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Abstract 

 

A novel kind of mesoporous tungsten oxide films (TOFs) has been prepared via a non-ionic surfactant 

templated sol-gel route from cheap and easy handling tungstic acid. Characterisations by means of 

various techniques, including XRD, TEM, SEM, ATR and DTA, confirm that the obtained 

mesostructures are composed of fine mesopores (2-3nm) and thin pore walls. Compared with 

previously reported surfactant templated mesoporous TOFs, our initial evaluation on the 

electrochromic properties showed that the derived TOFs show greatly enhanced colouration efficiency 

of 44cm2C-1 and faster colouration/bleaching speed of 10/2 seconds, respectively. Owning to the 

ordering of mesostructures delivered by our method, the mesostructural changes associated with the 

electrochemical reaction during the electrochromic cycling of such materials can be directly monitored 

by low-angle XRD measurements.  
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1. Introduction 

 

Over recent years, electrochromism has received substantial attention for smart applications, such as 

self-dimming rear-view mirrors, sun-protective windows and optical displays [1]. Compared with 

conducting polymer systems (e.g. polythiophene, polypyrrole), WO3 is often regarded as a more 

promising candidate material, due to its transparency and good reversibility in colour change when an 

external electrical field is applied [2, 3] and is the most widely used and most cited 

cathodically-colouring material in the patent literature. Various methods have been developed to 

synthesise tungsten oxide films (TOFs), including laser ablation [4], anodic oxidation [5], sputtering [6], 

and electrodeposition [7]. Compared with these methods, sol–gel processing is an inexpensive, simple 

and controllable alternative, facilitating the bespoke engineering of a variety of nanostructures. For 

example, mesoporous materials with high surface area can be obtained by surfactant templated sol-gel 

process [8, 9]. Via this synthetic route, a number of metal oxides, including WO3, have been 

synthesised [10].  

 

It has been previously reported in studies of materials produced by other routes that mesostructured 

TOFs, allow rapid ion transport through the bulk of the film, and hence improve colouration efficiency 

and colour–bleach kinetics [11]. Deepa and co-workers also reported that the fast colour-bleach 

kinetics in mesostructured TOFs were associated with the mesopore morphology [12]. Cheng and 

co-workers demonstrated that mesoporous structures generated by a block copolymer templated sol-gel 
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method using WCl6 as precursor exhibited better kinetics for colouration and bleaching in comparison 

to the normal sol–gel-derived TOFs. Upon colouration at -0.8V (vs SCE) for 30s, the transmission is 

higher than 30% for mesostructured TOFs with thickness over 400nm [13], suggesting the 

electrochromic efficiency is low. In general, high manufacturing costs and unsatisfactory 

electrochromic durability have been obstacles for the applicability of electrochromism. Current 

challenges include further accelerating the coloration/bleaching process, enhancement of the charge 

density and especially the reduction in manufacturing cost of TOFs. Therefore, there is a requirement 

for further improvements in the electrochromic properties and fabrication process as well in order to 

allow them to be commercially developed. 

 

In the chemical preparation of mesoporous tungsten oxide, WCl6 is the most often selected inorganic 

precursor [14]. Alternatively, tungstic acid which is comparatively cheap and easily handled has also 

been used as an alternative precursor to prepare nonporous sol-gel WO3 films for various applications 

[3, 10, 15]. However, tungstic acid has only received very limited investigation as a potential precursor 

for the preparation of mesostructured TOFs. Work by Qi and co-workers [16] attempted to prepare 

mesostructured TOFs by utilising block copolymer as structure-directing agent and tungstic acid as 

tungsten oxide precursor. However, the resulting mesostructures collapsed upon heating at 

temperatures higher than 250 oC. Improvement in the thermal stability is of some significance for the 

development of viable mesostructured TOF’s from this precursor, as a heat treatment to at least this 

temperature is required to facilitate consolidation of the film and give good adhesion to the substrate, 

whilst higher temperatures are required to thermally remove the organic surfactant to create an 

accessible mesopore structure. 

 

Recently, our research group has demonstrated the feasibility of fabricating thermally stable 

mesoporous TOFs from cheap tungstic acid [17]. In this paper, detailed characterisation of the 

mesostructures and the resultant properties, especially the electrochromic properties of the derived 

TOFs are discussed, aiming to demonstrate a new, cheap, easy and reliable surfactant templated sol-gel 

method for the fabrication of mesostructured TOFs with great potential in electrochromic devices. 

 

2. Experimental details 

 

The following chemicals were used in the preparation of the TOFs. Tungstic acid (≥99.0%) obtained 

from Fluka, H2O2 35wt.% water solution and the non-ionic surfactants Brij56 (C16EO10, 

C16H33(OCH2CH2)nOH, n~10), Tween-60 (C24H46O6(C2H4O)n, n~20) were obtained from Sigma 

Aldrich. All the chemicals were used as received.  

 

Peroxotungstic acid (PTA) was synthesized through the reaction of H2WO4 with hydrogen peroxide. 

Typically, 5.0 g of H2WO4 powders were dispersed in 100.0 g of deionised water, to which 33.0 g H2O2 

35 wt.% aqueous solution was added. The reaction mixture was magnetically stirred at 40 oC overnight 

to produce a nearly colourless solution and then dried to produce the pale yellow PTA powder. The 

coating sol was prepared by mixing the solutions of PTA and surfactant in mixed solvents of water and 

ethanol, with a final weight ratio of PTA: Surfactant: H2O: Ethanol of 1: 0.2: 4.5: 2.25. The sol was 

used for dip-coating on cleaned glass substrates or Indium-Tin oxide (ITO) coated glasses under 

ambient conditions. The deposited film was allowed to dry at room temperature and then, was further 
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thermally treated at temperatures at 100-450 oC for between 1-20 h to solidify the film and remove the 

template. 

 

X-ray Diffraction (XRD) measurement was conducted on a Siemens D500/D501 instrument with CuKα 

radiation (λ=0.1542 nm) at a scanning speed of 0.01 o per second, using low angle diffraction peaks to 

determine the interpore distances according to the normal Bragg relationship. Accurate estimation of 

the pore spacing requires the mesostructures to be highly ordered with known geometry. As this could 

not be confirmed in this case, such results should be considered to provide only an approximation of 

the mesostructural scale, assuming mesopores are hexagonally arranged analogous to MCM-41 [8-9]. 

Transmission electron microscopy was performed using a Philips CM100 instrument operated at 100 

kV. Samples for transmission electron microscope (TEM) measurement were obtained by scratching off 

the heat treated film coating from the glass substrates, this being then dispersed in acetone and mounted 

on copper grids. Attenuated total reflectance spectra of powder samples obtained by drying coating sols 

were collected using a Nicolet 5700 FTIR spectrometer. 

 

The electrochemical properties were determined using a three electrode configuration in which the 

working electrode consisted of the dip coated TOFs deposited on ITO coated glass in 0.1 M aqueous 

solution of sulphuric acid. An Ag electrode (Ag|AgCl|saturated KCl) and a platinum needle were taken 

as the reference and counter electrode, respectively. The voltammetry and chronoamperometry 

experiments were performed using an Autolab 12 potentiostat with GPES software for collection and 

analysis of data. The optical spectra were collected using a Jasco V-630/630BIO UV-Vis 

spectrophotometer with scanning speed of 200 nm/min. 

 

3. Results and discussion 

3.1 Morphological and structural studies of PTA/surfactant hybrid film 

 

Non-ionic surfactants, such as Brij 56 and Tween 60, which have previously been used for the 

synthesis of (MSU-X) mesoporous silicas [18, 19], were employed in this work. In the templating 

systems for mesoporous silicas, interactions between silicate species with the poly(ethylene glycol) 

(PEG) segments in surfactant molecules via hydrogen-bonding promote the self-assembly process, 

which is responsible for the formation of mesophases. A similar mechanism is anticipated to produce 

the templating in the preparation of the TOF’s, but with the PTA species substituting for the silicates.  

 

It has been proposed that, aside from their function as structure-directing agents, the ethylene glycol 

(EG) segments in the nonionic surfactant molecules are incorporated into the oxide framework walls by 

complexing with PTA species and, hence have a strong influence on the flexibility and thermal stability 

of the obtained TOFs mesostructures.  In comparison with some other ineffective organic surfactant 

templated systems tested in our previous work [17], Tween 60 showed no improvement in templating 

the formation of mesoporous TOFs according to the XRD results (Fig.1(c-d)). This is again in big 

contrast with the Brij 56 templated TOFs. 

 

A weight ratio of PTA to Brij 56 of 5 (m(PTA): m(Brij 56)=5) was found to yield the most thermally 

stable and ordered mesostructures. This paper is therefore focused on these optimised Brij 56 templated 

TOFs with PTA: Brij 56 weight ratio fixed at 5:1. Fig. 1a-b show XRD patterns obtained from the 
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as-prepared TOFs using Brij 56 (C16EO10) as the template. The resultant TOFs show a strong peak 

centred at about 1.5o, corresponding to a d-spacing of about 5.9 nm (Fig. 1(a)). This is very similar to 

the values reported for mesoporous silicas using the same template, implying that a similar templating 

mechanism applies for both PTA anions and silica anions in association with the same organic template 

[19]. For the film dried at 100 oC for 1 h (Fig. 1(b)), the calculated d-spacing is about 4.4 nm (2θ value 

is about 2 o) and only one strong peak can be seen, indexed as (100) in hexagonal mesophase. Fig. 2 

shows the TEM images for the PTA/Brij 56 hybrid films, heated at temperatures ranging from 100 oC 

to 400 oC, which provide direct evidences of the hexagonally ordered mesostructures. As can be seen 

from Fig. 2(a) ordered mesostructures to a great extent are present with mesopore (still occupied by 

organic template in this stage) size of 3.5 nm.  

 

 

Fig. 1 XRD patterns of PTA/Brij 56 films (m(PTA): m(Brij 56)=5), (a)dried at room temperature, and 

(b) heated at different temperatures; and XRD patterns of PTA/Brij Tween 60 films with (c) (m(PTA): 

m(Tween 60) of 4 and(d) (m(PTA): m(Tween 60) of 5.  

 

Heat treatment at higher temperatures (e.g. 200 oC as shown in Fig. 1(b), pattern 2) and 250 oC (XRD 

not shown here) did not damage the mesostructures, which was confirmed by TEM results (190 oC, Fig. 

2(b), and 250 oC, Fig. 2(c)), whilst even after heating to 400 oC for 2 h, the low angle XRD peak is still 

observable, though broadened from about 0.13 o to 0.33 o in full width at half maximum (FWHM), 

indicating the retention of mesostructures. This was confirmed by TEM results (Fig. 2(d)) in which the 

mesostructures with pore size of approximately 2 nm and wall thickness around 1 nm can be discerned, 

although the ordering of the mesostructure is degraded. TEM images further showed that mesopores are 

all open from above and therefore accessible at the surface, which is believed to be advantageous in 

electrochromism in terms of increased electrolyte accessible surface area and shortened diffusion time 

as well. 
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Among the few mesostructured TOFs prepared by surfactant templated sol-gel method [13, 14d-f], the 

pore size and wall thickness of mesostructured TOFs reported in this work are shown to be lowest, and 

hence the surface area is theoretically the highest. The thickness of our mesostructured TOFs is about 

200 nm on average and crack-free as measured using SEM and optical microscope (results not shown 

here). Such thin film makes it hard to quantify the surface area by using N2 sorption measurement. The 

surface area of mesostructured TOFs was estimated to be up to 250m2/g based on surface areas of 

silicas with similar mesostructures and the densities (d(SiO2) = 2.2 g/cm3, (d(WO3) = 7.16 g/cm3) [19] . 

 

Fig. 2 TEM images of TOFs (m(PTA): m(Brij 56)=5) heated at (a) 100 oC, 1 h, (b) 100 oC,1 h+190 

oC,1 h, (c) 250 oC, 2 h, and (d) 250 oC, 2 h + 400 oC, 2 h. Scale bars=100 nm. 

 

One of the main characteristics of the obtained mesostructures of Brij 56-templated PTA film is the 

substantial 2θ shift in low-angle XRD peaks upon heat treatment, as shown in Fig. 1. This not only 

differs from the behaviour of similarly templated silicate structures [18,19], but also contrasts with the 

previously reported behaviour of surfactant templated WCl6 derived sol-gel mesostructured films, 

where no significant shift in low-angle XRD peak was observed after heat treatment [20]. The probable 

reason lies in the hydrolysis and condensation of WCl6 in the presence of water taking place at different 

stages during the structure development, which allowed the improvement in cross-linking reaction 
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between tungsten oxide species and consolidation of the film such that it becomes strong and rigid 

enough to withstand heating at elevated temperatures. By contrast, PTA species derived framework 

contains significant amounts of structural water and peroxo tungsten oxide species and would therefore 

be expected to undergo much bigger changes upon heat treatment than WCl6 derived tungsten oxide 

species.  
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Fig. 3 Attenuated total reflectance of (a) Pure Brij 56, and (b-f) PTA/Brij 56 hybrids (m(PTA): m(Brij 

56)=5) after various heat treatments (b) as prepared, (c) 100 oC for 1 h, (d) 100oC+190oC for 1h, (e) 

100oC+250 oC for 1 h, and (f) 190 oC for 1 h and then 400 oC for 1 h. 

 

In the case of the Brij 56 templated PTA system, the optimisation of heating process was also found to 

be crucial to generate thermally stable mesoporous tungsten oxides. An additional heat treatment step at 

intermediate temperatures, such as 190 oC or 250 oC, was found to effectively stabilise the frameworks 

allowing them to sustain further heat treatment at high temperatures up to 450 oC [17]. In order to 

further clarify the reactions occurring in the PTA/Brij 56 hybrid films during the heat treatments, 

attenuated total reflectance spectra were collected on samples heated at varying temperatures (Fig. 3). 

 

In samples heat treated at temperatures below 200 oC, absorption band at 1620 cm−1, which can be 

assigned to water, is present, with its intensity decreasing with increasing heat treatment temperature. 

In addition, absorption bands attributable to the organic groups of Brij 56 molecules are identifiable in 

the PTA/Brij 56 hybrids, with decreasing intensity in samples heated to increasing temperatures up to 

250 oC, confirming the gradual decomposition of the surfactant. These absorption bands comprise C-H 

stretching absorption at 2925 and 2849 cm−1, different -CH2- bend, wag, rock, and twisting modes at 

1250-1450 cm-1, with the comparatively stronger band at 1077 cm-1 due to C-O-C stretching [20]. As 

can be seen from Fig. 3(d-f), the decomposition of organic structure and the low residual levels explain 

the lack of identifiable ATR peaks for TOFs heated at temperatures over 250oC.  
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Additionally, one intense band at around 520 cm-1, which can be attributed to the stretching vibration of 

W(O2) groups [21] is present in those samples subjected to heat treatment at 100 oC for 1 h but is not 

present in the sample heated at 190 oC for a similar duration. This correlates with thermal analysis 

results (results not shown here) and can be attributed to the decomposition of peroxo groups at 

temperatures higher than 130 oC. For all the samples (Fig. 3(b-f)), a very broad band at around 620 cm-1 

due to the stretching vibration of W–O–W linkage is always present and increases in intensity with 

heating temperature (Fig. 3(d) and (e)), indicating that the heating treatment at 190 and 250 oC 

promotes condensation reaction of the tungsten oxide species. Again, this is in good correlation with 

the results of thermal analysis and explains why heat treatment at intermediate temperatures is 

important for preparing thermally stable mesostructural TOFs.  

 

Fig. 4 Cyclic voltammograms (a-c) and XRD patterns (d-f) of mesostructured TOFs coated on ITO 

glass after heating at (a & d) 250 oC for 3 h, (b & e) 190 oC 2 h+300 oC 2 h, (c & f)190 oC 2 h+350 oC 2 

h. The voltage alternated between 0.8 V and -0.8 V vs Ag electrode and the sweep rate was set to be 10 

mVs-1. An inclusion of the XRD patterns of TOFs coated on the non-conductive side of ITO coated 

glass is for comparison use. In the XRD patterns, those designated as zero represent the TOFs on the 

non-conductive sides of ITO glass (designated as non-con in the figure) whilst all the other patterns are 
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obtained from the TOFs coated on the conductive sides. Arrows in figure a-c indicate the evolution of 

cyclic voltammograms during 3 cycles. Some XRD patterns were shifted to avoid overlap. 

 

3.2 Cyclic voltammetry (CV) studies of mesostructured TOFs 

 

In order to examine the electrochromic properties the mesostructured TOFs were coated on ITO coated 

glass for the cyclic voltammetry measurements. The colouration process of the electrochromic films 

can be described as a function of simultaneous injection of protons and electrons inside the mesoporous 

WO3 framework walls as shown in Eq.(1).   

)()( 33 blueWOHxexHcolourlessWO x     (Eq.1) 

Fig. 4(a-c) show the cyclic voltammograms of mesostructured WO3 thin films coated on the ITO 

(conductive) side of ITO glass heated at varying temperatures and times. Fig. 4(d-f) show the 

corresponding XRD patterns for the mesoporous TOFs heated at different temperatures before (pattern 

1) and after (patterns 2, 3, 4) CV testing. As can be seen from pattern 1 in each of these figures, the 

XRD results for TOFs before CV testing are consistent with above XRD results discussed in section 3.1, 

regarding the effects of heat treatment, i.e. heat treatment at higher temperature led to the reduction and 

broadening of the XRD low angle peak but with the mesostructures being retained.  

 

It can be seen that the mesostructured TOFs exhibited well-defined main anodic peaks at about -0.37 V 

for all three samples studied here (Fig. 4(a-c)). No significant residual current (current at end of the 

anodic scan [14f]) was found after each cycle for all three samples, indicating that extraction process 

for protons can be completed at the end of the anodic scan at 0.8 V or less.  However, with respect to 

the electrochemical reversibility, an obvious dependence on the heat treatment temperature of the films 

can be observed; the 350 oC heated film (Fig. 4c) is the best among them, its voltammograms nearly 

completely overlapping with each other during three cycles. 

 

Table 1 Electrochemical characteristics of Brij56 template TOFs heated at different temperatures as 

shown in Fig. 4(a-c) . 

Sample cycles 

Anodic 

peak/V vs 

Ag 

Amount of charge 

inserted Q
-
/mCcm

-2
 

Amount of charge 

extracted Q
+
/mCcm

-2
 

Q
+
/Q

-
 

250 
o
C 

3 h 

C1 -0.36 167.0 111.1 0.67 

C2 -0.37 154.5 110.4 0.72 

C3 -0.38 148.1 101.3 0.68 

190oC 2h 

+300 oC  

2 h 

C1 -0.31 125.5 85.1 0.68 

C2 -0.33 125.7 93.2 0.74 

C3 -0.34 129.7 96.8 0.75 

190oC 2h 

+350 oC  

2 h 

C1 -0.30 -- -- -- 

C2 -0.30 104.0 83.3 0.80 

C3 -0.31 104.4 84.8 0.81 
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Interestingly, the feature of multiple anodic peaks reported in other studies of mesoporous TOFs [13] 

was also observed in our results (Fig. 4(a-c)), which is especially prominent for the sample heated at 

250 oC (Fig. 4(a)). The dominant peak appears at -0.36 V and another small peak appears at about -0.07 

V. Instead of being induced by the electrochemical cycling [13], such features appear in the first cycle, 

indicating the multifarious hydrogen injection sites available in the TOFs walls [22], and are indicative 

of the high surface area and porosity possessed by the novel PTA derived TOFs in this work. In the 

samples heated to 250 oC, these secondary peaks were diminished after a second cycle and nearly 

disappeared after three cycles, indicating the modification of mesostructures during this 

electrochemical cycling. However, this phenomenon is not apparent for samples with more stable 

structures achieved by heating at higher temperatures (Fig. 4(b) and (c)). 

 

Electrochemical characteristics for such films shown in Fig. 4(a-c) were listed in Table 1. It can be seen 

from this table that Q+/Q- increased from a maximum of 0.72 for the 250 oC heated film to 0.75 for 300 

oC and further to 0.81 for 350 oC heated film, indicating the improved reversibility with the heat 

treatment at higher temperatures. Additionally, the amount of charge (protons) that can be inserted and 

then extracted from the WO3 frameworks decreased with increasing heating temperatures, suggesting a 

decrease in the active sites in the WO3 frameworks. More extended CV testing showed the 

voltammograms started to lose resolution, after a 6th cycle for films heat treated at 300 oC, while films 

heat-treated at 350 oC showed stable voltammograms after 10 cycles. Such observations are in good 

agreement with previously reported results [13]. 

 

One of the most interesting results observed in this work is the transformation of mesostructures caused 

by the CV measurements. This has previously been suggested as being a possible mechanism for the 

evolution of the cyclic voltammograms by other workers [13], but no direct evidence has been shown. 

Thanks to the ordering of mesopores in the TOFs developed in this work, the XRD results shown in Fig. 

4(d-f) provide clear evidences of change in the mesostructure during electrochemical cycling.  

 

In these figures, the sample heated at the lower temperature of 250 oC for 3 h experiences more distinct 

changes in the mesostructures (Fig. 4(d), patterns 1-3). A distinct double peak feature is clearly seen 

after three cycle scans (Fig. 4(d), pattern 2). For samples previously heat treated at higher temperatures, 

only shifts in peak position after 3 cycles CV measurements (from 3.8 o to 3.5 o) were observed for 

samples previously heated to 300 oC (Fig. 4(e)), whilst the XRD pattern was nearly unchanged for 

samples which had been heated to 350 oC (Fig. 4(f)). These observations can be explained by the more 

stable framework walls resulting from the thermal treatment at higher temperatures and are consistent 

with CV results shown in Fig. 4(a-c). In the case of the sample heated at 300 oC for 2 h, a 2nd lower 

angle XRD peak becomes discernable after 7 cycles of CV tests as shown in Fig. 4(e) (pattern 3). These 

transformations in the structures for TOFs heated at 250 and 300 oC were confirmed to result from the 

electrochemical reactions occurring during CV tests as no such transformation (Fig. 4(d), patterns 0 and 

0') was observable from the TOFs on the non-conductive side of the ITO coated glass, which received 

identical chemical and thermal treatment but did not undergo electrochemical cycling. 

 

These modifications to the mesostructure are believed to result from expansion effects by the insertion 

of protons into the framework walls during reductive scans. These changes appear to be essentially 



 10 

reversible because the original structure can be to a large extent restored by a post heat treatment at 100 

oC for 1 h after electrochemical testing as can be seen from Fig. 4(d), pattern 4.  

 

Fig. 5 Chronoamperometry measurements of mesoporous TOFs heated at (a) 250 oC 3 h (1-6 cycles), (b) 

190 oC 2 h+ 300 oC 2 h (4-12 cycles), (c) 190 oC 2 h+ 350 oC 2 h (4-12 cycles), and (d) Voltage vs time 

curve in each cycle. 

 

There appears to be a correlation between the changes in mesostructure as suggested by the changes in 

XRD patterns during electrochemical cycling in Fig. 4(d)-(f) and the changes in the corresponding CV 
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results in Fig. 4(a-c), providing some evidences that the structural changes described above might be 

responsible for the evolutions observed in the cyclic voltammograms. However, further work is 

required to confirm this. 

 

Electrochemical/electrochromic properties of films heated at different temperatures were further 

studied in chronoamperometry measurements. The current was recorded against the voltage steps in 

repeating cycles (Fig. 5(d)). As can be seen from Fig. 5(a-c), there is excellent reproducibility in the 

initial cycles, but with differences in terms of current density emerging as the cycling proceeded 

depending on the previous heat treatment conditions. For samples heated at 250 oC, the current density 

decreased remarkably from the 5th cycle, while current density for the sample heated at 300 oC started 

to decrease after 9 cycles. The current densities for the sample heated 350 oC remained stable for at 

least 12 cycles (the test was terminated at this point). These results appear consistent with the CV 

results, and it is reasonable to infer that the same mechanism is responsible. 

 

Of the variously thermally treatments used, the films heated at 250 oC showed the fastest colouration 

and bleaching rate of the various samples at voltage step of ±0.8 V(Fig. 5(d)), which can be seen from 

the extremely steep peaks (Fig. 5(a)). In comparison, among films heated at different temperatures 

studied in this work, the film heated at 300 oC shows slightly slower but still quite comparable 

colouration and bleaching rate (Fig. 5(b)); whilst the 350 oC heated film showed a significant 

broadening and lowering of the peaks (Fig. 5(c)), indicating a slower response.  

 

Fig. 6 (a) Optical transmittance spectra for mesoporous TOFs heated at 350 ℃, (b) 

Chronoamperometry measurement (8th cycles) in voltage steps between -0.4 V and 0.4 V (vs Ag) 

(shown inset), (c) XRD patterns of mesoporous TOFs with reduced film thickness, and (d) SEM of 

mesoporous TOFs (TWO coatings for more discernable) scratched from the substrate. 
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Table 2 Colouration efficiency and colouration/bleaching time of mesoporous TOFs heated at different 

temperatures. 

a: calculated using the optical transmittance value at 650 nm.  

b: Time to achieve 90% of total proton insertion capacity in 8th cycle. 

c: Time to achieve 90% of total proton extraction capacity in 8th cycle.   

d: based on the protons inserted into the TOFs structures within 30s under conditions specified in fig. 6. 

 

These results provide further evidence that, under test conditions specified in Fig. 4-5, the numbers of 

proton injection sites are dependent on the heat treatment temperature used to prepare the films: the 

higher the heating temperature, the lower the number of active proton injection sites. However, this 

phenomenon could be also associated with the deterioration in the mesostructures resulting from the 

heat treatment at higher temperatures and/or the initiation of crystallization of WO3 species in the 

frameworks, as it has been reported that crystalline tungsten oxide exhibits inferior kinetic performance 

than its amorphous counterpart [23, 24].  

 

The most relevant parameter describing the performance of electrochromic TOFs is the colouration 

efficiency (CE), which is defined by: 

Q

AA

T

T

QQ

OD
CE cb

c

blog
1)(

      (Eq.2) 

where, Δ(OD) is the variation in optical density, Q is the charge density (C/cm2), Tb, Tc and Ab, Ac are 

the transmittance (T) and absorbance (A) in the bleached, coloured states, respectively. In this work, 

mesoporous TOFs with thickness of 100nm (Fig. 6(d) show good transparency after thermal treatment 

at temperatures ranging from 250 oC to 350 oC. A representative optical spectrum of such a film is 

shown in Fig. 6(a). The obtained mesostructures in these samples were confirmed by XRD (Fig. 6(c)), 

and the detailed coloration efficiencies and charge densities were summarised in Table 2.  

 

It can be seen from Table 2 that colouration efficiencies for these TOFs stabilised at about 45 cm2C-1. 

Significantly, the colouration efficiency of TOFs heated at 300 oC nearly doubles the value reported on 

mesoporous TOFs (23.5 cm2C-1 for 300 oC heated film) in ref [13] and approaches the top of the typical 

range (30-50 cm2C-1) of values normally reported for tungsten oxide films [25]. Additionally, compared 

with WCl6-derived mesoporous TOFs reported in ref [13], the films heated at 300 oC and 350 oC 

showed very fast bleaching speed (<2 s), as can be seen from Fig. 6(b) and Table 2. Such performance 

is also superior to lamellar phase mesoporous tungsten oxide tested under similar conditions [7b], in 

Samples  

Colouration efficiency
 a
  

(CE)/cm
2
C

-1 Coloration timeb(s) 

/Bleaching time
c
(s) 

Charge density 
d
 

(mC/cm
2
) 

1
st
 cycle 4

th
 cycle 8

th
 cycle 

250 ℃ 3 h 65
 

41 47 8/10  5.1 

190 ℃ 2h 

 +300℃ 

2h 

34 52 44 10/2  6.9 

190 ℃ 2 h  

+350℃ 2 h 
28 49 46 11/2  8.2 
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which time of 5 s was taken to extract majority of the inserted protons. 

 

The highest charge density for films after heating at 350oC is up to 8.2mC/cm2. Considering the 

porosity and thin film thickness (around 100nm), such a high charge density can only be explained by 

the high surface area arising from the small pore size and thin pore walls. By comparison, upon 

coloration at -0.8V (vs SCE) for 30s, the transmission at 650 nm is still as high as 29% for WCl6 

derived mesostructured TOFs with thickness over 400nm [13], whilst the transmittance at 650nm of 

our 350nm thick TOFs is lower than 8% when coloured at -0.4 V for 30 s. This means such TOFs have 

great potential in applications demanding high light-intensity modulation, and that shorter colouration 

time or lower over potential needed to achieve the same transmittance.  

 

Such improved electrochromic properties arise from the well formed mesoporous structures obtained 

by Brij 56 templated sol-gel route from tungstic acid. More tests are under way to investigate the 

electrochromic stability and in organic electrolyte systems, e.g. LiClO4 in propylene carbonate. 

 

4. Conclusion 

 

A low cost, facile sol-gel process employing tungstic acid precursor and Brij 56 surfactant templating 

has been developed to produce mesostructured tungsten oxide films. Hexagonally ordered 

mesostructures with pore size of 2-3 nm and wall thickness can be obtained after heat treatment at 

400oC. Accessible mesopores formed at the surface were confirmed by TEM results. 

 

The formation of stable mesostructures and electrochromic behaviour of resulting TOFs are proved to 

be dependent on the preparation conditions used, notably the heat treatment conditions, to deposit the 

film and remove the surfactant. In the heat treatment temperature range between 250 oC and 350 oC, the 

response time of coloration/bleaching increases with temperature, whilst the colouration efficiencies 

are essentially independent of heat treatment temperatures and the associated changes in mesostructures. 

Attractive electrochromic properties including fast colouration and bleaching response (10 s and 2 s, 

respectively) and greatly improved colouration efficiency (>44cm2C-1) can be obtained on such TOFs. 

These represent greatly improved electrochromic properties compared with those reported for other 

surfactant templated mesoporous tungsten oxide based films [7b, 13]. High charge density up to 

8.2mC/cm2 can be achieved on such thin (100nm) mesostructured TOFs. It is therefore believed that 

such TOFs have great potential in electrochromic devices. 

 

XRD studies of the material as a function of electrochemical cycling provide what we believe to be the 

direct evidence of the process of mesostructural evolution in tungsten oxide materials during 

electrochemical cycling, which has been postulated by other workers.  
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