-60% in dementia with Lewy bodies and Parkinson’s disease [124], and is more 

common and persistent than in AD  [125]  – further consideration of the role of dopamine in 

affective dysregulation in neurodegenerative disorders is warranted.  

 

Despite the lack of clear evidence linking pathological changes in monoaminergic nuclei and 

late-life depression, especially within the context of dementia, treatment strategies for 

depression in AD mirror the treatment of depression alone, stemming from Schildkraut’s 

1965 ‘catecholamine hypothesis of depression’ [126]. Modern selective serotonin reuptake 

inhibitors (SSRIs), such as sertraline, remain the first-line of treatment for depression in 

dementia. Until recently, it was unclear whether such conventional monoaminergic agents 

would be as effective in patients for depressive symptoms in dementia as they are in patients 

without dementia. However, two recent major studies have suggested that this is not the case. 

The DIADS-2 study compared the commonly-used selective serotonin reuptake inhibitor 

(SSRI) antidepressant sertraline (N=67) with placebo (N=64) in depression in AD patients 

and found no significant change in symptoms, response or remission rates after 12 [18] or 24 

weeks [19]; moreover, they found evidence that the treatment resulted in an increase in the 

risk of adverse events and thus concluded that this drug was not suitable for depression in AD 

[18, 19]. The UK-based SADD study [17] also found sertraline and another class of 

antidepressant drug, the noradrenergic and specific serotonergic antidepressant mirtazapine, 

to be ineffective, when compared against placebo, and were again associated with an increase 

in adverse effects.  

 

The role of glutamatergic signalling in the pathophysiology of depression  

 

The lack of clear evidence of pathological change in monoaminergic circuitry in brain tissue 

taken from late-life depressed patients per se or in the context of AD, coupled with the 

ineffectiveness of monoaminergic agents, has suggested the need for a reappraisal in research 

and treatment strategies for depression in dementia. Considerable interest has recently been 

expressed in the potential use of agents affecting the main excitatory neurotransmitter in the 

brain, L-glutamic acid (glutamate). Glutamate signalling occurs at both pre- and post-



synaptic sites through both ionotropic and metabotropic receptors [127]. Ionotropic glutamate 

receptors, which are highly permeable to Na+ and Ca2+, are the principal mediators of fast 

excitatory neurotransmission in the central nervous system [127]. Three subfamilies of 

ionotropic receptors have been identified: alpha-amino-3-hydroxy-5-methylisxazole-4-

propionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors. The 

modulation of the NMDA receptor complex and its associated molecular mechanisms related 

to synaptic and neuronal plasticity have prompted a new generation of disease models of 

depression and antidepressant therapeutics [128-132].  Numerous imaging and post-mortem 

studies have highlighted glutamatergic abnormalities in major depression patients. Magnetic 

resonance spectroscopy studies have reported heightened cortical glutamate levels in major 

depression [133, 134]. Post-mortem studies have demonstrated elevated glutamate levels in 

the frontal cortex and a significant downregulation in mRNA transcripts for vesicular 

glutamate transporters and excitatory amino acid transporters [135], which are vital for the 

rapid removal of glutamate from synapses. This is reflected in altered post-synaptic receptor 

binding and expression of NMDA, and AMPA/kainate receptors in major depression [135, 

136].  Preclinical models have also suggested the NMDA-mediated events are fundamental in 

the pathogenesis of depression and its treatment. Inescapable stress has been shown to disrupt 

hippocampal neuronal long-term potentiation, which is regulated through NMDA receptor 

activation. Considerable preclinical evidence has also demonstrated the importance of glycine 

recognition sites on NMDA receptors in the regulation of anxiety-related behaviors [137]. 

Accordingly, several functional antagonists of the NMDA receptor, including ligands at the 

glutamate, glycine, polyamine, vivalent cation (Zn2+) and ionophore recognition sites, have 

been shown to exert fast-acting antidepressant and anxiolytic effects in animal models [138]. 

Furthermore, other preclinical model studies suggest that chronic, but not acute, 

administration of conventional monoamine-acting antidepressants modulate NMDA receptor 

activity, suggesting that post-receptor downstream neuronal adaptation processes, rather than 

the direct effects of extracellular synaptic monoamine levels, lie behind the therapeutic effect 

[139].  

 

Increasing evidence has suggested that the clinical symptomatology of AD arises from 

morphological changes and associated deficits in synaptic function, which may begin several 

years prior to neuronal loss. Markers of synaptic degeneration have been consistently found 

to correlate with cognitive dysfunction [140, 141]. Abnormalities in vesicular proteins, 

including synaptobrevin, synaptotagmin and Rab3a [142], as well as pre- and post-synaptic 

proteins, such as synaptophysin [143], drebrin [144], neurogranin and synaptopodin [145] in 

the various brain regions of AD patients.  Biochemical studies have indicated impaired 

glutamatergic transmission in AD. Early antemortem and postmortem studies revealed 

reductions in glutamate concentration in AD patients [146-149]. Furthermore, reductions in 

the expression of NMDA and AMPA, but not kainate, receptors have been found in AD. 

Such evidence pre- and post-synaptic glutamatergic is not only involved in the 

pathophysiology of AD [150] but also has consequent effects on neurogenesis, neurite 

outgrowth, synaptogenesis and neuronal cell death [151]. Hippocampal glutamatergic cell 

populations in the entorhinal cortex and subiculum are lost very early in AD progression, 

whilst the hippocampal GABAergic system remains relatively intact. Such neurodegenerative 

changes correlate with atrophy of astroglia, which cause disruptions in synaptic connectivity, 

misbalance in neurotransmitter homeostasis and neuronal death through the enhancement of 

glutamate-mediated neurotoxicity. Excessive overactivation of the NMDA receptor in 

particular leads to increased Ca2+, consequent free radical damage and activation of the 

proteolytic processes that contribute to cell injury or death. Thus, with the disruption of 



energy metabolism in AD, glutamate is not cleared and inappropriately released [152]. This 

state alters ionic homeostasis, meaning compromised neurons become depolarized, displacing 

the Mg2+ block from the NMDA receptor and causing excessive stimulation of glutamate 

receptors. This abnormal physiological state is thought to result in impairment in the NMDA 

receptor signalling and capacity to generate LTP, and may significantly contribute to 

cognitive impairment in AD [153, 154]. 

 

The accumulation of synaptic glutamate and continual receptor stimulation may also eventual 

neuronal damage and death via excitotoxic events. Several lines of evidence have suggested a 

fundamental role for glutamate-mediated excitotoxic damage in AD. Oxidative stress and 

increased intracellular Ca2+ generated in response to Aβ have been reported to enhance 

glutamate-mediated neurotoxicity in vitro [155, 156]. Furthermore, Aβ has been 

demonstrated to significantly affect NMDA receptor-related glutamatergic signalling, 

equating to cognitive loss, in the frontal and entorhinal cortex of AD patients [157]. 

Glutamate transporters have also shown to be downregulated in AD, and Aβ can either 

directly or indirectly inhibit glutamate reuptake or enhance release [158, 159]. Such excessive 

glutamatergic activity may exacerbate AD pathology, through heightened 

hyperphosphorylation of tau [160].  

 

 

NMDA receptor complex signalling dysfunction: a point of intersection for depression 

and AD pathologies 

 

The apparent central role for glutamatergic-mediated transmission in late-life major 

depression and AD offers the possibility that significant overlap may occur in the signalling 

transduction mechanisms in the two disorders. As mentioned, NMDA receptor antagonists 

have been shown to possess antidepressant and antidementia properties in age and disease-

related memory deterioration. However, despite this apparent clinical success, it is unlikely 

that the therapeutic effect lies in merely NMDA receptor blockade alone. It is thus vital to 

examine the cellular signalling pathways that are influenced by such neuroadaptational 

processes. A remarkably consistent theme in studies examining the downstream molecular 

events of antidepressant function has been the overlap with molecular events involved in 

neuroplasticity, especially synaptic plasticity [161]. Alterations in HPA axis function have 

been shown to directly influence glutamate and changes in the expression of proteins 

involved in glutamatergic signalling have been noted in animal stress models mimicking 

depressed-like states [162]. Microarray analysis has also shown significant cortical 

downregulation of two key glutamate transporters, SLC1A2 and SLC1A3, as well the 

expression of L-glutamate-ammonia, the enzyme that converts glutamate to non-toxic glycine 

in stress models [135]. Such changes would increase extracellular glutamate and activate 

excitotoxic processes and affect the efficiency of glutamate signalling.  

In addition to the consequences of excitotoxic damage, for example, increased intracellular 

calcium concentrations, mitochondrial damage, free radical generation, immune alterations 

and accelerated cell ageing [163], imbalances in glutamatergic signalling may diminish the 

normal compensatory or restorative processes essential for brain repair. For example, BDNF 

is regulated through the interplay of glutamate/GABA transmission [164, 165]. BDNF is a 

major regulator of synaptic plasticity, neuronal survival and differentiation, and mediates 



advanced activities, such as learning, memory, and behaviour, in addition to its established 

functions for cell survival [166]. Changes in the expression and activity of BDNF have been 

widely described in AD and depression [167] and many studies have identified BDNF as a 

key target of antidepressant drug and electroconvulsive treatment [164, 168]. Moreover, 

genetic polymorphisms in BDNF have been found to play a role the susceptibility to both 

late-life depression and AD. Growth factor signalling cascades are known to have pleiotropic 

effects, including cell growth, survival and neuroplasticity. It has been established that 

activation of NMDA receptors initiates such signalling cascades and promotes the expression 

of BDNF [169]. Thus it is likely that disturbances in the NMDA receptor complex in 

depression may underlie cellular plasticity and resilience and may contribute to glutamatergic 

pyramidal projection cell pathology found in affective circuitry areas such as the DLPFC and 

OFC described earlier [42, 45, 170] (Figure 1).  

 

The elucidation of the molecular mechanisms underlying the rapid antidepressant effect of 

the potent NMDA antagonist ketamine has offered novel potential therapeutic targets, whose 

mode of action may prove pertinent to AD treatment. The mammalian target for rapamycin 

signalling, mTOR is an atypical Ser/Thr kinase and a central controller of protein synthesis 

required for new synaptic connections [171]. mTOR signalling is influenced by the activity of 

NMDA, metabotropic glutamate and dopaminergic receptors, as well as BDNF, and 

represents a convergence point of several signalling pathways, including phosphoinositide-3-

kinase (PI3K), Akt/protein kinase (Akt/PKB) [172]. A significant decrease in Akt activity has 

been reported in the prefrontal cortex of depressed suicide victims [173]. A large body of 

evidence has linked mTOR signalling with synaptic change, memory and neurological 

disorders. It has recently been demonstrated that the antidepressant effect of ketamine and 

another NMDA antagonist, Ro-25-6981, is mediated by activation of the mTOR pathway, 

which leads to increased synaptic signalling proteins and increased number and function of 

new synapses in the PFC in rats [174]. The same study showed that ketamine and Ro-25-

6981 produced rapid antidepressant effects, which were blocked by the pre-treatment of the 

potent inhibitor of mTOR signalling, rapamycin [174]. Moreover, blockade of mTOR 

signalling with rapamycin completely blocked ketamine-induced synaptogenesis [174]. The 

activation of mTOR and associated proteins observed after treatment with another NMDA 

receptor antagonist, MK-801, in the rat frontal cortex suggests that the facilitation of synaptic 

signalling proteins is a common feature of NMDA antagonism [175]. mTOR dysregulation 

has also been found in AD, with several signalling proteins involved in mTOR-regulated 

pathways, including Akt and mTOR itself, found to be altered in the post-mortem brains of 

AD patients [176].  

In summary, the reassessment of treatment-resistant depression, such as that found in AD, has 

led to several exciting lines of research beyond the monoaminergic hypothesis, which could 

pave the way for identification of novel biomarkers and therapeutic strategies. A substantial 

body of evidence suggests the involvement in shared NMDA-regulated signalling pathways 

in depression and AD, and may suggest an overlap of disease neurobiology. It is hoped that 

the potential therapies arising from this research will herald a breakthrough in what is 

becoming a major treatment issue within the growing global burden of AD. 
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