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Abstract 
In this paper, we explore a new paradigm for  natural 
language communication with autonomous agents. While 
the dominant paradigm is to use natural language 
instructions fiom which the agent behaviour is generated, 
we investigate how natural language input can influence a 
pre-existing plan-based behaviour, by interfering with the 
various types of sub-goals in such a plan. Using as a test- 
bed a fully implemented interactive storytelling 
application based on virtual actors, we identlfjl various 
forms of communicative actions and how these can 
influence actors’ behaviours. We report early results f iom 
the use of a speech processing system, used within the 
stolytelling application to influence the behaviour of the 
artificial actors. 

Keywords: Natural language interfaces, Speech 
Understanding, Virtual Actors, Interactive Virtual 
Environments, Artificial Emotions, Entertainment robots. 

1 INTRODUCTION 
Natural Language (NL) communication with robots 

(both “real” and “virtual” robots, i.e. those evolving in 
virtual environments) is a traditional endeavour of human- 
robot interaction. Natural language is the most appropriate 
way to exchange information at a high level of abstraction 
required to communicate with autonomous agents 
generating their own plan-based behaviour. Traditionally, 
human-robot communication has followed an instructional 
model, where the robot would carry actions fiom user 
instructions. This will range fiom executing simple 
instructions [8], [ 121 to generating complex plans for 
action in response to a high-level instruction [14]. 

We want to investigate novel forms of linguistic 
communication with virtual robots. Namely, how 
autonomous agents in virtual world, which have their own 
behaviour, can see their behaviour influenced, rather than 
instructed, by natural language input from a user. 

The kind of agents we are discussing here are 
autonomous actors in virtual worlds. They share most of 
the characteristics of autonomous robots in terms of 
intelligent behaviour and interaction with their 

environment. One essential difference lies in their sensing 
of their environment, for in virtual worlds it is possible to 
grant the agent direct access to the virtual environment 
graphic database (though some authors have advocated the 
use of synthetic vision). 

In the next section, afier presenting the context for our 
experiments and our plan-based implementation of agents’ 
behaviour, we describe how NL input can influence these 
behaviours at various stages of the planning process. 

2 Plan-based Agent Behaviour 
The context of our experiments is an interactive 

storytelling system, in which virtual actors generate 
variations from a global storyline by interacting with each 
other [ 5 ] .  Following previous research in interactive 
storytelling, our system is essentially character-based [ 151. 
Each character’s role in the story is represented by a plan, 
though the plan accounts for many variations in the agent 
behaviour, hence in the plot. For instance, in a simple 
sitcom-like scenario, which serves as a test bed for our 
experiments, the main character, Ross, wants to invite 
Rachel out for dinner. His plan comprises various sub- 
goals, such as acquiring information about Rachel, finding 
a way to talk to her in private, etc. The plan is represented 
as a hierarchical task network (Figure I), whose bottom 
nodes correspond to “terminal actions”, i.e. physical 
actions taking place in the virtual environment. The 
graphic environment is entirely developed using the 
Unreal TournamentTM engine. 

We use search-based planning to compute agents’ 
behaviour [Z] [ll].  As a consequence of plan 
decomposability, the task network for an agent (Figure 1) 
can be directly searched with a graph-search algorithm 
such as AO* to produce a solution plan [13]. We have 
implemented a real-time variant of AO* [9] [lo] that 
interleaves planning and execution, enabling the agent to 
re-plan new solutions as the situation is altered (e.g. due to 
other agents’ or user interaction) [6 ] .  As AO* is a heuristic 
search algorithm, the heuristic function actually selects 
which sub-goals to solve first or which actions to 
undertake. In this case, heuristics do not represent solution 
optimality, as alternative actions just correspond to 
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Figure 1 : Plan-based Representation of Agent Behaviour 

different instances of the storyline. What determines the 
choice of an action is more the “style” of an agent, i.e. a 
“shy” agent will not interrupt other agents’ activities (e.g., 
reading, conversation). These heuristics can thus represent 
“personality profiles” for the agent, and dynamic changes 
in personality profile or “mood” can be reflected by 
dynamic updating of the heuristic values. The set of 
heuristic values (these are static, as the task networks are 
explicit graphs) can be subsumed by an “emotional status” 
for the agent. 

In addition to these plan-based behaviours, there exist 
scripted reactive behaviours, which detect certain 
situations and alter the emotional states of the agents, 
hence their further behaviour. For instance, Rachel can 
become jealous if she sees Ross talking to Phoebe, hence 
changing her emotional status. 

Further, the real-time plans governing character 
behaviours are also enhanced with situated reasoning 
capabilities, for instance for the treatment of exceptional 
circumstances that might arise dynamically from the 
interaction of various actors. One such example is that 
Ross may bump into Rachel before he has carried out the 
first part of his plan, which consists in getting information 
on her. In this case, his plan should be interrupted and he 
must either interact with Rachel or avoid her, but he 
cannot simply ignore her and keep walking. Situated 
reasoning is implemented through a library of scripted 
actions. 

The user can interfere with the agents’ plans, hence 
altering the storyline. Two modes of user intervention are 
physical intervention and linguistic intervention, which is 
the main focus of this paper [7]. In the former, the user 
would for instance steal the diary that Ross was about to 
read, forcing him to devise a new plan to get information 
about Rachel. While physical intervention can only 
interfere with resources for action at the level of terminal 
actions, linguistic intervention can interfere with an agent 
plans at various levels: sub-plan selection, sub-goal 
resolution, choice of terminal actions and changes to 
“emotional states”. The various targets for intervention 
correspond to different parts of the task network, which by 
nature comprises both sub-goals and actions. We shall 
illustrate the various modes of intervention in the next 
sections, after introducing the NLP techniques required to 
process the NL input. 

The paradigm we want to explore is that of a user 
influencing, rather than instructing, an agent. Executing 
simple commands does not involve much intelligence on 
the agent side, though, on the other hand, motion 
parameterisation to fit the instructions can be a challenging 
task [ 11. Executing complex instructions involves devising 
a plan out of an utterance or a sequence of instructions, 
which requires sophisticated planning abilities [ 141. A 
major difference between NL instructions and the 
approach presented here is that in the case of instructions, 
agent plans are generated as the semantics of the NL 
instructions. In our current approach, the NL input is 
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influencing the behaviour of a pre-existing actor’s plan, 
through the various mechanisms that contribute to 
generating a solution plan, i.e. sub-goal selection, sub-goal 
satisfaction. 

3 Linguistic Processing 
The user can communicate information to the artificial 

actors in the form of natural language statements. These 
can be input as textual entries or through a speech 
recognition system (we are using the EAR SDK from 
Babel TechnologiesTM, Figures 2-3). In previous work [3], 
we have described parsing techniques and the 
interpretation of language instructions in terms of 
animation primitives. The system was essentially 
generating scripted actions, from which the agent 
behaviour was determined. However, we have re-used the 
same mechanisms for the early processing steps of the 
current system, i.e. syntactic and semantic parsing. 

The final goal of parsing is always to produce a 
semantic representation for the sentence, syntax being 
used to aggregate semantic content [3]. The requirements 
on parsing depend on the need to establish functional 
relations. For instance, we have shown in previous work 
that the proper processing of spatial expressions required 
syntactic capabilities such as the disambiguation of 
prepositional phrases attachments (e.g. “Rachel’s diary is 
on the table in the living room”). Other NL utterances 
require parsing for different reasons: one such example is 
“don’t let Rachel see you with Phoebe”, whose precise 
meaning depends on the correct allocation of functional 
roles. 

The first step consists in parsing the input sentence to 
produce a representation from which the user’s speech act 
can be identified by the system. This Natural Language 
Processing (NLP) step is faced with a number of 
difficulties, which arise from the conjunction of two 
factors. The first one is the need for a correct attribution of 
functional roles when processing advice statements such 
as “don’t let Rachel see you with Phoebe”. The second one 
is the inevitable occurrence of speech recognition errors 
that make traditional parsing problematic. In previous 
work, we have developed language-enabled characters that 
had to face only one of the above problems at a time [3]. 
In one of these systems, using natural language to control 
artificial characters in traditional computer games, reliable 
speech recognition or keyboard input made possible to use 
traditional parsing techniques. In the present setting, 
because the speech recognition system used is based on 
the definition of input templates, it is possible to use 
similar templates for the analysis of user utterances. This 
is equivalent to the use of a simple finite-state machine to 
parse the recognised input. The other important aspect is 
that the basic tokens can be integrated expressions rather 
than just isolated words. Each token can be associated a 
small set of semantic features (e.g. :advice-for-action, 
:character-information, :narrative-object), which in turn 
are assembled during the parsing process. As we shall see, 
these features are mainly used to identify the speech act by 
matching it to compatible sub-goals in an agent’s plans. 
The identification of roles is part of the template-filling 

process but is also supported by some of the semantic 
features attached to words and expressions. 

We have seen that the target for NL input can 
correspond to various stages of the planning process or the 
associated representations. It is thus necessary to identify 
the communicative nature of the linguistic input, i.e. 
whether it constitutes information, advice or direct 
instruction. One such possibility is to use speech acts. 
Speech acts are traditionally used for human-computer 
dialogue, but formalisms derived from speech acts are also 
employed to formalise agent-agent communication. They 
categorise the communicative action in terms of 
communication primitives that can be tailored to the 
application. In this way, they can be used to distinguish 
between information provision, requests, advice, etc. In 
this context, speech acts would provide a uniform 
treatment of the nature of NL input and the target 
representation in the task network. 

It can be difficult in the general instance to identify 
speech acts on the sole basis of their surface form. In the 
case of human-agent dialogue, we have proposed a 
content-based approach to speech act identification, by 
monitoring the updating of semantic representations [4]. 
In the present application, we suggest to identify the 
speech act by comparing the semantic structure of the 
utterance to the structure of sub-goal nodes in the agent’s 
plan. Semantic compatibility between the content of the 
utterance and the nodes in the task network will not only 
determine the target but also the kind of communicative 
action, as this is related to the node targeted. This will be 
illustrated by some examples in the next section. 

4 Results 
From the description of the plan-based behaviour for 

virtual agents, we have seen that there are many targets for 
linguistic intervention. The actual influence of the 
linguistic input on the agent behaviour is a combination of 
i) the nature of linguistic input as described above and ii) 
its target representation in the agent’s plan, sees as a 
resource for the agent behaviour. We now describe some 
of the possible interventions that can affect agents’ 
behaviour. In each case, we identify the relevant NLP 
problems and the identification of the corresponding 
speech act on the basis of semantic matching between the 
NL utterance and the task network’s nodes. 

Firstly, while the agent’s behaviour derives from it 
solving the various sub-goals of its task network, it is 
possible for the user to provide it with a solution to a sub- 
goal using NL input. For instance, one of the sub-goals of 
Ross is to acquire information about Rachel. In order to do 
so, he can for instance read Rachel’s diary or ask her 
friend Phoebe. But the information Ross is looking for can 
be directly provided by the user (e.g. though an input such 
as “Rachel is free on Wednesday night”). This can be 
recognised by matching the semantic structure of the 
utterance to the currently unsolved nodes in the task 
network. The node corresponding to the “find information 
about Rachel” sub-goal is tagged with semantic categories 
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such as (:status (:object :Rachel))’, which can be easily 
unified with the semantic structure of the above utterance. 
As a result of this unification, the sub-goal node is labelled 
“solved” and this is propagated by the AO* algorithm. It 
should be noted that NL intervention is in this case only 
made possible by the interleaving of planing and execution 
in our real-time variant of AO*. In order to solve that sub- 
goal (“get Information about Rachel”) the agent would 
normally carry out an action its environment, such as 
walking to Rachel’s diary. This action (or, for that matter, 
alternative ones) takes a significant amount of time to be 
completed, during which the user can provide NL input. 
Once the node has been marked as solved by the agent it 
cannot be influenced any longer by NL input, unless that 
input can also affect future, not yet solved, nodes. 

Sometimes an agent goal can be solved through 
interaction with other agents. For instance, if Ross’ sub- 
goal is to isolate Rachel from the rest of the group, this 
can be achieved by asking others to leave (something a 
“shy” Ross might be unable to do). if the user asks e.g. 
Phoebe to leave, Ross’ sub-goal will be satisfied. In this 
case there is no requirement to identify the speech act at 
plan level, as it is not directed towards Ross’ plan. 

Apart from the above example, it is still possible for 
the user to directly instruct an agent to carry out a 
particular action. For instance, by instructing Ross to move 
to a certain location (e.g. living room), the user will make 
him meet Phoebe, which could create a comic quiproquo 
situation if he is spotted by Rachel. The standard 
mechanisms for carrying out direct action do not differ 
from those described in [3]. 

Another form of influence consists in providing 
information that might influence the choice of the next 
action. For instance, to satisfy the goal of “acquiring 
information about Rachel”, one of Ross’ options is to go 
and read her diary (Figure 1). It can be specifically 
instructed to do so (which might override its standard 
personality profile) if the user mentions the diary. 

NL input can also be used to alter the emotional status 
of one of the actors. This is implemented by changing the 
personality profile, i.e. by updating the heuristic values 
associated with the task network. The semantics of some 
NL input can be associated emotional connotations that 
can directly trigger changes in emotionallpersonality 
profile. This is implemented straightforwardly by 
associating updating procedures to emotional semantic 
features. A more complex case however consists in 
encouraging (resp. discouraging) statements that require 
some inference to gain an emotional interpretation, such as 
“Rachel does not seem to be available”, etc. Such kind of 
NL interpretation should be related to the agent’s goals or 
some form of intentional model (though our plan-based 
formalism is not based on intentions). 

Certainly the most challenging, but interesting, use of 
NL input is to provide high-level advice that can guide the 
agent action throughout its evolution in the virtual 
environment. This form of generic policy statements has 
been termed doctrine statements by Webber et al. [14]. 
One such example would be %y to be nice to Phoebe this 
time” or “don’t let Rachel see you with Phoebe”. Clearly, 
this corresponds to rules that would have to be matched 
against the situation at every possible decision-taking 
point in the computation of an agent’s behaviour. For 

Figure 2a: NL advice “try to be nice to Phoebe” instance, when addressing the “talk-to Rachel in private” 

Figure 2b: Corresponding situation to 2a 

sub-goal, if Rachel is talking to Phoebe (Figure 2a and 2b), 
Ross can choose to interrupt their conversation and ask 
Phoebe to leave. This might backfire by changing Rachel’s 
emotional state as well. The various possible actions in 
Ross plans are categorised as “friendly” or “rude”, and 
these categories can be target for NL advice. However, 
strict compliance with the rule assumes that the agent also 
identifies the other parties, in that case Phoebe. This might 
lead to significant difficulties at every step of processing, 
and we have not found a generic solution to this problem. 
The processing of doctrine statements is quite difficult in 
the general case, as it sometimes involves generating 
persistent behaviour that matches dynamic situations. 
However, there are several empirical mechanisms that can 
simplify their interpretation. In other cases, doctrine 
statements can have procedural interpretations. The advice 
“stay out of reach of Monica” can be successfully 
implemented by activating a pre-defined behaviour that 
avoids Monica. This is simplified by the fact that 
avoidance behaviours can be part of the set of standards 

I Not for the purpose ofcomputing a solution plan, but strictly in order to determine the 

target of NL input. 
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behaviours that are just parameterised with the character to 
avoid. In other words, the procedural semantics of doctrine 
statements takes advantage of the limited set of pre- 
defined complex actions (such as avoiding or hiding from 
another character) introduced by the use of situated 
reasoning. Another possible solution is to under-specify 
the requirements, such as making Ross to act nicely with 
everyone by changing its personality profile, so that its 
plan will select the actions tagged as “friendly”. This is a 
form of under-specification of the meaning of the NL 
advice that can provide a computationally economic 
solution, though not a fully satisfactory one. 

The rationale for under-specification also lies in the 
limited rationality of the agent: it might not have enough 
reasoning capabilities to analyse every situation at the 
proper level of granularity. For instance, the advice 
“don’t let Rachel see you talking to Phoebe” can be 
enforced by either meeting Phoebe hidden from Rachel, 
or simply staying away fiom Phoebe to avoid potential 
trouble. Hiding assumes that the agent determine in real- 
time whether Rachel can see him, etc. On the other hand, 
staying away from Phoebe restricts the agent further 
solutions, but avoids the main problems the advice was 
targeted to, which is to prevent Rachel from becoming 
jealous (Figure 3a and 3b). 

Figure 3a. NL Advice “Do not let Rachel see you 
talking to Phoebe” 

Figure 3b. Corresponding situation to 3a 

5 Conclusions 
We have introduced a new form of NL communication 
with autonomous virtual agents, based on influencing 
plan-based behaviours at various sages of the planning 
process. We have chosen to experiment fi-om a fully 
implemented interactive storytelling system in order to 
better study the NL requirements. The NL components are 
still under development, though we have obtained early 
results for some of the examples presented here. More 
challenging is the generic processing of doctrine 
statements, for which we have not devised a generic 
approach at this stage, under-specification having been 
used as an early solution. There are two kinds of 
limitations for the system we have described here. One is 
naturally the overall processing performance, which is 
strongly influenced by the accuracy of speech recognition. 
The other one is more fundamental: character behaviour 
can only be influenced by generic advice and it is not 
possible to refer to potential situations or to a specific 
course of action when formulating recommendations, 
Implementing this feature might even require extensive 
modifications to the planning system itself, providing a 
level of meta-knowledge representing the actual 
progression of the plan, which is more of a long-term 
perspective. It might be the case that in the absence of 
common sense reasoning abilities on the agent side, future 
solutions will comprise a set of diverse approaches to the 
processing of NL information. 
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