
New Behavioural Approaches for Virtual Environments

Marc Cavazza1, Simon Hartley1, Jean-Luc Lugrin1, Paolo Libardi2,
 and Mikael Le Bras1

1 School of Computing, University of Teesside, TS1 3BA,
Middlesbrough, United Kingdom
m.o.cavazza@tees.ac.uk

2 Department of Electronics for Automation, University of Brescia, via Branze 38,
Brescia, I-25123, Italy

Abstract. We describe a new approach to the behaviour of 3D environments
that supports the definition of physical processes and interactive phenomena.
The work takes as a starting point the traditional event-based architecture that
underlies most game engines. These systems discretise the environments’
Physics by separating the objects’ kinematics from the physical processes
corresponding to objects interactions. This property has been used to insert a
new behavioural layer, which implements AI-based simulation techniques. We
introduce the rationale behind AI-based simulation and the techniques we use
for qualitative Physics, as well as a new approach to world behaviour based on
the induction of causal impressions. This is illustrated through several
examples on a test environment. This approach has implications for the
definition of complex world behaviour or non-standard physics, as required in
creative applications.

1 Introduction

It is a common view in interactive systems research to consider that, while graphics
and visualisation have made significant progress over recent years, behavioural
aspects are somehow lagging behind, and have not sustained a similar pace of
progression. This generic statement concerns both the simulation of realistic Physics
for 3D worlds and the behaviour (generally AI-based) of autonomous entities
populating them.
One well-known instantiation of this statement consists in saying that the added value
of future computer games will derive increasingly from the AI technology they
incorporate, although this statement probably needs to be revisited from a more
fundamental perspective. More realistic physical modelling also constitutes a
challenge, in particular in terms of computational resources. This problem is currently
approached by discretising physical simulation to reflect the actual events taking
place in the virtual world, in particular those arising from interaction between world
entities.
There has been, generally speaking, little research on the notion of integrated world
behaviour, which goes beyond the isolated simulation of object’s physical behaviour

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322322812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to consider the world’s physical phenomena from a more global perspective. Such an
approach would be centred not only on physical objects but also on processes
affecting objects, on the aggregation of objects into systems or devices whose
behaviour cannot be deduced directly from simple physical simulation, but requires a
higher level of conceptual modelling. It should also consider relations between events
occurring in the 3D world, and how these can be perceived as causally related by the
user.
In this paper, we introduce a novel approach to the integrated behaviour of virtual
worlds, which is based on the use of AI techniques derived, among others, from
qualitative simulation. We first describe the rationale for this approach and the system
architecture, which is organised around the Unreal Tournament 2003™ game engine
[1], whose event-based system serves as a baseline layer for integration of high-level
behaviour. We then discuss two novel methods supporting 3D world’s behaviour,
which are qualitative physics and causal propagation, and how their basic
components and formalism have been adapted to the specific constraints of real-time
visualisation.

1.1 Physics Modelling, Event-based Systems and Interaction

Comprehensive modelling of all physical events in a virtual environment would be a
formidable task, impossible to achieve in real time. In interactive virtual
environments, basic physical behaviour is implemented in an interactive fashion to
maintain a response rate which is acceptable for user interaction. This has led to the
rationale, that in order to maintain this interaction rate, the Physical simulation is
discretised. Kinematic aspects within these systems tend to be simulated through
traditional numerical approaches, while more complex mechanical events (objects
breaking or exploding) are pre-calculated. In other words, the overall dynamics of
objects is subject to traditional physical simulation, while interactions between
objects (collisions, etc.) constitute discretisation units. This saves considerable
computation at the level of these events, whose pre-computed consequences can be
triggered as a consequence of event recognition. The condition for such a system to
work efficiently is the availability of an “event system”, i.e. mechanisms for
recognising in real-time the occurrence of such events and supporting the
programming of cause-effects associations. In most cases, event systems are derived
from basic collision detection mechanisms of the graphic engines. These systems are
able to produce event primitives corresponding to collision or contact between
objects, or objects entering and leaving areas or volumes in the 3D environment.
This is not specific to game engines, as event-based systems play an important role in
VR software as well [2]. However, traditional game engines use their event system
essentially as an API supporting the ad hoc development of object’s behaviours
associated with specific instances of events. The starting point for this research was to
use the inherent discretisation of Physics in 3D engines to integrate high level
behavioural mechanisms that could support complex behavioural simulation on a
principled basis.

1.2 System Architecture

The system comprises a graphic environment, composed of the UT 2003 engine and
an external physical simulation modules (called QP engine and causal engine, see
below), developed in C++. The software architecture is based on UDP
communication, supported through the UDPLink class in UT 2003. The messages
exchanged between the UT 2003 environment and the behavioural modules
correspond, on one side, to the activation conditions of various behaviour instances
run by the engine. On the other side, the engine sends messages to update object
states, which are interpreted by the Unreal Environment [3].
The Unreal Tournament engine extensively relies on event generation to support
many of its interaction aspects and, most importantly, the mechanism for event
generation is accessible to redefine specific behaviours. Formally, an event can be
characterised as an encapsulated message, which is generated by an Event Source,
this being an object of the environment. Examples of such basic events are:
Bump(Actor Other), Touch(Actor Other), UnTouch(Actor Other),
ActorEnteredVolume (Actor Volume), etc.
The Unreal Tournament Engine implements two different kinds of event: the basic
(primitive) events, which are low level events defined within the game engine
(derived from the collision detection procedures in the graphic engine), and the
programmed events. The latter are events whose definitions are scripted and can thus
be programmed by the system developer. This is a mechanism by which the system
can parse low-level events into high-level events corresponding to a semantic
description of the world.

1.3 Techniques for World Behaviour

The notion of world behaviour generalises that of virtual world Physics, to
encompass any kind of dynamic generation of events in the virtual world. In
traditional physical simulation, pre-defined consequences are triggered in response to
specific events, such as a glass exploding when hit by a missile. This approach can be
generalised by considering the principles according to which events can be related to
one another. For instance, physical simulation can be entirely discretised using laws
of physics to produce causal chains of elementary events. This approach to symbolic
reasoning on physical systems corresponds to an AI technique known as Qualitative
Physics [3]. On the other hand, it is also possible to produce world behaviours by
directly relating events to one another so as to create artificial causal chains. We
describe both methods in the remainder of this paper. Like with any AI method, but
more specifically with those modelling worlds, we should first discuss the knowledge
representation formalisms that support their implementation.

Process: Fluid-flow (?source?sub ?dst ?path)

Individuals: ?source a contained liquid
 ?destination a contained liquid
 ?sub a substance
 ?path a fluid-path

Preconditions: Connects(?path,?source,?dst)

 Aligned(?path)

Quantity Conditions:

A[Pressure(C-S(?sub, liquid, ? source))]
> A[Pressure(?dst)]

Relations:
Quantity(flow-rate) Flow-rate=Pressure(C-
S(?sub,liquid,source)) -Pressure(?dst)

Influences:
I+(Amount-of-in(?sub, liquid, ?Source), A[flow-rate])
I-(Amount-of-in(?sub, liquid, ?dst), A[flow-rate])

Figure 1. An Example Qualitative Process describing Fluid Flows. This
process is interactively triggered by moving the glass under to running water.

2 Ontology and Representations

The principled definition of behaviour in a symbolic system relies on the appropriate
description of action and processes, as well as object properties, which are
determinants for their involvement in certain classes of actions and processes. It is
thus necessary to develop an ontology for a given environment’s Physics.
Importantly, this ontology will describe both objects and relevant actions in the
environment.

2.1 Representing Actions and Processes

The default mechanism for representing actions UT 2003™, which is representative
of large class of interactive 3D system, consists in directly associating physical events
to a set of possible consequences depending on the objects involved. For instance, the
impact of a fragile object on a hard surface will be associated with this object being
broken, through specific, ad hoc, scripting.
This description should be supported by an appropriate formalism for change-
inducing events, which should clearly identify actions and their consequences. The
second step consists in defining an ontology of such events, i.e. describing the most
important high-level events that can be recognised in the virtual environment.
We have termed these change-inducing events Context Events (CE) to reflect their
semantic nature. Typically, a CE is represented using an action formalism inspired
from those serving similar functions in planning and robotics, such as STRIPS [4] or
the operator representation in the SIPE system [5].

Figure 2. Context Events constitute high-level descriptions of actions in the
virtual environment. Here, a fragile object breaking on impact (instantiated to a
falling glass).

These representations originally describe operators responsible for transforming state
of affairs in the world. They tend to be organised around pre-conditions, i.e.
conditions that should be satisfied for them to take place and post-conditions, i.e.
those world changes induced by their application.
Our formalism for CE comprises three main fields, which are analogue to the SIPE
representation. The first field, called trigger, contains the basic event from which the
CE can be recognised and which prompts instantiation of the corresponding CE. The
condition field is a formula testing properties of the objects involved in such as CE.
The effect field corresponds to the consequence part of the CE and contains the effect
to be applied to the objects affected by the CE (Figure 2).

Another kind of action representation consists of discretised physical processes
such as those used by qualitative physics. These Qualitative Processes (QP)
encapsulate the expression of physical laws relevant to a given high-level process,
e.g. liquid flows, heat transfer, etc. An example qualitative process is shown on
Figure 1. It formalises several relevant aspects, from the conditions that trigger the
activation of a process to the formulas which determine the evolution of key variables
(influence equations). The set of formalised qualitative processes constitute an
ontology of physical transformations for a given virtual world.

2.2 Objects’ Representation

Objects descriptions vary greatly depending on the kind of processing which is
applied to them. Often, part-whole relationships and functional properties tend to
dominate symbolic object descriptions. In our specific context, the main role of object
descriptions is to determine the kind of actions and processes they can take part in, as
well as relating an object’s visual appearance to the transformations that can be
applied to it. In the first instance, we have organised these representations according
to several dimensions: i) the object’s mechanical properties (e.g. breakable,
movable, etc.), ii) its functional properties (e.g. object as container, fluid

source, support, etc.) and iii) its visual properties (includes the object’s
appearance, but also the visual translation of certain of its behaviours, for instance for
a glass to tilt, etc.). We have made a choice for the overall granularity of the
representation, where direct relations can map properties of a given field onto
another. This, in order to avoid the computational overhead of managing a complex
semantic network .
Another aspect of object representation consists in relating them with the kind of
qualitative processes they can take part in. The integration of Qualitative Physics in
the virtual environments’ basic mechanisms is achieved through the redefinition of a
special class of physical objects: qualitative process objects, or QP objects. This
follows traditional implementation techniques by which classes of objects are defined
depending on the computations they can trigger from the interactions they participate
in (i.e., in UT 2003, objects manipulated by the native physics engine, Karma™, are
defined as members of the class of “Karma™ objects”). The QP objects have several
properties: i) they are associated with an event interception mechanism that attaches
data-driven procedures for the recognition of the pre-conditions of QPs in which they
can take part, ii) their properties can be defined through qualitative variables, which
are the key variables defined within QP’s and are involved in qualitative
proportionalities and influence equations, iii) they are associated physical states that
have a visual translation, including in terms of transitions between states (e.g.
animations showing a recipient filling, a liquid evaporating, etc.). These states
correspond to landmark values for the qualitative variables.

3 Qualitative Physics in Virtual Environments

Of the various approaches that have been described in qualitative physics, we have
opted for Qualitative Process Theory (henceforth QPT) [6], essentially for its
representational properties. QPT descriptions are centred on physical processes (e.g.
liquid flows, heat transfer, etc.) whose states are described through the values of
qualitative variables. We have given a brief introduction to this formalism in previous
sections. In essence, relations between variables are described through influence
equations and qualitative proportionalities. The former correspond to the actual
dynamics of the process; for instance, that the amount of liquid in a recipient
increases with the inflow. The latter maintain “static” relationships between variables,
such as the fact that the mass of liquid in the container is proportional to its volume.
The QPT formalism is well adapted to its integration in virtual environments, for
several reasons: i) the explicit description of a QP’s pre-conditions supports the
definition of procedures activating the QP simulation from physical events involving
objects in the virtual world. This is the basic mechanism for integration of QP’s in the
interactive environment, ii) The kind of causality associated with QP descriptions
can be matched to user interventions, and iii) QPT has been successfully used to
define ontologies with a significant number of processes, representing a whole subset
of physical processes for a given world.

Figure 3. Several Qualitative Processes operating simultaneously can be
visualised in the virtual world.

In terms of their actual implementation, pre-conditions are encoded in specific
UnrealScript™ (the programming language of UT2003 serving as an API) procedures
associated to the virtual world objects’ in order to trigger the activation of relevant
QPs. In that sense, pre-conditions are not strictly speaking part of the actual QP
representation implemented.
However, all the other elements of the QP representations; qualitative variables,
qualitative proportionalities and influence equations are implemented within the QP
engine. Their actual use by the engine during simulations is discussed in the
following sections.
Figure 3 shows the behaviour of the system simulating the filling of a glass from a
running tap. When objects, which can behave as recipients, are aligned with a liquid
flow (here the beer tap), this, corresponding to the pre-condition of a filling process,
activates the corresponding liquid-flow QP on these objects. The process running in
the QP engine updates the value of the amount of water in the glass, through its
influence equations. In a similar fashion, qualitative proportionalities update the total
mass of the glass, as well as the height of liquid. These variables transform the state
of the filling glass in the virtual world by updating its physical properties (e.g.
weight) as well as its appearance. The overall dynamics is dictated by the QP
simulation process, the speed of the filling glass animation being an approximation of
these dynamics. The overall simulation remains interactive, and at any time, the user
can remove the glass from the running tap, which will interrupt the process while
retaining the physical properties of the glass (amount of water/beer filled into the
glass).

Figure 4. The Causal Engine can dynamically generate new consequences for
events taking place in the virtual world by inhibiting the default outcome and
substituting it with alternative effects. It relies on semantic descriptions of the
actions and objects involved.

A typical description of world behaviour contains many QP that can interact
dynamically, so as to reflect the behaviour of complex systems or devices that would
be difficult to model in an integrated fashion through numerical simulation.

4 Redefining the Laws of Causality

Causal Simulation normally relates one event occurring in the virtual world to its
logical consequences. Causal simulation is a technique for generating behaviours
using symbolic descriptions of causal chains relating physical events.
In that sense, qualitative physics, as introduced above, incorporates causality within
the symbolic description of physical processes and the physical laws governing them.

However, if we consider the behaviour of a virtual world as the one perceived by
human users rather than an absolute one, it should be characterised by the causal links
attributed by the user to sequences of events. Hence, a mechanism that can generate
event co-occurrences on a principled basis will elicit the perception of causal

relations between these events. In return, the modification of causal laws will
determine original virtual world behaviours.

This mechanism is implemented into a “causal engine”, a system intercepting
events in the virtual world and re-arranging their occurrence using specific
knowledge about the desired behaviour of the virtual world [7]. The causal engine
operates continuously through sampling cycles that are initiated by the occurrence of
actions in the virtual world. Basically, the occurrence of events affecting world
objects initiates a sampling cycle, during which the system recognises potential
events and stores them while inhibiting their effects (it could be said that it “freezes”
them). The causal engine then transforms these “frozen” events, by altering their
effects, before re-activating them. This re-activation then initiates a new sampling
cycle. The causal engine operates by recognising high-level events (introduced above
as Context Events, or CE), whose semantic properties are used to generate new causal
associations. These high-level events (such as breaking, filling, launching, etc.) are
recognised from primitive events obtained from the graphics engine. For instance, the
candidate CE for the glass breaking, is triggered by the glass hitting the table surface.
This means that during a sampling cycle, a break(?glass) CE will be instantiated
upon recognition of the hit(?table, ?glass) basic event, as the CE’s conditions
are satisfied. This CE will be the target for effects’ modifications in the causal engine.

These modifications of CE’s are carried out though the applications of specific
knowledge structures, called Macro-Operators (Henceforth MOp). MOp use world
knowledge (for instance on physical properties of objects) to modify appropriate
CE’s parameters. For instance, objects which should break up as an effect of the CE
could be replaced by similar, “breakable”, objects. We can illustrate the behaviour of
the Causal Engine on a simple example. The test case we will consider is that of a
glass being grasped, then dropped by the user for a certain height onto the surface of
a table, which can also hold other objects, such as similar glasses. The default
physical behaviour would consist for the glass to break on impact (Figure 4, top line),
as would be directly encoded as an object behaviour in a Physics engine. Figure 4
represents several alternative behaviours. The default object of the break CE, i.e. the
falling glass is substituted with the other glass standing on the table. The basis for this
substitution being that the two objects are similar (actually identical), and in close
spatial relation. The resulting impression is depicted on Figure 4 (bottom line, left):
the glass falls on the table and upon impact on the table, it is the adjacent glass which
breaks up.

From the user’s perspective, the normal cause-effect sequence is disrupted: the
triggering event of a given CE, in this case the glass falling on a table, will be
followed, not by its default consequence (e.g. the falling glass breaking), but by an
alternative effect (e.g. a nearby glass breaking without being directly hit). The causal
engine can generate multiple alternative behaviours for a given CE: in this example,
the table can break rather than the falling glass (Figure 4, bottom line, centre), or the
adjacent glass on the table could tilt, spilling its contents (Figure 4, bottom line,
right). The causal engine can generate alternative cause-effects relationships for the
complete set of events occurring in a virtual world, so as to redefine the overall
physical behaviour experienced by the user.

5 Conclusion and Perspectives

We have presented a new approach to the implementation of virtual world’s physical
behaviour. This approach is based on the simulation of physical phenomena using
symbolic computation rather than numerical integration. It uses established AI
techniques, such as qualitative simulation as well as a novel approaches to explicit
definition of laws of causality. This approach enables the description of the overall
“laws of Physics” of a given world, supporting in particular the description of
alternative laws of Physics. This simulation method is compatible with the operation
of native Physics engines, which can still take charge on the non-discretised aspects
of the simulation (e.g. object kinematics): in that sense, even as symbolic methods,
they do not compromise the response time of the overall system.

Acknowledgements

This work has been supported in part by the European Commission through the
ALTERNE project, IST-38575.

References

1. Lewis, M and Jacobson, Games Engines in Scientific Research. Communications of ACM,
Vol. 45, No. I, pp. 27-31, 2002.

2. Jiang, H., Kessler, G.D and Nonnemaker, J. (2002). DEMIS: a Dynamic Event Model for
Interactive Systems. ACM Virtual Reality Software Technology 2002, Hong Kong

3. Cavazza, M., Hartley, S., Lugrin J.-L. and Le Bras, M., Qualitative Physics in Virtual
Environments, ACM Intelligent User Interfaces, pp. 54-61, 2004.

4. Fikes, R. E. and Nilsson, N. J., STRIPS: a new approach to the, application of theorem
proving to problem solving. Artificial Intelligence, 2 (3-4), pp. 189-208, 1971.

5. Wilkins, D. E. (1988). Causal reasoning in planning. Computational Intelligence, vol. 4, no.
4, pp. 373-380.

6. Forbus, K.D., Qualitative Process Theory, Artificial Intelligence, 24, 1-3, pp. 85-168, 1984.
7. Cavazza, M., Lugrin, J.-L., Hartley, S., Libardi, P., Barnes, M.J. and Le Bras, M., 2004.

ALTERNE: Intelligent Virtual Environments for Virtual Reality Arts. Smart Graphics 2004
Symposium, Banff, Canada, Lecture Notes in Computer Science vol. 3031, Springer Verlag.

	System Architecture

