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Time-course changes associated with PA Lumbar Mobilizations on Lumbar 

and Hamstring Range of Motion: A Randomized Controlled Crossover Trial 

Abstract  

Objective:  To compare the post-intervention time-course changes in Active Knee 

Extension (AKE) and Active Lumbar Flexion (ALF) range of motion in response to 

unilateral posterior–anterior (UPA) mobilizations of the lumbar spine (L4/5 

zygapophyseal).  

Methods: Twenty-four asymptomatic participants (maleness: 0.58, age [mean ± standard 

deviation]: 32 ± 8 y, body mass index 25.9 ± 2.6 kg.m2), were recruited to a fully 

controlled crossover trial. Following either the intervention (L4/5 zygapophyseal 

mobilizations) or control, participants immediately performed the AKE and ALF tests, 

which were also performed at baseline. Subsequent tests were made at intervals of 5, 10, 

15, 20, 25, 30, 45 and 60 minutes.   

Results: After adjustment for baseline (mean AKE: 37.2° from full extension, mean ALF: 

14.37 cm), sex and age, UPA lumbar mobilizations had a most likely moderate effect on 

AKE (9.8° closer to full extension; ±1.9) and a likely moderate effect on ALF (1.34 cm; 

±90% confidence limits 0.43). The magnitude of the AKE effect became most likely 

small 20-minutes post-treatment (5.3; ±1.7) and possibly small/ possibly trivial 60-

minutes post-treatment (2.1; ±1.4). For ALF, the magnitude of the effect became most 

likely small 15-minutes post-treatment (0.76; ±0.25), possibly small/ possibly trivial 25-

minutes post-treatment (0.38; ±0.18), and likely trivial 60-minutes post-treatment (0.26; 

±1.8). 

Discussion: UPA lumbar mobilizations increased lumbar ROM and hamstring 

extensibility by a moderate magnitude, with the effect reducing after 10–20-minutes post-

treatment. Clinicians should consider these time-course changes when applying UPA 

lumbar mobilizations. 
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Introduction 

Hamstring strains continue to be one of the most common musculoskeletal injuries in 

athletes and patients of all age ranges, genders, sports, and levels of competition [1,2]. 

Hamstring muscle strain injuries are common in multidirectional sports, such as 

American football, Australian football, cricket and English rugby union [3]. Hamstring 

injuries also continue to be the most prevalent musculoskeletal diagnosis in soccer, with 

no decrease in incidence during the last 30 years [3,4]. The impact of such an injury is 

substantial resulting in lost playing time and monetary loss to both players and teams in 

professional sport. An average injury rate of 1.20 hamstring injuries per 1000 hours of 

play was recorded over a thirteen-year period, with 40% of all soccer muscle injuries 

occurring in the region [5,6]. As such, researchers and clinicians continue to seek the 

optimal hamstring rehabilitation program to minimise the impact of hamstring pathology. 

 

Hamstring rehabilitation requires a multifactorial and potential individualized approach. 

Nevertheless, the lumbar spine has a direct anatomical and functional relationship with 

the hamstring complex and is therefore considered a fundamental element of clinical 

hamstring management [7,8,9,10]. Specifically, spinal joint mobility facilitates 

lumbopelvic control and is considered an important part of hamstring rehabilitation and 

prevention [11,12,13]. Therefore, the use of lumbar zygoapophyseal joint (z-joint) 

mobilizations has been advocated in both the regeneration and functional phase of the 

acute hamstring injury return- to- sport algorithm [8]. How the hamstring extends in 

relation to the lumbar region is reported as an important modifiable risk factor for injury 

[14]. Decreased passive stiffness of the hamstring, defined as the ability of the tissue to 

allow elongation, is associated with increased risk of injury [15,16,17]. The ability of the 

hamstring muscle to extend allows it to absorb greater applied forces. This is of further 



importance in sports requiring the optimal use of the stretch-shortening cycles generally 

found in multi-directional sports including soccer [14]. As reduced hamstring 

extensibility is a feature following hamstring injury, treatment modalities that offer 

evidence-based solutions to this issue will be welcomed by the clinician. 

 

Spinal mobilizations have been shown to increase hamstring extensibility, the ability of 

the muscle tissue to lengthen or stretch beyond resting length, in both a general [18, 

19,20,21] and elite soccer population [22]. The acute increase in hamstring extensibility, 

gained from lumbar mobilizations, together with reduced surface muscle 

electromyographic activity of the bicep femoris muscle [20] may offer a brief time-period 

to provide therapy to attenuate progression through rehabilitation. Unilateral Posterior 

Anterior (UPA) mobilizations have been found to provide superior increases in 

extensibility of the hamstring compared to centrally applied mobilizations [21]. However, 

the duration of this timeframe has not been adequately investigated. The duration of any 

effect from spinal mobilizations will provide the clinician with a wider appreciation of 

the effects this treatment modality may offer within an evidenced informed clinical 

reasoning framework. If clinicians are to utilize lumbar mobilizations within a 

multifactorial approach to hamstring management, knowledge of the intervention’s 

duration, initially in a healthy control population is required to provide data for evaluation 

of its value.  

 

Whilst there is evidence to suggest that neurophysiological effects following spinal 

mobilization subside after ~ 5 min [23], there is a paucity of evidence assessing time 

course changes in hamstring extensibility following lumbar mobilizations. Previous 

authors [24] have demonstrated a prolonged elevation in hamstring extensibility 



immediately, and 24 h post mobilization. It is not clear how the authors controlled for 

confounding variables within this timeframe, or the rationale for choosing this timeframe.  

 

Whilst the mechanisms of action are different, static stretching of the hamstring has been 

shown to result in prolonged increases in extensibility up to 30 min post intervention [25]. 

Therefore, a similar timeframe for elevated extensibility following UPA may also exist. 

Moreover, multiple time points should be measured to increase sampling frequency of 

data points to determine where the effects of the intervention may begin to subside, 

allowing greater accuracy for clinician decision making.  

 

The duration of improved hamstring extensibility in the hours ensuing spinal 

mobilizations has yet to be fully elucidated. If those immediate improvements are 

indeed found to be transient, then the clinician may wish to consider the value of 

following such return to play treatment guidelines which incorporate lumbar manual 

therapy. Therefore, the primary aim of our investigation was to investigate the effect of 

UPA lumbar z-joint mobilizations on the time-course changes in lumbar ROM and 

hamstring extensibility. 

Methodology 

Study Design  

A fully controlled randomized crossover design was used to investigate the time-course 

changes in Active Knee Extension (AKE) and Active Lumbar Flexion (ALF) following 

UPA lumbar mobilizations [26]. This design was chosen to suit both the research question 

and constraints [26]: because our aim was to compare changes in AKE and ALF between 

treatment and control conditions; and the acute effects of the treatment are likely to 

washout in an acceptable time also the outcome measures are reliable over the washout 



period (see subsequent sections), and; subjects and resources are not limited a fully 

controlled crossover was selected. The report of this trial is conducted within the 

recommendations of CONSORT for publishing non-pharmacologic intervention studies 

[27].    

Participants 

A priori estimation of sample size for magnitude-based inference in a pre–post crossover 

design using AKE and ALF as outcome measures yielded a minimum requirement of 24 

participants (see Statistical Analysis for details). Participants were recruited, via means 

of a study flyer, from a population of students and staff at *** University, United 

Kingdom, between September and December 2017. Inclusion criteria included adults 

over eighteen without current spinal or lower limb pathology. Participants with current 

symptomatic low back or hamstring pain, neurological symptoms, history of spinal 

surgery or any contraindication to spinal mobilization were excluded [28]. All 

participants were considered moderately active; defined as performing moderate intensity 

(3-6 metabolic equivalents; METs) leisure time, and sporting (recreational) activities 

[29]. Given the frequency and intensity our participants engaged with per week, no 

participant performed an exercise intensity likely to induce delayed onset muscle soreness 

(DOMS) that might confound the main outcome variables.  From those participants who 

volunteered to take part only one was excluded based on current lumbar pain. No changes 

were made to the methods after trial commencement. All participants provided written 

informed consent. Ethical approval was received from *** University’s ethics committee 

(Ethics Number: SSSBLREC061), in accordance with the Declaration of Helsinki. The 

trial was registered with clinicaltrials.gov (NCT03273400).  

 

Outcome Measures 



Two main outcome measures were assessed pre- and post-intervention and control. These 

measurements were taken by a qualified physiotherapist, with 22 years post graduate 

experience, who was blinded to the participant’s condition. Active hamstring extensibility 

was measured by the AKE test (Figure 1). Our pilot test-retest analysis indicated excellent 

reliability of AKE and ALF ROM (see Statistical Analysis for details), which is in 

agreement with previous research [30,31]. The test has also been suggested to be the gold 

standard for hamstring muscle length, displaying good intra-rater reliability (0.87-0.94) 

[32]. Participant’s laid supine, with one mobilization belt across the anterior superior iliac 

spine preventing pelvic and lumbar movement and another placed 20 cm above the tibial 

tuberosity of the non-dominant/non-testing leg preventing potential movement [33]. Belt 

positions were marked for re-measurement purposes. The hip of the dominant/testing leg 

was held at a 90° flexed angle by a purpose made wooden wedge. During testing the knee 

was extended until maximal range was achieved as determined by the participant [30].  

An inclinometer (Dr Rippstein, Zurich, Switzerland), measured the degrees from full 

extension positioned on the anterior tibial border halfway between the inferior pole of the 

patella and the line between the malleoli [34]. Ankle plantar grade was maintained by a 

medical brace. Test performance (range of motion change from pre to post-test) was 

measured as the degrees (°) from full active knee extension, where full active knee 

extension would equal 0°.  

 

Figure 1 – Testing position of the Active Knee Extension Test 

***Insert Figure 1 about here*** 

 

The modified Schober test (mSchober) was used to measure ALF range [35,36]. This test 

has been demonstrated to have excellent reliability in both symptomatic and 



asymptomatic populations [36, 37] and recommended for use in clinical trials [39]. Each 

participant was stood on a 60 cm wooden box, feet positioned 8 cm apart, indicated by 

tape. A skin marker was placed 5 cm below and 10 cm above the lumbosacral junction, 

determined by a passive physiological intervertebral movement and lumbar palpation 

[28,36]. Verbal instructions informed all participants to actively flex forward whilst 

maintaining knee extension (Figure 2). Lumbar range was recorded as the change in 

distance (cm) between the two skin markers measured by a tape measure (seca Germany).  

 

Figure 2 – Testing position of Active Lumbar Flexion 

***Insert Figure 2 about here*** 

 

Intervention  

The lumbar UPA mobilizations were applied by a physiotherapist with twelve years 

clinical experience and postgraduate qualifications in spinal mobilization. Throughout the 

application participant’s laid prone on a plinth. Grade 3 UPA lumbar mobilizations, 

defined as large amplitude oscillations into resistance, were applied to the L4/5 unilateral 

z-joint for two minutes, three times [28]. Mobilizations were applied to the same side of 

the dominant limb identified by kicking preference. Spinal level was determined by 

passive physiological intervertebral movement and spinal palpation by the same 

physiotherapist. Mobilizations were applied at a frequency of 2 Hz maintained by a 

metronome, as previously evidenced to provide sympathetic nervous system excitability 

[39]. 

 

Procedure 



Participants visited a biomedical sciences laboratory on two separate occasions and 

received either UPA mobilizations or no mobilization (CON). The order of treatment 

(UPA or CON) was counterbalanced to mitigate potential order effects, conducted via 

electronic software (Microsoft Excel©), by an individual independent and therefore 

blinded to the study. Each participant attended on the same day at the same time, one 

week apart. Following either UPA or CON, participants immediately performed a test of 

AKE and ALF. During the CON arm of the trial participant’s lye prone on a plinth for a 

ten-minute period, the time it took for the clinician to explain, identity and perform the 

lumbar mobilizations. To mitigate the effect of repeated assessment causing natural 

variations in tissue extensibility five AKE and four ALF were conducted prior to the 

initial recorded assessment [20,21,22]. At repeated re-measurements the AKE and ALF 

were tested only once so not to influence tissue extensibility and measurement outcome. 

Subsequent tests were made at intervals of 5, 10, 15, 20, 25, 30, 45 and 60 minutes. The 

5 min intervals were chosen to coincide with the diminishing returns reported from 

neurophysiological responses [24], to provide an adequate sampling frequency for 

investigating time-course changes (i.e. identify any substantial change with an accuracy 

of 5 minutes), and to avoid any confounding effects from subsequent intervals. AKE and 

ALF assessments were performed in a counterbalanced order both within- and between-

participants at each time point. 

 

Statistical Analysis  

Prior to the main experimental trials, we performed a pilot study in which participants (n 

= 15) visited the laboratory on two occasions, separated by one week, and performed 

assessments of AKE and ALF. A pairwise analysis of consecutive trials was then 

performed, using a custom-made spreadsheet [40], to assess the reliability of AKE and 



ALF. Typical error, the pure between-participant standard deviation (SD), and the 

intraclass correlation coefficient was 3.3° from full extension (90% confidence limits 

[CL] 2.7 to 4.4° from full extension),10.4° from full extension (7.1 to 12.8° from full 

extension), and 0.92 (0.84 to 0.96) for AKE, and 0.72 cm (0.58 to 0.96 cm), 1.70 cm (1.37 

to 2.25 cm), and 0.83 (0.68 to 0.91) for ALF. Subsequently, we estimated the minimum 

sample size required to produce acceptable error rates and adequate precision, defined by 

90% confidence interval, for a difference in changes in means in a pre–post crossover 

trial evaluated with non-clinical magnitude-based inference [41]. Using the 

aforementioned statistics and with a smallest important standardized difference of 0.20 

multiplied by the between-participant SD [41], sample sizes of at least 15 and 24 

participants were deemed appropriate for AKE and ALF, respectively. 

 

Prior to analysis, assumptions of normality were checked using visual inspection of the 

raw data via histograms and Q-Q plots. Raw data was seen to follow a normal distribution 

and is presented as the mean ± SD. We used linear mixed models (SPSS V23, Armonk, 

NY: IBM Corp.) with fixed (condition [UPA or CON]; with intercept) and random effects 

(participant; without intercept) to examine the pre–post, treatment–control differences in 

AKE and ALF. The analysis of covariance approach was adopted whereby change scores 

were treated as the dependent variable and the bassline (i.e. ‘pre’) value was specified as 

a covariate [42]. Effects were also adjusted for sex and age. Uncertainty in the estimates 

was expressed as 90% CL. Standard deviations for individual differences in response to 

the UPA treatment (vs control) were estimated via the model’s random effects (variance 

components). Negative SDs (i.e. more variation in response to CON) were manually 

calculated using standard errors of the change score estimated marginal means [42]. This 

novel method identifies responders by accounting for variability in the change scores in 



the control group rather than inappropriately using the change scores from the treatment 

group alone [43]. 

 

Evaluation of the size and uncertainty of the pre–post, treatment–control differences in 

AKE and ALF made using the magnitude-based inferences [41]. Prior to analysis, we 

performed an exhaustive search of the literature to obtain known reference values for 

minimum clinically important differences/changes in AKE and ALF with respect to 

health and/or performance. We were unable to find any research providing such data. 

Therefore, in the absence of clinically meaningful reference values, standardized 

thresholds of 0.2, 0.6, and 1.2 multiplied by the baseline between-participant SDs were 

calculated to anchor small, moderate and large effects, respectively [41]. Baseline 

between-participant SDs were pooled from both conditions (control and treatment) then 

adjusted for small sample bias. Inference was then based on the probability distribution 

of the true effect in relation to these thresholds using a custom-made spreadsheet [44]. 

The probability (percentage chance) that observed effects were at least greater than their 

nearest lower thresholds were evaluated using the following scale: 25.0–74.9% possibly; 

75.0–94.9% likely; 95.0–99.4% very likely; ≥ 99.5% most likely [41]. All effects were 

evaluated mechanistically, whereby a difference was deemed unclear if its chance of 

being both substantially positive and negative was ≥ 5% (based on the threshold for a 

small effect [0.2 SDs]). Finally, SDs representing individual responses to UPA 

mobilizations were double before interpreting their magnitude against the above 

standardized thresholds [45]. 

 

Results 

Descriptive Data & Main effects 



Figure 3 – Descriptive (mean ± standard deviation) AKE (A) and ALF (B) data at each 

time point for UPA mobilizations and CON 

*** insert Figure 3 about here *** 

 

A total of twenty-four participants (maleness: 0.58, age [mean ± standard deviation]: 32 

± 8 y, body mass: 81.6 ± 8.0 kg, stature: 177 ± 10 cm, body mass index 25.9 ± 2.6 kg.m2) 

were recruited to and completed the study. Descriptive data for AKE and ALF in response 

to CON and UPA mobilizations are presented in Figure 3. The time-course pre–post, 

treatment–control differences in AKE and ALF are presented in Figure 4. Differences are 

adjusted to sex, a mean age of 32, a baseline AKE of 37.2° from full extension and a 

baseline ALF of 14.37 cm. UPA mobilizations had a most likely moderate effect on AKE 

(Figure 4A) and a likely moderate effect on ALF (Figure 4B). For AKE, the effects of 

UPA mobilizations remained most likely to likely moderate 5- and 10-minutes post-

treatment and became: possibly moderate/most likely small 15-minutes post-treatment, 

most likely and very likely small 20- to 25-minutes post-treatment, likely small at 30- and 

45-minutes post-treatment, and possibly small/ possibly trivial at 60-minutes post-

treatment (Figure 4A). For ALF, the effect of UPA mobilizations remained likely 

moderate 5-minutes post-treatment and became: possibly moderate/most likely small 10-

minutes post-treatment, most likely small 15- and 20-minutes post-treatment, possibly 

small/ possibly trivial 25- and 45-minutes post-treatment, and likely trivial 60-minutes 

post-treatment (Figure 4B). 

 

Figure 4 – Time-course changes in AKE (A) and ALF (B) following UPA mobilizations. 

Data are presented as the treatment-control differences for each time point change from 



baseline (i.e. ‘pre’). Data points are presented with 90% confidence limits and standard 

deviations for the interindividual responses to UPA mobilizations versus control 

*** insert Figure 4 about here *** 

 

Individual Responses 

For AKE, SD representing interindividual responses to UPA mobilizations were 

moderate immediately and up to 10-minutes post-treatment, and small at all time points 

from 15- to 30-minutes post-treatment (Figure 4A). AKE Individual response SD were 

negative for 45- (-1.6° degrees closer to full extension) and 60-minutes (-3.5° degrees 

closer to full extension) post-treatment, indicating greater variance following CON when 

compared with UPA. For ALF, interindividual response SDs were large immediately and 

5-minutes post-treatment, moderate at 10- and 15-minutes post-treatment, and small at all 

time points from 20- to 60-minutes post-treatment (Figure 4B). 

 

Discussion 

The hamstring complex continues to be a problematic region to prevent and treat injury. 

The value of treating the hamstring region proximally via the lumbar spine has been 

advocated by researchers and is included in management algorithms [8,11-13]. Specially, 

z-joint mobilizations have been advocated as the mobilization technique of choice to 

increase ROM in both the lumbar and hamstring regions [21]. The duration of these 

observed changes is yet to be adequately investigated. To date, this is the first study to 

investigate the magnitude of the time-course changes in ROM for both the lumbar and 

hamstring region. 

 



The key findings from our study in healthy, recreationally active controls were: 1) the 

application of UPA mobilizations resulted in moderate improvements to AKE and ALF,  

2) the magnitude of the effect substantially reduced 20- and 15-minutes post-treatment 

for AKE and ALF, respectively, with further reductions in effect magnitudes and 

uncertainty evident until 60-minutes post-treatment, and 3) moderate and moderate-to-

large individual responses to UPA were evident up to 10- and 15-minutes post-treatment 

for AKE and ALF, respectively, with the magnitude of individual responses at all 

subsequent time points being small to trivial. 

 

Our results support previous research indicating that lumbar z-joint mobilizations 

produce similar responses to increase lumbar and hamstring ROM. The mean effects of 

9.8 degrees AKE for a baseline of -37.15 is around 26%. For ALF, the effect of 1.3 cm 

on a baseline of 14.4 is ~9.4%. Szlezak et al [19] have demonstrated similar increases in 

hamstring extensibility using the straight-leg raise (SLR) test, with a mean difference of 

8.5 degrees post mobilization. Chesterton et al [20-22] have reported small to moderate 

effects of increased ROM following mobilizations similar to those found within this 

study. These similarities are likely due to the healthy populations and mobilization 

protocols used. 

 

There is limited research that has investigated the time course changes of lumbar 

mobilizations. As such, our study provides novel data to suggest that the moderate effects 

lumbar mobilizations have on AKE and ALF ROM appear to last up to 20- and 15-

minutes post-intervention, respectively. The magnitude of the effect substantially reduces 

following these time points, with AKE ROM remaining increased by at least a possibly 

small magnitude (versus pre-intervention) through 60-minutes post-intervention, and 



ALF ROM remaining increased by at least a possibly small magnitude through 45-

minutes post-intervention before returning to near baseline (likely trivial difference) at 

60-minutes post-intervention.  

 

Ganesh et al [24], replicated Szlezak’s study [19] protocol with a 24 h re-test of the 

straight-leg raise following UPA mobilizations. The authors utilised a different protocol 

with multiple levels of mobilizations (L1-S1) and measured hamstring length via the 

neurally biased straight-leg raise test. Improvements were reported both immediately 

following application and at the 24 h follow-up measure. It is unclear why Ganesh et al 

[24] have reported prolonged elevation in ROM up to 24 h where we have demonstrated 

effects subside after 15-20 minutes. Due to the lack of data points it is difficult to draw 

conclusions as to where the effects of the intervention begin to subside. Furthermore, it 

is not clear on why a 24 h time point was chosen given the transient and short-lived 

changes observed in neurophysiological responses. Finally, it is not clear how the authors 

controlled for confounding variables (e.g. activity levels) in the proceeding 24 h 

timeframe that may contribute to greater ROM seen at 24 h.  

 

Neurophysiological responses to mobilizations have been reported to subside after a 

shorter timeframe than the ROM changes. Perry and Green [39] reported that skin 

conductance increased for a period of less than five minutes in a population of 45 healthy 

subjects. However, further measurements were not taken beyond 5 minutes. Whilst in this 

study, UPA mobilizations applied to the L4/5 region resulted in side specific changes in 

the sympathetic nervous system (SNS), it is not clear how these changes translate into 

observed biomechanical changes to facilitate clinician decision making on further 

treatment programmes.  



 

There is a lack of current research into the time course changes of spinal manual therapy 

for comparison to this study. Hatano et al, [25], reported static stretching of the hamstring 

can maintain length changes at 30 min post intervention. This study similarly used an 

asymptomatic population, with measurements of hamstring extensibility taken at 10, 20 

or 30 minutes. Increased extensibility was maintained for approximately 30 minutes post 

intervention like the acute response found in our study. The authors failed to report 

individual differences or control for gender, which further limits direct comparison to our 

results.  

 

We report for the first time moderate to large individual responses in AKE and ALF ROM 

following UPA mobilizations, lasting up to 10–15-minutes post-intervention. These can 

be considered real interindividual responses to UPA mobilizations in healthy, 

recreationally active participants, since we removed any source of error arising from 

measurement inaccuracy or biological variation by using a control condition [46]. 

Interestingly, these seemingly moderate to large individual responses were observed 

despite controlling for age, sex and baseline ROM (specific to each test). It may therefore 

be of value and interest for clinicians and researchers to consider other factors that may 

reasonably moderate the response to UPA mobilizations, inclusive of the central nervous 

system [46]. Previously, individual differences were once considered tissue related 

however the paradigm shift has led us to acknowledge the factors associated with the 

central nervous system may be important [46]. 

 

It is beyond the scope of our study to understand the mechanisms for the observed 

duration of ROM changes. However, the SNS changes described by previous authors [39, 



47-50] suggest that spinal mobilizations stimulate the dorsal peri-aqueductal (dPAG) 

region of the brain which in turn produces a SNS response. It is this response which 

produces the proposed benefits of manual mobilization including analgesia, 

sympathoexcitation and motor facilitation [51]. A paradigm shift has taken place over 

recent years with evidence suggesting the benefits of manual mobilization may not purely 

be due to a biomechanical mechanism but a neurophysiological one. However, if the 

neurophysiological effects return to baseline after 5-10 min, the mechanism for longer 

duration effects in ROM reported in our study and by Ganesh et al [24] require further 

investigation. 

 

This study utilised active tests rather than passive to assess the influence of the 

intervention on functional outcomes measures. As well as being appropriate outcomes 

measures the AKE and ALF are both feasible for clinicians to apply in practice. Both 

outcome measures are considered reliable and valid [30,31]. Furthermore, it is worth 

noting that AKE was measured from full knee extension classed as zero degrees. 

Normative values in literature [32, 52] have been collected using different measurement 

methods, Youdas et al [52] with full extension as 180 degrees and Neto et al [32] as full 

extension measured from the 90-degree starting position. When comparing our results to 

normative values exact AKE measurement should be considered. 

 

Recent hamstring injury treatment algorithms [8] have proposed the progression of 

rehabilitation from the sub-acute to functional phase when full hamstring extensibility 

has been restored. As the changes evident from our study are only short-term clinicians 

may want to use this short-time period to apply additional therapeutic interventions. For 

example, exercise therapy could be performed in functional positions that may not have 



been achievable without the increased ROM in the hamstring and lumbar spine. Making 

use of this ‘window of opportunity’ following manual therapy has also been proposed 

by Piekarz and Perry [53] who suggested that the clinician could attempt to restore joint 

range of movement and pain free movement following spinal manual therapy. A 

broader appreciation of the effects of manual therapy should include the possible 

placebo effect experienced which can have an effect on motor performance in addition 

to pain modulation [54]. Advanced neurobiological testing procedures have led to a 

greater understanding of the physical performance changes associated with a placebo 

response which may be explained by a top down modulation of sensory and motor 

systems [55].  Whilst the placebo response is unlikely to be the only 

mechanism responsible for the extensibility gains reported in this study the placebo 

response should be a considered when explaining the effects of manual therapy [56].   

 

Limitations and Future Research 

All measures were conducted on asymptomatic individuals to understand the magnitude 

of effect, and duration of the intervention, in a healthy population. Therefore, the findings 

are not transferable to individuals experiencing pain. Now this proof-of concept has been 

established, further research should be conducted specifically in patients and athletes with 

lumbar and hamstring symptoms to determine if similar timeframes are still evident. The 

use of a default smallest worth change was used in the absence of a minimal clinically 

important difference. Therefore, we cannot be certain that these small increases in ROM 

will lead to positive meaningful outcomes in return to play.  Knowledge of the MCID 

could be derived from well-designed and robust validity, cohort, or case control studies, 

as well as prognostic-type studies in which AKE and ALF is the predictor and injury risk 

or athletic performance, for example, is the outcome [57]. Currently, no data exists to 



provide reference values for lumbar/hamstring extensibility in relation to injury risk. 

While we acknowledge this as a potential limitation to our present research, it is also a 

broader limitation within the discipline of sports medicine.  Further study is therefore 

required to establish MCID values for outcome measures used in research and practice.  

 

Conclusion 

Hamstring injuries continue to be a challenging injury to prevent and manage in the 

sporting population. Whilst we acknowledge that the management of these injuries should 

be multifactorial, spinal mobilizations have an important role in early hamstring injury 

rehabilitation. However, the magnitude of effect and underlying mechanisms has not been 

fully established. This study supports previous findings demonstrating that the lumbar 

and hamstring flexibility is increased following unilateral mobilization. The main and 

novel finding of our study is that the moderate effects of UPA mobilizations on lumbar 

and hamstring ROM are brief, lasting up to 15–20 minutes, with substantial individual 

responses apparent.  Therefore, it is possible that clinicians could use this timeframe 

appropriately to prescribe any subsequent exercises in which applying load through 

greater outer ranges. However, it is important to consider these results based on the 

healthy, asymptomatic population recruited for this study, and further research is 

warranted to further elucidate the effectiveness of this intervention on a symptomatic 

population. 



References 

1. Troyer JD, Dunn WR. Epidemiology of Hamstring and Quadriceps Injury. In: 
Willigenburg NW, McNally MP, Hewett TW. Hamstring and Quadriceps Injuries in 
Athletes. Springer US; 2014; pg 29. 
 
2. Kuske B, Hamilton DF, Pattle SB, et al. Patterns of Hamstring Muscle Tears in the 
General Population: A Systematic Review. PLoS ONE. 2016;11(5). 
 
3. Liu H, Garrett WE, Moorman CT et al Yu B. Injury rate, mechanism, and risk factors 
of hamstring strain injuries in sports: A review of the literature. J Sport Health Sci. 
2012;1:92-101. 
 
4. Ekstrand J. Keeping your top players on the pitch: the key to football medicine at a 
professional level. Br J Sports Med. 2013;47(12):723–4. 12.  
 
5. Ekstrand J, Walden M, Hagglund M. Hamstring injuries have increased by 4% annually 
in men"s professional football, since 2001: a 13-year longitudinal analysis of the UEFA 
Elite Club injury study. Br J Sports Med. 2016;50(12):731–7. 
 
6. Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer 
players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 
2003;13:244–50 
 
7. Goldman EF, Jones DE. Interventions for preventing hamstring injuries. Cochrane 
Libr. 2010;1.5. 
 
8. Mendiguchia J, Martinez-Ruiz E, Edouard P, et al. A multifactorial, criteria-based 
progressive algorithm for hamstring injury treatment. Med Sci Sports Exerc. 
2017;49:1482-1492. 
 
9. Hoskins W, Pollard H. Hamstring injury management—part 2: treatment. Man Ther. 
2005;10:18090.  
 
10. Mason DL, Dickens VA, Vail A. Rehabilitation for hamstring injuries. Cochrane Libr. 
2012;1. 
 
11. Schuermans J, Van Tiggelen D, Palmans T et al. Deviating running kinematics and 
hamstring injury susceptibility in male soccer players: cause or consequence?. Gait 
Posture. 2017;1(57):270-7. 
 
12. Mendiguchia J, Alentorn-Geli E, Brughelli M. Hamstring strain injuries: are we 
heading in the right direction? Br. J. Sports Med. 2012;46(2):81–85. 
 
13. Brukner P, Nealon A, Morgan C et al. Recurrent hamstring muscle injury: applying 
the limited evidence in the professional football setting with a seven-point programme. 
Br. J. Sports Med. 2014;48(11):929–938. 
 
14. Van der Horst N, Priesterbach A, Backx F et al. Hamstring-and-lower-back flexibility 
in male amateur soccer players. Clin J Sport Med. 2017;27(1):20-5. 



 
15. Magnusson SP. Passive properties of human skeletal muscle during stretch 
maneuvers. Scand J Med Sci Sports. 1998;8(2):65-77. 
 
16. McHugh MP, Magnusson SP, Gleim GW et al. Viscoelastic stress relaxation in human 
skeletal muscle. Med Sci Sports Exerc. 1992;24(12):1375-82. 
 
17. Watsford ML, Murphy AJ, McLachlan KA et al. A prospective study of the 
relationship between lower body stiffness and hamstring injury in professional Australian 
rules footballers. Am J Sports Med. 2010;38(10):2058-64. 
 
18. Marshall P, Cashman A, Cheema BS. A randomized controlled trial for the effect of 
passive stretching on measures of hamstring extensibility, passive stiffness, strength, and 
stretch tolerance. J Sci Med Sport. 2011 Nov 1;14(6):535-40. 
 
19. Szlezak AM, Georgilopoulos P, BullockSaxton JE et al. The immediate effect of 
unilateral lumbar Z-joint mobilisation on posterior chain neurodynamics: a randomised 
controlled study. Man Ther. 2011;16:609-613. 
 
20. Chesterton P, Payton S. Effects of spinal mobilisations on lumbar and hamstring ROM 
and sEMG: A randomised control trial. Physiother Pract Res. 2017;38:17-25. 
 
21. Chesterton P, Payton S, McLaren S. Acute Effects of Centrally- And Unilaterally-
Applied Posterior–Anterior Mobilizations of the Lumbar Spine on Lumbar Range of 
Motion, Hamstring Extensibility and Muscle Activation. J Back Muscuolskeletal 
Rehabil. (2018) In Press. 
 
22. Chesterton P, Weston M, Butler M. The Effect of Mobilising the Lumbar 4/5 
Zygapophyseal Joint on Hamstring Extensibility in Elite Soccer Players. Int J Physiother 
Rehabil. 2016; 1. 
 
23. Hegedus EJ, Goode A, Butler RJ et al. The neurophysiological effects of a single 
session of spinal joint mobilization: does the effect last?. J Man Manip Ther. 
2011;19(3):143-51. 
 
24. Ganesh G, Mohanty P, Pattnaik S. The immediate and 24-hour follow-up effect of 
unilateral lumbar Z-joint mobilisation on posterior chain neurodynamics. J Bodyw Mov 
Ther. 2015;19:226-231 
 
25. Hatano G, Suzuki S, Matsuo S et al. Hamstring Stiffness Returns More Rapidly After 
Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque. 
J Sport Rehabil. 2017;1-23. 
 
26. Batterham AM, Hopkins WG. A Decision Tree for Controlled Trials, Sports Sci. 
2005;9:33-39. 
 
27. Boutron I, Moher D, Altman DG et al. Extending the CONSORT statement to 
randomized trials of nonpharmacologic treatment: explanation and elaboration. Ann Inter 
Med. 2008; 148: 295-309. 
 



28. Henegeveld E, Banks K. Maitlands Vertebral Manipulation Management of 
Neuromuscuoloskeletal Disorders – Volume One. Butterworth-Heinemann. 2013. 
 
29. American College of Sports Medicine. ACSM's guidelines for exercise testing and 
prescription. Lippincott Williams & Wilkins; 2013.  
 
30. Gajdosik RL, Rieck MA, Sullivan DK et al. Comparison of four clinical tests for 
assessing hamstring muscle length. J Orthop Sports Phys Ther. 1993;18:614-8. 
 
31. Hyytiäinen K, Salminen JJ, Suvitie T et al. Reproducibility of nine tests to measure 
spinal mobility and trunk muscle strength. Scand J Rehabil Med. 1990;23:3-10. 
 
32. Neto T, Jacobsohn L, Carita AI et al. Reliability of the active-knee-extension and 
straight-leg-raise tests in subjects with flexibility deficits. J Sport Rehabil. 2015: 
3:17:2014-0220. 
 
33. Farquharson C, Greig M. Temporal efficacy of kinesiology tape vs. Traditional 
stretching methods on hamstring extensibility. Int J Sports Phys Ther. 2015;10:45-51. 
 
34. Reurink G, Goudswaard G.J, Oomen HG et al. Reliability of the active and passive 
knee extension test in acute hamstring injuries. Am J Sports Med. 2013;41: 1757-61. 
 
35. Strender LE, Sjöblom A, Sundell K et al. Interexaminer reliability in physical 
examination of patients with low back pain. Spine. 1997;22: 814-20. 
 
36. Robinson HS, Mengshoel AM Assessments of lumbar flexion range of motion: 
intertester reliability and concurrent validity of 2 commonly used clinical tests. Spine. 
2014;39:E270-5. 
 
37. Rezvani A, Ergin O, Karacan I et al. Validity and reliability of the metric 
measurements in the assessment of lumbar spine motion in patients with ankylosing 
spondylitis. Spine. 2012 Sep 1;37:E1189-96. 
 
38. van der Heikde D, Calin A, Dougados M et al. Selection of instruments in the core 
set for DC-ART, SMARD, physical therapy, and clinical record keeping in ankylosing 
spondylitis. Progress report of the ASAS Working Group. Assessments in Ankylosing 
Spondylitis. J Rheumtol. 1999 Apr;26(4):951-4. 
 
39. Perry J, Green A. An investigation into the effects of a unilaterally applied lumbar 
mobilisation technique on peripheral sympathetic nervous system activity in the lower 
limbs. Man Ther. 2008;13:492-499. 
 
40. Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience 
2015;19:36-42. 
 
41. Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int 
J Sports Physiol Perform. 2006;1(1):50-7. 
 
42. Vickers AJ, Altman DG. Analysing controlled trials with baseline and follow up 
measurements. Bmj. 2001;323(7321):1123-4. 



 
43. Atkinson G, Batterham AM. True and false interindividual differences in the 
physiological response to an intervention. Exp Physiol. 2015 Jun 1;100(6):577-88. 
 
44. Hopkins WG. A Spreadsheet for Deriving a Confidence Interval, Mechanistic 
Inference and Clinical Inference from a P Value. Sportscience. 2017;1:21. 
 
45. Smith TB, Hopkins WG. Variability and predictability of finals times of elite rowers. 
Med Sci Sport Exerc. 201;43(11):2155-60. 
 
46. Bialosky JE, Bishop MD, George SZ et al. Placebo response to manual therapy: 
something out of nothing?. J Man Manip Ther. 2011;1:19(1):11-9. 
 
47. Kanlayanaphotporn R, Chiradejnant A, Vachalathiti R. Immediate effects of the 
central posteroanterior mobilization technique on pain and range of motion in patients 
with mechanical neck pain. Disabil Rehabil 2010;32:622–8 
 
48. Moulson A, Watson T. A preliminary investigation into the relationship between 
cervical snags and sympathetic nervous system activity in the upper limbs of an 
asymptomatic population. Man Ther. 2006;11:214–24 
 
49. Chiu TW, Wright A. To compare the effects of different rates of application of a 
cervical mobilisation technique on sympathetic outflow to the upper limb in normal 
subjects. Man Ther. 1996;1:198–203 
 
50. Petersen N, Vicenzino B, Wright A. The effects of a cervical mobilization technique 
on sympathetic outflow to the upper limb in normal subjects. Physiother Theory Pract. 
1993;9:149–56 
 
51. Vicenzino B, Collins D, Benson H et al. An investigation of the interrelationship 
between manipulative therapy-induced hypoalgesia and sympathoexcitation. J Manip 
Physiol Ther. 1998;21:448–53 
 
52. Youdas JW, Krause DA, Hollman JH et al. The influence of gender and age on 
hamstring muscle length in healthy adults. J Orthop Sports Phys Ther. 2005;35:246-52. 
 
53. Piekarz V, Perry J. An investigation into the effects of applying a lumbar Maitland 
mobilisation at different frequencies on sympathetic nervous system activity levels in the 
lower limb. Man Ther. 2016;23:83-9. 
 
54. Carlino E, Piedimonte A, Frisaldi E. The effects of placebos and nocebos on physical 
performance. Handb Exp Pharmacol. 2014;225:149e57 
 
55. Benedetti F. Placebo effects: from the neurobiological paradigm to translational 
implications. Neuron. 2014 Nov 5;84:623-37. 
 
56. Bialosky JE, Bishop MD, Penza CW. Placebo mechanisms of manual therapy: a sheep 
in wolf's clothing?. J Orthop Sports Phys Ther. 2017 May;47(5):301-4. 
 
 



57. Thorpe RT, Atkinson G, Drust B et al. Monitoring Fatigue Status in Elite Team-Sport 
Athletes: Implications for Practice. Int J Sports Physiol Perform. 2017;12:S2-27. 
 
 

 

 


	Methodology
	Study Design
	Participants

	Outcome Measures
	Two main outcome measures were assessed pre- and post-intervention and control. These measurements were taken by a qualified physiotherapist, with 22 years post graduate experience, who was blinded to the participant’s condition. Active hamstring exte...
	Intervention
	Statistical Analysis

