
1

Interactivity-Constrained Server Provisioning in
Large-Scale Distributed Virtual Environments

Duong Ta, Thang Nguyen, Suiping Zhou, Xueyan Tang, Wentong Cai, and Rassul Ayani

Abstract—Maintaining interactivity is one of the key challenges
in distributed virtual environments (DVE), e.g., online games,
distributed simulations, etc., due to the large, heterogeneous
Internet latencies; and the fact that clients in a DVE are usually
geographically separated. In this paper, we consider a new
problem, termed the interactivity-constrained server provisioning
problem, whose goal is to minimize the number of distributed
servers needed to achieve a pre-determined level of interactivity.
We identify and formulate two variants of this new problem
and show that they are both NP-hard via reductions to the
set covering problem. We then propose several computationally
efficient approximation algorithms for solving the problem. The
main algorithms exploit dependencies among distributed servers
to make provisioning decisions.

We conduct extensive experiments to evaluate the performance
of the proposed algorithms. More specifically, we use both static
Internet latency data available from prior measurements and
topology generators, as well as the most recent, dynamic latency
data collected via our own large-scale deployment of a DVE
performance monitoring system over PlanetLab. The results show
that the newly proposed algorithms that take into account inter-
server dependencies significantly outperform the well-established
set covering algorithm for both problem variants.

I. INTRODUCTION

Multi-player online games, distributed military simulations,
collaborative design, virtual shopping malls, etc. are typical
examples of distributed virtual environments (DVEs) [1].
Essentially, DVEs are distributed systems that enable multiple
geographically separated clients to interact with each other
in real time within a shared, computer-generated 3D virtual
world, where each client is represented by an avatar. A client
controls the behavior of his/her avatar by various inputs, and
the updates of an avatar’s state need to be sent to other clients
in the same part of the virtual world. In this way, each client
can be aware of and interact with other nearby clients.

Large-scale DVEs with thousands of geographically sep-
arated clients interacting concurrently often require a dis-
tributed server architecture [2], which may involve multiple
servers located in different data centers across the Internet.
In such architecture, each client interacts with others through
these servers. For better scalability, the common “divide-and-
conquer” practice spatially partitions the large virtual world
into distinct zones, with each zone managed by only one
server. Interactions only happen among clients in the same

Duong Ta, Thang Nguyen, Suiping Zhou, Xueyan Tang, Wentong Cai are
with the School of Computer Engineering, Nanyang Technological Univer-
sity, Singapore 639798. Email: {binhduong, ttnguyen, asspzhou, asxytang,
aswtcai}@ntu.edu.sg.

Rassul Ayani is with the School of Information and Communication
Technology, Royal Institute of Technology, Sweden. Email: rassul@imit.kth.se

zone, and clients may move from one zone to another. For
fast-paced first person shooters (FPS) games, the duration that
players stay in a zone may be short, e.g., under one hour. On
the other hand, in highly popular massively multi-player role-
playing games (MMORPG), players may remain in a zone for
quite long, typically on the order of several months.

Maintaining good interactivity for DVEs has been very
challenging due to the heterogeneous nature of the Internet
and the fact that clients in a DVE are usually geographically
distributed. It is likely that a large number of clients in a zone
may be far away (in terms of round-trip network latency) to the
server hosting that zone, thus the interactivity of the DVE for
those clients may be greatly degraded. Previous work [3], [4],
[5] have focused on the problem of maximizing interactivity
given limited server resource. This problem, referred to as the
zone mapping problem in [4], [5], assumes that the underlying
infrastructure is given (in terms of the number of distributed
servers as well as their locations), which may cause over or
under provisioning.

Before deploying any DVEs over the Internet, an important
consideration is how much server resource is needed to meet
certain interactivity requirement. In this paper, we consider a
new problem, referred to as the interactivity-constrained server
provisioning problem. Essentially, this problem looks at how to
achieve a pre-specified level of interactivity for a certain DVE
configuration with minimum number of servers. Solutions to
such problem would allow DVE administrators to specify or
fine tune the desirable interactivity level of the DVE based
on their organizations’ financial constraints or other business
objectives.

Note that this server provisioning problem complements
existing approaches such as the zone mapping approach
described above. For example, the DVE administrator may
want to guarantee a certain level of interactivity, e.g., every
zone in the DVE must have at least 90% of its clients
with round-trip client-server latency under 100ms, and at the
same time minimize the number of servers. This problem
obviously cannot be solved using the zone mapping approach.
The main reason is that such approach only maximizes the
overall interactivity of the DVE; assuming a fixed number
of distributed servers that are already provisioned. For this
kind of problem, the DVE administrator may use some server
provisioning algorithms (described later in this paper) to pro-
vision a minimum number of servers that meet the interactivity
requirement. Subsequently, zone mapping approaches can be
used to further improve interactivity if needed, based on the
already provisioned server infrastructure.

Below, we summarize the primary contributions of this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322322147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

paper.
• We consider a new problem named interactivity-

constrained server provisioning. We investigate and formulate
two variants of this problem. We also show that both of these
two variants are NP-hard, by reducing each of them to the set
covering problem, which is NP-hard.
• We propose several computationally efficient approxima-

tion algorithms for the two variants mentioned above. The
main algorithms take into account the unique characteristics
of the new problem’s context and formulation, such as the
dependencies among distributed servers.
• We develop and deploy a distributed software framework

named DINE for enabling more realistic evaluations of the
proposed algorithms under dynamic Internet conditions. The
framework can be used as either an evaluation platform for the
development of new interactivity enhancement algorithms, or
a real-world performance monitoring and management suite
for existing DVEs.
• We conduct extensive experiments with realistic models

and settings to evaluate the effectiveness of the proposed
algorithms. In particular, we use both static Internet latency
models generated by the tool DS2 [6], and BRITE [7], as
well as dynamic latency data gathered over a two-week period
from PlanetLab using DINE. We also use iPlane [8], an
Internet performance estimation system, to collect input data
for the algorithms1. The main goal of employing iPlane is to
evaluate the sensitivity of the proposed algorithms with regard
to inaccurate input data.

The key results show that two of our proposed algo-
rithms, namely Greedy-Z and Greedy-C, work best for the
two variants, respectively. These algorithms also significantly
outperform the well-known set covering algorithm in most
cases, especially when interactivity requirement is high.

The rest of the paper is organized as follows. Section
II formulates the server provisioning problem and its two
variants. The proposed algorithms are presented in Section
III. Evaluation methodology is described in Section IV. Ex-
periment results are summarized and analyzed in Sections V.
Related work is discussed in Section VI, and Section VII
concludes the paper.

II. THE INTERACTIVITY-CONSTRAINED SERVER
PROVISIONING PROBLEM

A. System models and assumptions

In this paper, we assume a geographically distributed server
architecture with well-provisioned, low-latency inter-server
network links (Figure 1). The whole virtual world is par-
titioned into a number of distinct zones, with each zone
managed by only one server.

We further assume that server capacity is unbounded, i.e., a
server can take an unlimited number of clients. In fact, a server
in this paper should be better referred to as a server site, e.g.,
a data center, or a portion of a data center. We argue that all
the costs such as server hardware cost, communication and
power infrastructure cost, administration cost, etc. involved

1We use various latency models/datasets in this paper as currently there is
no single model that can reflect all the properties of Internet latency

in setting up a server site would be significantly higher than
simply increasing the capacity of an existing site. Therefore,
the focus of this paper is to minimize the number of server sites
used without considering capacity of each site. For simplicity,
we use the term “server” and “server site” interchangeably
from now on.

Fig. 1. Distributed server architecture

With the presence of low-latency inter-server links, a client
in DVE may connect to its server directly or indirectly. In
this paper, we define a client’s contact server as the server
that the client directly connects to. Clients send inputs only to
their contact servers. The contact server may execute the input
and respond to the client if it is hosting the client’s zone , or
it may forward the input to another server which is hosting
the client’s zone. For example, in Figure 1, server s1 is the
contact server of three clients c1, c2 and c4, while c3’s contact
server is s3.

We also define a client’s target server as the server hosting
the client’s zone. Inputs from a client will always be forwarded
to its target server. The target server may respond to the client
directly if it is also the contact server of the client, or it may
respond indirectly via the client’s contact server. All clients
in a zone have the same target server (therefore, we may say
“the target server of a zone”), while they may have different
contact servers. In Figure 1, we have two zones z1 and z2

mapped to servers s1 and s2, respectively. Server s1 is both
the contact and target server of c1, c2 and c4, while s2 is the
target server of c3 and c5. s2 is also the contact server of c5,
while c3’s contact servers is s3. Inputs from c3 are forwarded
to s2 via s3.

Similar to previous work in this area, e.g., [5], [9], we
assume that the client-server communication latency in DVE is
solely determined by the client-server network latency. This is
because generally it would be easier to reduce the processing
time at the server side by adding more computing power than
to reduce message transmission delays in the network.

We also assume that the locations of clients in the virtual
world are known in advance, i.e., we know the zone of each
client. We further assume that clients would stay in their
zones for a considerably long period, e.g., a few months,
which means that server re-provisioning will not take place
frequently. This is a reasonable assumption, as this is the case
with the current well-known MMORPGs in which players
spend months exploring a zone, while the game operator keeps
releasing content updates which continue to retain the players.

3

B. Problem statement

The following notations are used in the problem statement.
• C = {c1, ..., ck} - The set that consists of all clients ci

in the DVE.
• Z = {z1, ..., zn} - The set that consists of all zones i in

the DVE, where zi denotes all clients in zone i.
• S = {s1, ..., sm} - The set that consists of all servers si

in the DVE.
• sc(ci) - The contact server of a client ci.
• st(ci) - The target server of a client ci.
• dcisj - The round-trip network delay between a client

ci and a server sj .
• dsisj

- The round-trip inter-server network delay between
server si and server sj .
• D - The delay bound of a DVE. The delay bound indi-

cates the maximum round-trip communication delay between
a client and its target server to maintain a desired level of
interactivity for the DVE. For different types of DVEs, there
are different delay bound requirements. For example, the delay
bounds of First-Person Shooter (FPS) games and car-racing
games are about 250ms [10] and 100ms [11], respectively.
It is also possible for zones in a DVE to have different delay
bounds, for instance, each zone hosts a different type of games.

For interactive applications like DVEs, communication de-
lay is the most important Quality of Service (QoS) parameter
that the system provides to clients [10]. In this paper, we say
that a client is with QoS or without QoS if the communication
delay between the client and its target server is less or equal
to the delay bound, and otherwise. For instance, we say client
ck ∈ zj is with QoS if dcksc(ck) +dsc(ck)st(ck) ≤ D. Note that
if sc(ck) = st(ck) then dsc(ck)st(ck) = 0.

The interactivity-constrained server provisioning problem
can be stated as follows. Given the sets C, Z and S of all
the clients, zones and servers, find the smallest subset of
servers SL ∈ S to manage C and Z so that a predefined
QoS requirement is satisfied.

The DVE administrator could adjust the QoS parameter to
fine-tune the performance objective based on some business
strategies. Depending on the definition of the QoS require-
ment, we have two variants of the server provisioning problem,
namely QoS requirement considering zones (QoSZ), and QoS
requirement considering clients (QoSC).

The first variant, QoSZ, requires that each zone in the
system is with QoS, i.e., satisfying the given QoS require-
ment pQoSZ, as shown in Equation (1). For example, if
pQoSZ = 0.9, then an optimal solution to this variant should
provision the least number of servers so that each zone in the
DVE has at least 90% of its clients with QoS.

|{ck ∈ zj : dcksc(ck) + dsc(ck)st(ck) ≤ D}|
|zj | ≥ pQoSZ,∀zj ∈ Z

(1)
The second variant, QoSC, does not require QoS guarantee

for every zone. Instead, it considers the percentage of all
clients in the system that are with QoS, as shown in Equation
(2).

|{ck ∈ C : dcksc(ck) + dsc(ck)st(ck) ≤ D}|
|C| ≥ pQoSC (2)

One of the reasons why we would need two such different
formulations is that, in some scenarios, it is sometimes not
possible to find a solution for the QoSZ variant due to the strict
QoS requirement, i.e., every zone needs to satisfy the given
pQoSZ. Secondly, client distributions across zones may be
uneven due to time-zone differences and personal preferences.
In such cases, each zone should not be treated as equal in terms
of QoS consideration, since the number of clients per zone
may vary greatly. Thirdly, due to business objectives, it may
not be worthwhile to provision many extra servers to satisfy
the QoS requirement for all the zones. In these situations, the
QoSC variant offers more flexibility to the decision maker.

We also note that the QoS requirement for the QoSZ variant
may be harder to satisfy compared to that for the QoSC variant,
given pQoSZ = pQoSC. This is because in the former
variant, every zone needs to meet the given pQoSZ, while it
is not the case for the latter, i.e., some zones may have better
or worse QoS than pQoSZ. Therefore, we have the following
important remark.

Remark II.1. Assuming pQoSZ = pQoSC, any valid solu-
tion for the QoSZ variant will also be a valid solution for the
QoSC variant, but not vice versa.

C. Complexity analysis

Theorem II.1. The two variants QoSZ and QoSC of the
interactivity-constrained server provisioning problem are both
NP-hard.

Proof: We first show that the QoSZ variant is NP-hard.
Considering a special case of this problem, in which we
assume that the inter-server network is not well-provisioned,
hence there is no benefit for each client to relay traffic to its
target server from a different contact server due to the large
inter-server network latencies. Hence, each client will have the
same server as both its target and contact servers. The QoSZ
variant now becomes exactly the same as the set covering
problem [12], in which a set is defined as the set of zones
“covered” by a single server. A server si is said to “cover” a
number of zones if it satisfies the QoS requirement pQoSZ
for each of these zones. Since the QoSZ variant generalizes
the set covering problem, which is NP-hard, it is also NP-hard.

The proof for the QoSC variant is similar. We again consider
a special case of this variant, in which each client’s target
and contact servers are the same. We further assume that
pQoSC = 1, i.e., we need to provide QoS for all clients
in the system. This special case of the QoSC variant is also
a set covering problem, in which a set is defined in the same
manner as in the above proof.

III. SERVER PROVISIONING ALGORITHMS

Since both variants of the interactivity-constrained server
provisioning problem are NP-hard, in this paper we will focus
more on proposing computationally efficient heuristics that

4

provide decent approximate solutions. In the following, we
first describe algorithms for the QoSZ variant. Algorithms for
the QoSC variant are actually modified versions of those for
the QoSZ variant, hence we will briefly discuss them later in
this section.

A. Algorithms for the QoSZ variant
1) Greedy-Z: Algorithm 1 shows the details of the Greedy-

Z algorithm. Basically, for each iteration, Greedy-Z considers
a new, unselected server si. This server is then added into a
temporary server set S′L = SL ∪ {si}, where SL is the set
of already selected servers. The algorithm determines the set
of zones with QoS provided by S′L in line 7 of Algorithm 1.
Then, the server smax (among all unselected servers si) that
results in the largest number of zones with QoS is added into
SL. The algorithm terminates successfully if it can find a set
of servers SL that provides QoS for all the zones, otherwise
it returns “NULL”.

In line 7 of Algorithm 1, we determine a set of zones with
QoS provided by a given set of servers S′L as follows. For
each zone zj in the system, we check if it is possible to find a
server si ∈ S′L to be zj’s target server, and a set of servers in
S′L to serve as contact servers for all clients in zj . The goal is
to satisfy pQoSZ for zj , i.e.,

|{ck∈zj :dcksc(ck)+dsc(ck)si
≤D}|

|zj | ≥
pQoSZ, where sc(ck) ∈ S′L. Note that a zone has a single
target server, while clients in a zone may have different contact
servers. If such servers can be found in S′L, we say that S′L
provides QoS for zj . We repeat the procedure for all zones in
the system to get the total number of zones with QoS provided
by S′L.

Algorithm 1: The Greedy-Z algorithm
Data: sets of servers, zones and clients S, Z, C
Result: set of selected servers SL, or NULL if no

solution is found
begin1

initialize the set of zones with QoS Zc = Φ, SL = Φ;2

while |Zc| < |Z| do3

initialize smax = NULL;4

foreach si ∈ S \ SL do5

S′L = SL ∪ {si};6

determine the set of zones Z ′ with QoS7

provided by S′L ;
if |Z ′| ≥ |Zc|, assign smax = si and Zc = Z ′;8

end9

SL = SL ∪ {smax};10

if |SL| = |S| and |Zc| < |Z|, return NULL;11

end12

return SL;13

end14

Remark III.1. The complexity of the Greedy-Z algorithm is
O(m3k), where k is the number of clients and m is the number
of servers.

Proof: In Algorithm 1, the main loop (line 3-12) will be
executed at most m time. The inner loop (line 5-9) of the

algorithm determines a set of zones with QoS provided by
a set of servers, which requires O(m2k). This is because for
each zone, we need to select a pair of contact and target servers
that can provide QoS for that zone among a maximum number
of m servers. In addition, to check if a zone is with QoS for
a given pair of contact-target server, we need to check all the
clients of that zone in the worst case. Hence, the Greedy-Z
algorithm requires O(m3k).

The Greedy-Z algorithm shares some similarity with the
well-known set covering algorithm [12], in which a server
and a zone in Greedy-Z correspond to a set and an element
in the set covering algorithm, respectively. The set covering
algorithm has a known approximation ratio of ln n, where n
is the number of elements that need to be covered.

The key difference between the two algorithms is due
to well-provisioned inter-server network links in the QoSZ
formulation. Therefore, a server si can “cover”, i.e., provide
QoS for, different sets of zones, depending on other servers
in the already selected server set. In the original set covering
problem, a set only covers a fixed number of elements, and
there is no dependency among the sets.

For example, let’s assume we have two servers s1 and s2.
The QosZ requirement pQoSZ is set to 1, and the delay bound
D is set to 100ms. Each server can provide QoS for one
zone (namely z1 and z2, respectively), i.e., 2 zones in total if
we consider the servers separately. It is possible that the set
{s1, s2} can provide QoS for more than 2 zones, due to the
low-latency inter-server links which may reduce client-target
server delays. For example, consider another zone z3 with
two clients c1 and c2. We further assume that dc1s1 = 50ms,
dc1s2 = 150ms, dc2s1 = 150ms, dc2s2 = 50ms and ds1s2 =
50ms. It is clear that either s1 or s2 alone will not be able
to provide QoS to z3, given D = 100ms and pQoSZ = 1.
However, considering the inter-server latency ds1s2 = 50ms,
we may assign z3 to either s1 or s2, and still meet the QoS
requirement. For example, if z3 is assigned to s2, then dc1s2 =
dc1s1 + ds1s2 = 100ms.

The above example is not applicable for the original set
covering algorithm. For example, the maximum number of
elements that a combination of two sets (each covering 1
different element) can cover is 2.

Due to the relationship between Greedy-Z and the set
covering algorithm in [12], we have the following remark.

Remark III.2. Assume a special case of the QoSZ variant in
which inter-server network links are not well-provisioned. In
this case, the Greedy-Z algorithm provides an approximation
ratio of ln n to the optimal solution, where n is the number
of zones.

We note that finding a tight approximation bound for the
general case of the QoSZ variant is a challenging problem of
its own, and we leave it for future work.

2) SetCover-Z: The SetCover-Z algorithm implements the
server selection strategy originally proposed for the set cov-
ering problem [12]. The pseudo-code for the algorithm is
shown in Algorithm 2. Such strategy does not consider inter-
server dependency, i.e., the merit of each server is assessed
individually. In each iteration of Algorithm 2, we find a

5

Algorithm 2: The SetCover-Z algorithm
Data: sets of servers, zones and clients S, Z, C
Result: set of selected servers SL, or NULL if no

solution is found
begin1

initialize the set of zones with QoS Zc = Φ, SL = Φ;2

while |Zc| < |Z| do3

initialize smax = NULL, n withQoS = 0;4

foreach si ∈ S \ SL do5

initialize Z ′ = Φ;6

determine the set of zones Z ′ ⊆ Z \ Zc with7

QoS provided by only si;
if |Z ′| ≥ n withQoS, assign smax = si and8

n withQoS = |Z ′|;
end9

SL = SL ∪ {smax};10

determine the set of zones Zc with QoS provided11

by SL;
if |SL| = |S| and |Zc| < |Z|, return NULL;12

end13

return SL;14

end15

single server smax providing QoS for the largest number of
remaining zones, i.e., those zones that are not already in Zc.
This server is then added into the list of selected servers SL.
The algorithm terminates successfully if it can find a set of
servers SL that provides QoS for all the zones, otherwise it
returns “NULL”.

Note that line 7 of Algorithm 2 determines the number of
zones with QoS provided by each server si differently from
Greedy-Z. That is, SetCover-Z does not consider any other
servers in conjunction with the server si in question. This
is the same as in the original set covering algorithm which
considers each set separately. As a result, a zone with QoS
provided by si in line 7 of Algorithm 2 would have that same
server as both its target and contact servers. However, to be fair
when checking the termination condition, line 11 of Algorithm
2 calculates the number of zones with QoS using the entire
set of servers that have been selected up to this point. The
calculation in this step is similar to that in line 7 of Algorithm
1, i.e., fast inter-server links would be utilized.

Remark III.3. The complexity of the SetCover-Z algorithm
is O(m3k), where k is the number of clients and m is the
number of servers.

Proof: In Algorithm 2, the main loop (line 3-13) will be
executed at most m time. The inner loop (line 5-9) of the
algorithm determines a set of zones with QoS provided by a
single server, which requires O(mk). On the other hand, line
11 of Algorithm 2 requires O(m2k). Hence, the SetCover-Z
algorithm requires O(m3k).

3) Random-Z: The Random-Z algorithm (Algorithm 3)
serves as a reference point for comparison against Greedy-
Z and SetCover-Z. At each iteration of this algorithm, we add
a randomly selected server si to the set SL. We determine the

Algorithm 3: The Random-Z algorithm
Data: sets of servers, zones and clients S, Z, C
Result: set of selected servers SL, or NULL if no

solution is found
begin1

initialize the set of zones with QoS Zc = Φ, SL = Φ2

;
while |Zc| < |Z| do3

randomly select a server si ∈ S \ SL;4

SL = SL ∪ {si};5

determine the set of zones Zc with QoS provided6

by SL;
if |SL| = |S| and |Zc| < |Z|, return NULL;7

end8

return SL;9

end10

set of zones with QoS provided by all servers in SL in a similar
way to the Greedy-Z algorithm. This algorithm terminates
successfully when all zones are with QoS, otherwise it returns
“NULL”.

Remark III.4. The complexity of the Random-Z algorithm is
O(m3k), where k is the number of clients and m is the number
of servers.

Proof: In Algorithm 3, the main loop (line 3-8) will be
executed at most m time. Line 6 of the algorithm determines
a set of zones with QoS provided by a set of servers, which
requires O(m2k). Hence, the Random-Z algorithm requires
O(m3k).

4) Optimal-Z: The Optimal-Z algorithm (Figure 4) finds
the best possible solution for the QoSZ variant. It does so
by considering and evaluating all possible combinations of
potential servers, and selecting the smallest subset of servers
that provide the required level of QoS. We should note that due
to the exponential complexity (Remark III.5), this algorithm
is only applicable for small instances of the QoSZ variant.

Algorithm 4: The Optimal-Z algorithm
Data: sets of servers, zones and clients S, Z, C
Result: set of selected servers SL, or NULL if no

solution is found
begin1

initialize the set of zones with QoS Zc = Φ, SL = S2

;
find the set P (S) containing all subsets of S;3

foreach S′ ∈ P (S) do4

determine the set of zones Zc with QoS provided5

by S′;
if |Zc| = |Z| and |S′| < |SL|, SL = S′;6

if |SL| = |S| and |Zc| < |Z|, return NULL;7

end8

return SL;9

end10

6

Remark III.5. The complexity of the Optimal-Z algorithm is
O(m2k2m), where m is the number of servers, and k is the
number of clients.

Proof: In Algorithm 4, the main loop (line 3-8) will
be executed 2m times. Line 5 of the algorithm determines
a set of zones with QoS provided by a set of servers, which
requires O(m2k). Hence, the Optimal-Z algorithm requires
O(m2k2m).

B. Algorithms for the QoSC variant

In the QoSC variant, the optimization objective is to
minimize the number of servers provisioned to ensure the
percentage of clients with QoS in the system is at least
equal to the given QoS requirement pQoSC × 100%. As
algorithms designed for this variant consider all clients in
the system rather than each individual zone; there may be
some zones with higher or lower QoS levels than pQoSC
in the end. All the three QoSC algorithms in the following
discussion are modified versions of the corresponding QoSZ
algorithms; hence we will just briefly describe each of them
while highlighting the key differences with those for the QoSZ
variant.

1) Greedy-C: The Greedy-C algorithm is similar to the
Greedy-Z algorithm (Algorithm 1). The main difference be-
tween the two is due to the QoS requirement for each variant.
In each iteration, Greedy-C selects the server that, if added
into the already selected server set, will result in the largest
number of individual clients with QoS.

The algorithm determines the number of clients with QoS
provided by a set of servers S′L as follows. For a zone zj in
the system, we do a similar check as in Greedy-Z to find a
target server sk ∈ S′L, and a set of contact servers Sc ⊆ S′L, so
that the QoS level of zj would be maximized2. This procedure
would be repeated for each zone to get the total number of
clients with QoS provided by S′L. The algorithm terminates
if the percentage of clients with QoS in the system is equal
to or larger than pQoSC × 100%, or all servers have been
used. Note that there may be remaining zones that have not
been checked when the algorithm terminates. These zones can
be assigned to any of the selected servers later, as their QoS
levels do not contribute towards satisfying the given pQoSC
requirement.

Remark III.6. The complexity of the Greedy-C algorithm is
O(m3k), where k is the number of clients and m is the number
of servers.

Proof: The proof is similar to that for Remark III.1.
2) SetCover-C: The SetCover-C follows a similar server

selection strategy outlined in Algorithm 2. At each iteration,
SetCover-C selects the server smax that provides QoS for the
largest number of remaining individual clients. This algorithm
would terminate when the percentage of clients with QoS in
the system becomes equal to or larger than pQoSC × 100%,
or all servers have been used.

2The best case is that all clients in zj are with QoS.

Remark III.7. The complexity of the SetCover-C algorithm
is O(m3k), where k is the number of clients and m is the
number of servers.

3) Random-C: At each iteration of this algorithm, a ran-
domly selected server si will be added into the set of already
selected servers SL. We determine the set of clients with QoS
provided by SL in a similar way to Greedy-C. The terminating
condition for Random-C is the same as those for Greedy-C and
SetCover-C. The pseudo-code for this algorithm is similar to
Algorithm 3.

Remark III.8. The complexity of the Random-C algorithm
is O(m3k), where k is the number of clients and m is the
number of servers.

4) Optimal-C: This algorithm is similar to Optimal-Z,
except that we determine the set of clients with QoS provided
by a set of servers similarly to Greedy-C. Optimal-C is also
applicable to small instances of the QoSC variant only.

Remark III.9. The complexity of the Optimal-C algorithm is
O(m2k2m), where k is the number of clients and m is the
number of servers.

IV. EVALUATION METHODOLOGY

For more realistic and reliable algorithm evaluation, we
employ both the traditional approach of using static client-
server round-trip latency data [4], [9]; as well as dynamic
latency data obtained via our own real-world deployment
of a DVE interactivity monitoring system. Considering the
high overhead of direct latency measurement in reality, we
also conduct experiments with iPlane [8], an Internet latency
prediction system. We use latency estimations from iPlane to
assess the robustness of the proposed provisioning algorithms
in the presence of inaccurate input data.

Since the workload distributions in real-life DVEs are hardly
uniform, we also consider various client distributions in both
the network as well as in the virtual world; and the correlation
between each client’s network location and its virtual world
location.

A. Static latency data

For the static latency model, we largely follow the method-
ology presented in [4]. To generate realistic round-trip latency
data between all servers and clients in the system, we employ
the tool DS2 (Delay Space Synthesizer) [13]. DS2 takes real
latency measurements3 as inputs and builds models that exhibit
most of the essential properties of the Internet latency space,
such as overall delay distribution, global and local clustering,
delay growth metrics, triangle inequality violations, etc. The
first two rows of Table I list the DS2-generated network
latency datasets used in this paper. Each has a maximum
round-trip latency of 1000 ms.

3Real-life, large-scale Internet latency measurements often produce in-
complete data due to various reasons, e.g., network/server outage. DS2

can interpolate missing measurements, which is very convenient for our
simulation.

7

TABLE I
STATIC LATENCY DATA

Name Model Nodes Links
REAL1 DS2, Matrix1 from [6] 3000 -
REAL2 DS2, Matrix2 from [6] 3000 -
BRITE1 Waxman 3000 6000
BRITE2 Barabasi-Albert 3000 5997

For diversity, we also employ latency data based on network
topologies generated by the popular topology generator BRITE
[7]. The last two rows of Table I list those datasets. End-to-end
network latencies for each topology are calculated following
shortest-path routing. The link latency values in these topolo-
gies are generated by BRITE, which are proportional to the
physical distance between the two nodes of each link. Each
topology has a maximum round-trip latency of 300 ms.

B. Dynamic latency data

Previous studies in DVE interactivity enhancement, for ex-
ample [4], [5], [9], assume static pair-wise client-server round-
trip Internet latencies. In reality, Internet latency fluctuates
frequently due to unexpected network load, routing problem,
router/server failures, etc. Any networking algorithm, not just
those designed specifically to improve DVE interactivity, that
relies on measured latency or bandwidth at one time might
not be working well at a later time. Therefore, it is desirable
to examine the performance of the proposed server provision-
ing algorithms considering such realistic Internet conditions.
On the other hand, the large-scale, distributed and real-time
nature of typical DVEs makes it even more challenging to
collect sufficient and reliable data to judge whether a newly
developed approach does indeed produce tangible performance
improvement.

For this purpose, we have proposed and developed a scal-
able and extensible software framework named DINE (DVE
INteractivity Evaluation) [14] to support the development,
integration, and performance evaluation of network latency
based methods for improving the interactive performance of
large-scale DVEs [14]. The framework should be flexible
enough to serve as either an evaluation platform for the de-
velopment of new DVE interactivity enhancement methods, as
well as a real-world performance monitoring and management
suite for existing DVEs. In this paper, we use DINE to examine
the performance of the server provisioning algorithms under
dynamic Internet condition. For ease of reference, key features
of DINE are briefly mentioned below.

1) The DINE framework: The core of DINE is an effi-
cient tool to measure, analyze and visualize DVE interactive
performance. Some of the most important design goals of
the DINE tool are scalability, fault-tolerance and extensibility.
First, the tool needs to be scalable, as DVE interactivity
measurement might involve thousands of distributed clients
interacting concurrently in the virtual world. Second, as men-
tioned previously, the Internet may be unreliable at times, as
server and network outages are common problems. The tool
must have the capability to handle such unexpected events to
avoid erroneous measurements which may lead to misleading

Fig. 2. The DINE tool’s components and extensible modules

(a) Real-time monitoring

(b) Data analysis and visualiza-
tion

Fig. 3. Screenshots of the DINE tool in action

conclusions. Third, as new, more efficient networking tools
continue to emerge, our tool needs to be able to take advantage
of such developments easily.

Figure 2 shows the tool’s key software components and
extensible modules used by each component. In particular, the
two main components are the “main DVE monitor” (MDM)
and the “DVE server monitor” (DSM). The tool and its com-
ponents have been implemented in Java for better portability.
Figure 3 shows some screenshots of the tool.
• The MDM component: The MDM runs on a cen-

tral server and has a GUI-based interface for ease of use
by DVE administrators or algorithm developers. It provides
functionalities such as simulation suppporting tools, algorithm
integration, real-time performance monitoring, measurement
error handling, data post-processing, analysis and visualiza-
tion. These functionalities are designed as “plugins”, i.e.,
developers/researchers can develop their own modules with
enhanced functionality as they wish; and “plug” them into the
DINE architecture in a straightforward manner.

8

• The DSM component The DSM is a light-weight
component running on each DVE server. In our prototype
implementation, it has two main tasks. The first task involves
receiving and applying algorithm execution’s outcome sent
from the MDM’s Algorithm module. The second one collects
performance information regarding each server, and sends
back to the MDM for consolidation.

Various performance indicators can be collected, e.g., CPU
and memory utilization, network load, server downtime, etc.
In this paper, we focus on collecting round-trip client-server
network latency using direct measurement and prediction. It
is well-known that large-scale data collection on the Internet,
with thousands of clients’ and servers’ locations, is a very
challenging task on it own [13]. Latency prediction/estimation
techniques, such as Meridian [15] or iPlane [8] may have an
advantage due to their scalability, however the accuracy could
be compromised. On the other hand, direct measurement using
the simple “ping” command, or indirect method like King [16]
are likely to provide more accurate results at the cost of higher
measurement overhead. For this paper, we have implemented
a scalable direct measurement mechanism using“ping” in the
DINE tool. This is the main method to collect latency data
periodically over time for the performance evaluation in this
paper.

Due to the high overhead of direct measurements, we
also employ latency prediction using iPlane [8], which is a
scalable service developed at the University of Washington
for predicting Internet path performance4. The service con-
structs a structural model of the Internet, and predicts end-
to-end performance by composing measured performance of
segments of known Internet paths. iPlane can predict Internet
latency, bandwidth, loss rates, etc. among other things between
arbitrary Internet hosts.

In addition to real, directly measured data, we use iPlane’s
latency predictions to construct the input data for the server
provisioning algorithms. Then, we continuously monitor the
performance variation of the algorithms over time using real,
direct measurements. The primary goal of such experiments
is to assess the robustness and resiliency of the proposed
algorithms under real Internet conditions, where accurate input
data are hard and expensive to collect.

2) Deployment of the DINE framework: To evaluate the
proposed server provisioning algorithms with dynamic la-
tency data, the DINE tool is deployed over PlanetLab
(http://www.planet-lab.org). PlanetLab is an Internet-scale re-
search network testbed that supports the development of new
network services. Many researchers from both academia and
industry have used this platform to develop and evaluate new
technologies for distributed storage, network mapping, peer-
to-peer systems, distributed hash tables, and query processing.
At the time of writing, PlanetLab has 1074 nodes at 496 sites
distributed all over the Internet.

For latency measurement/predictions, we collect the sets of
servers’ network locations (IP addresses) and clients’ network

4We have also tested out freely available prediction systems such Meridian
[15] and Pyxida [17]. However, Meridian does not provide latency estimation
between arbitrary hosts, while Pyxida requires significant deployment efforts
for the scale of our measurement (more than 800 hosts on PlanetLab).

locations from PlanetLab. The 28 potential DVE servers are
assumed to be physically located at the 28 network locations
listed in Table II. These servers are also assumed to have
unlimited capacity. At each server location, we deploy an
instance of the DSM. The MDM runs on a dedicated server
in our institution’s network. The communication between
instances of the DSM and the MDM is done via TCP.

TABLE II
LOCATION DISTRIBUTION OF SERVERS ON PLANETLAB

Region North America Europe Asia Others
Num. of locations 7 10 7 4

The dynamic latency data collection for this paper started
on Jun 24, 2010 2:27:16 AM and ended on Jul 7, 2010 1:04:26
PM, Singapore local time. There are originally over 800
clients’ network locations used for the data collection. After
filtering out unresponsive ones that caused measurement errors
in both DINE and iPlane, we are left with 497 locations (Table
III). Each simulated client plays in one of the virtual world
zone, and is assumed to be physically located at one of the
497 network locations. The number of clients per location may
vary according to the chosen workload distribution discussed
below. We note that there are more locations available from
North America and Europe compared to other regions. This is
due to the degree of contribution/participation into PlanetLab
of countries in each continent.

With 28 servers and 497 client locations, we still have
missing and erroneous measurements between some client-
server pairs in our dynamic dataset. We use DINE’s utilities
to pre-process the dataset as follows. For any pair without a
valid measurement, or with a very high value (e.g., more than
5 seconds), we will give it the median of all the corresponding
values collected by the end of the measurement. We have high
confidence in the final dataset since the total number of such
replacements constitute less than 0.8% of the entire data.

TABLE III
LOCATION DISTRIBUTION OF CLIENTS ON PLANETLAB

Region North America Europe Asia Others
Num. of locations 216 197 57 27

C. Workload models

TABLE IV
DISTRIBUTION TYPES

Type 0 1 2 3
Client cluster in VW No Yes No Yes
Client cluster in NW No No Yes Yes

1) Client distributions: For more robust and reliable simu-
lation results, we have simulated a number of combinations
of client distributions in both the virtual world (VW) and
the network (NW). Table IV shows these combinations. The
rationale for simulating various distributions is that the number
of clients may be larger in some specific zones of the virtual
world than others. This is due to the clustering of clients

9

in these more popular zones, e.g., those with more game
resources would attract more players. In the network, due
to the differences in time zones of geographically distributed
clients, at a specific time, the number of online clients in the
DVE may be quite different for different geographic regions
[18].

To simulate the clustering behavior of clients in the virtual
world or the network, we randomly select some zones or net-
work locations to have more clients than other zones/locations.
More specifically, in the clustered distribution in the virtual
world, a popular zone would have about 4 times more clients
compared to an average zone. For the network, clustered
locations would have about 3 times more clients than the rest.
Similar performance trends have been observed throughout the
study with varying cluster sizes and numbers.

2) Correlation factor: To model the relationship between
clients’ locations in the network and in the virtual world, we
use a correlation factor denoted as δ, where 0 ≤ δ ≤ 1 [19].
The higher the value of δ, the stronger the tendency for clients
from the same network location to gather in the same zone
of the virtual world. The rationale for this correlation factor
is that, in general, we should note that clients gathering in
the same zone of a DVE may not necessarily be close to
each other in terms of their network locations. On the other
hand, it is natural to observe that clients that are close to each
other in their physical locations (e.g., from the same country
or the same geographic region) tend to gather in a specific
zone of the virtual world since they may share similar cultural
preferences. The correlation between these two kinds of client
locations may have some impacts on the performance of our
server provisioning algorithms.

D. Default settings and parameters

Unless otherwise stated, the following assumptions and
default settings are used in the experiments. The clients are
uniformly distributed in the network as well as in the virtual
world, and the correlation factor is zero. There are 5000 clients
coming from 100 uniformly selected network locations, 100
zones, and 100 servers, each having unlimited capacity. Server
locations are uniformly distributed in the network. The DVE
delay bound D is set to 100ms to simulate high interactivity
requirement. We also conduct experiments with the delay
bounds of zones ranging from 50ms to 150ms. The default
QoS requirements are pQoSZ = 0.8 and pQoSC = 0.95.
The default latency dataset is REAL1. Similar to [20], the
latencies on inter-server network links are set to 10% of the
original values directly obtained from the latency datasets to
emulate the well-provisioned inter-server network links.

V. RESULTS AND ANALYSIS

In this section, we describe the experiment results which
are the average of 50 independent simulation runs.

A. Performance of QoSZ algorithms

1) Static latency data: We first present the experiment
results for the static latency datasets listed in Table I. Figure

4(a) to 4(c) show the performance of the proposed QoSZ
algorithms in terms of number of provisioned servers with
various QoS requirements ranging from 0.7 to 0.95. In par-
ticular, Figure 4(a) shows the performance of all four QoSZ
algorithms with a dataset of 10 potential servers5. On the
other hand, Figure 4(b) and 4(c) both show the performance
of Greedy-Z, SetCover-Z and Random-Z for a larger set of
potential servers (100 servers). In Figure 4(c), we vary the
delay bounds of zones to reflect possible real-world scenarios,
in which each zone may have a different interactivity require-
ment. More specifically, we assign a randomly selected delay
bound of either 50ms, 100ms or 150ms to each zone in this
experiment.

Unsurprisingly, increasing QoS requirement requires more
servers to be provisioned in most cases. The figures also
show that most of the time Greedy-Z significantly outperforms
the other two algorithms (SetCover-Z and Random-Z). More
specifically, in Figure 4(b), Greedy-Z outperforms Random-
Z by a factor ranging from 2.5 to 9.6, and outperforms
SetCover-Z by a factor ranging from 2 to 8.6. The performance
improvement of Greedy-Z is much more pronounced as the
QoS requirement increases. This illustrates the effectiveness
and robustness of Greedy-Z over SetCover-Z and Random-Z.
In addition, for the case of small potential server set (Figure
4(a)), Greedy-Z has comparable performance to the optimal
algorithm (Optimal-Z) with much less execution time (a few
tens of milliseconds compared to several minutes).

Although the selection approach used in SetCover-Z has
been working well for traditional set covering problems [12],
providing one of the best approximation ratios of ln n for
such problems, it performs far worse when applied here.
Figure 4(b) shows that SetCover-Z’s performance is not much
better compared to a random selection strategy (Random-Z).
More specifically, in this experiment, SetCover-Z outperforms
Random-Z by a factor ranging from 1.11 to 1.5; and they have
similar performance when pQoSZ = 0.95.

Such performance behavior is largely due to the fact that
inter-server dependency has not been considered when select-
ing the best server in each of SetCover-Z’s iteration. Indeed, a
closer examination of SetCover-Z’s execution trace reveals that
most of the times it can only choose several good servers in the
first few iterations. The rest of the selected servers have been
chosen rather randomly. This is because by itself, each server
selected in the later iterations frequently does not provide QoS
to any of the remaining zones. That is, in Algorithm 2, for each
si considered in later iterations, n withQoS is always equal
to zero. This also explains why SetCover-Z performs much
worse compared to Greedy-Z as pQoSZ increases.

The effect of various correlation factors is shown in Figure
4(d). We note that Greedy-Z needs several additional servers
to meet the given QoS requirement when there is a certain
degree of correlation, e.g., δ ≥ 0.2 in this figure. Recall that
δ represents the likelihood of clients coming from the same
network location to gather in the same zone of the virtual
world. On the other hand, SetCover-Z performs much worse

5Recall that the fourth algorithm, Optimal-Z, is only applicable for a small
set of potential servers.

10

 0

 2

 4

 6

 8

 10

 0.7 0.75 0.8 0.85 0.9

n
u
m

b
e
r

o
f
s
e
rv

e
rs

pQoSZ

Random-Z
SetCover-Z

Greedy-Z
Optimal-Z

(a) 10 potential servers

 0

 10

 20

 30

 40

 50

 60

 0.7 0.75 0.8 0.85 0.9 0.95

n
u
m

b
e
r

o
f
s
e
rv

e
rs

pQoSZ

Random-Z
SetCover-Z

Greedy-Z

(b) 100 potential servers

 0

 10

 20

 30

 40

 50

 60

 70

 0.7 0.75 0.8 0.85 0.9

n
u
m

b
e
r

o
f
s
e
rv

e
rs

pQoSZ

Random-Z
SetCover-Z

Greedy-Z

(c) 100 potential servers, varied
delay bounds

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

n
u
m

b
e
r

o
f
s
e
rv

e
rs

correlation factor

Random-Z
SetCover-Z

Greedy-Z

(d) Different correlation factors

Fig. 4. Impacts of different QoS requirements and correlation factors - QoSZ variant

as δ increases, which is similar to Random-Z. However, it
begins to show improvement as this factor reaches a certain
high value. When δ is very high (near 1), SetCover-Z performs
similarly to Greedy-Z.

The above observation could be roughly explained as fol-
lows. Greedy-Z tends to select servers that are near the
central region of the set of clients’ network locations. In this
experiment, clients are uniformly distributed in the network as
well as in the virtual world. If δ is low, i.e., clients in each
zone would be coming from many different network locations.
In this case, a small number of “centrally” provisioned servers
would be sufficient to satisfy the given QoS requirement.

On the other hand, if the correlation factor is very high, e.g.,
δ ≈ 1, most clients coming from the same network location
will gather in the same zone. In such case, the fast inter-server
network links might become unnecessary. For example, let’s
assume a DVE with two zones z1 and z2. Further assume
that all clients coming from Singapore gather in z1, and all
those from New York gather in z2. In this case, to meet a
relatively high QoS requirement, we may need two servers,
each located in or near to Singapore or New York, to host zone
z1 and z2, respectively. There is no need for a fast network
link between these two servers. This explains why SetCover-
Z, which does not use inter-server dependency in making
provisioning decisions, might perform similarly to Greedy-Z
when δ ≈ 1.

 0

 5

 10

 15

 20

 25

 30

0 1 2 3

n
u
m

b
e
r

o
f
se

rv
e
rs

client distribution type

Random-Z
SetCover-Z

Greedy-Z

(a) Client distributions

 0

 10

 20

 30

 40

 50

 60

 70

REAL1 REAL2 BRITE1 BRITE2

n
u
m

b
e
r

o
f
se

rv
e
rs

latency dataset

Random-Z
SetCover-Z

Greedy-Z

(b) Latency datasets

Fig. 5. Impacts of different client distributions and latency datasets - QoSZ
variant

To further verify the performance outcome, we have also
tested the proposed algorithms with different client distribu-
tions in the network as well as in the virtual world (these

distributions are listed in Table IV); and with various latency
datasets. The results are summarized in Figure 5(a) and 5(b)
respectively. We have observed that when clients are clustered
in the network (e.g., distribution type 2), the performance of
all algorithms seems to be better compared to the case of no
clustering. On the other hand, if the clients are clustered in the
virtual world (e.g., distribution type 1), all algorithms perform
worse than the case of no clustering. It is also obvious that
Greedy-Z outperforms the rest in all clients distributions and
datasets with significantly large margins.

2) Dynamic latency data: In this set of experiments, we
evaluate the performance of QoSZ algorithms under dynamic
Internet conditions. One of the main input data for the algo-
rithms is the pair-wise client-server latency matrix. In order to
obtain more reliable results, we use the median values of the
first 20 measurements to produce the input latency matrix. The
performance behaviors of each algorithm are then observed
with the rest of the latency data collected. In this way, we
will be able to see the effect of Internet latency variations
over time on the server provisioning algorithms.

In this paper, we are interested in the ratio of QoS violations
of each server provisioning algorithm over time. More specif-
ically, with the QoSZ variant, we determine the percentage of
zones with QoS for each round of latency measurement. If the
percentage is below 100%, it will be considered as a QoSZ
violation. We then compute the ratio of QoSZ violations by
dividing the number of times when there is a QoSZ violation
to the total number of measurement rounds made.

For the dynamic latency dataset, we use a delay bound
D = 150ms, 28 potential server locations, and 10000 clients
coming from 497 network locations distributed over Plan-
etLab. Figure 6 shows the ratio of QoSZ violations over
our measurement period (around 2 weeks) for all QoSZ
algorithms. In this figure, the x-axis shows the possible QoSZ
guarantees, while the y-axis shows the corresponding ratio
of QoSZ violations for each QoSZ guarantee. For example,
Figure 6(a) shows three possible QoSZ guarantees (0.8, 0.75
and 0.7) for the same server provisioning decision made
by running the QoSZ algorithms with the input parameter
pQoSZ = 0.8.

Due to fluctuations in Internet latency, it is anticipated
that 100% percent of zones with pQoSZ = 0.8 is not
sustainable over time. Indeed, Figure 6(a) shows that the ratio

11

 0

 0.2

 0.4

 0.6

 0.8

 1

0.8 0.75 0.7

ra
ti
o

 o
f

Q
o

S
Z

 v
io

la
ti
o

n
s

QoSZ guarantee

Random-Z
SetCover-Z

Greedy-Z

(a) pQoSZ = 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.9 0.85 0.8

ra
ti
o

 o
f

Q
o

S
Z

 v
io

la
ti
o

n
s

QoSZ guarantee

Random-Z
SetCover-Z

Greedy-Z

(b) pQoSZ = 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

0.8 0.75 0.7

ra
ti
o

 o
f

Q
o

S
Z

 v
io

la
ti
o

n
s

QoSZ guarantee

SetCover-Z
Greedy-Z

(c) pQoSZ = 0.8 for SetCover-Z, pQoSZ
= 0.9 for Greedy-Z

Fig. 6. Impacts of dynamic latency data - QoSZ variant

of QoSZ violations is very high for all three algorithms, if
we consider the original QoSZ guarantee of 0.8. However, if
we lower the QoSZ guarantee to 0.75 or 0.7, SetCover-Z and
Greedy-Z improve greatly in terms of QoSZ violations. More
specifically, when we set the lowest QoSZ guarantee to 0.7,
the ratios of QoSZ violations for SetCover-Z and Greedy-Z
are 0.02 and 0.04, respectively. Similar results have also been
observed for different pQoSZ, for example pQoSZ = 0.9
(Figure 6(b)).

The above observations suggest that, due to varied Internet
latency, it is very hard to maintain the original QoSZ guarantee
with low ratio of QoSZ violations. Hence, to achieve a certain
level of QoSZ guarantee, we may have to over-provision.
For example, to get a QoSZ guarantee of 0.8 with low
ratio of violations, we may run the provisioning algorithm
with pQoSZ = 0.9. Figure 6(c) illustrates such scenario. In
this experiment, we run Greedy-Z with pQoSZ = 0.9 and
compare the result against SetCover-Z with pQoSZ = 0.8.
It is observed that in this case, Greedy-Z can provide a
QoSZ guarantee of 0.8 with a very low ratio of violations
(around 0.06, compared to 0.85 produced by SetCover-Z at
the same QoSZ guarantee). Table V also shows that even with
pQoSZ = 0.9, Greedy-Z still uses less servers (3) compared
to SetCover-Z with pQoSZ = 0.8 (5 servers).

TABLE V
NUMBER OF SERVERS SELECTED - QOSZ VARIANT

Algorithm Random-Z SetCover-Z Greedy-Z
Figure 6(a) 6 5 2
Figure 6(b) 6 7 3
Figure 6(c) - 5 3
Figure 7(a) 4 5 2

Next, we evaluate the sensitivity of the QoSZ algorithms
with regard to inaccurate input data, which are common in
real-world scenarios. As mentioned previously, one of the
most important input data for the proposed algorithms is
the pair-wise latency matrix between all possible server and
client locations. iPlane [8] is a more scalable and less costly
alternative compared to direct Internet latency measurements
for obtaining such latency matrix. However, the accuracy of
the predicted latency by iPlane may be compromised.

We use iPlane to estimate the round-trip latency between

TABLE VI
ERRORS IN LATENCY ESTIMATIONS USING IPLANE

< 10ms < 20ms < 50ms < 100ms < 200ms < 500ms
45% 63% 81% 90% 97% 98%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0.8 0.75 0.7

ra
ti
o

 o
f

Q
o

S
Z

 v
io

la
ti
o

n
s

QoSZ guarantee

Random-Z
SetCover-Z

Greedy-Z

(a) Ratios of QoSZ violations
using inaccurate input data ob-
tained from iPlane

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0.8 0.75 0.7

d
if
fe

re
n

c
e

 i
n

 r

a
ti
o

s
 o

f
Q

o
S

Z
 v

io
la

ti
o

n
s

QoSZ guarantee

Random-Z
SetCover-Z

Greedy-Z

(b) Differences in the ratios
of QoSZ violations between
iPlane and directly measured
input data

Fig. 7. Impacts of inaccurate input data obtained from iPlane - QoSZ variant,
pQoSZ = 0.8

any pair of our selected PlanetLab’s network locations 20
times, and use the median of those estimations to construct
the input latency matrix for the QoSZ algorithms. We refer
to this latency matrix as the “estimated input”. This is to
distinguish from the input latency matrix obtained via direct
measurements, which we refer to as the “real input”. Table
VI shows the estimation errors of the estimated input when
comparing against the real input. For example, we can see
that 63% of the estimated input having an estimation error
less than 20ms. We then use the directly measured, 2-week
latency dataset above to evaluate the ratio of QoSZ violations
for each algorithm.

Figure 7(a) shows that the violation ratio of Greedy-Z is
the lowest among the three algorithms. In addition, Figure
7(b) shows the differences in the QoSZ violation ratios for
each algorithm. We calculate the difference for an algorithm
by subtracting its QoSZ violation ratio obtained by using the
estimated input to that obtained by using the real input. Such
difference reflects the sensitivity of the algorithm to its input
data. Figure 7(b) shows that Greedy-Z is less sensitive to
inaccurate input data among all algorithms.

12

 0

 2

 4

 6

 8

 10

 0.7 0.75 0.8 0.85 0.9 0.95

n
u
m

b
e
r

o
f
s
e
rv

e
rs

pQoSC

Random-C
SetCover-C

Greedy-C
Optimal-C

(a) 10 potential servers

 0

 5

 10

 15

 20

 25

 30

 0.7 0.75 0.8 0.85 0.9 0.95

n
u
m

b
e
r

o
f
s
e
rv

e
rs

pQoSC

Random-C
SetCover-C

Greedy-C
Greedy-Z

(b) 100 potential servers

 0

 10

 20

 30

 40

 50

 0.7 0.75 0.8 0.85 0.9 0.95

n
u
m

b
e
r

o
f
s
e
rv

e
rs

pQoSC

Random-C
SetCover-C

Greedy-C

(c) 100 potential servers, varied
delay bounds

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

n
u
m

b
e
r

o
f
s
e
rv

e
rs

correlation factor

Random-C
SetCover-C

Greedy-C

(d) Different correlation factors

Fig. 8. Impacts of different QoS requirements and correlation factors - QoSC variant

B. Performance of QoSC algorithms

1) Static latency data: Figure 8(a) to 8(c) show the per-
formance results of various QoSC algorithms, plus Greedy-Z
(Figure 8(b)). Recall that any algorithms for the QoSZ variant
can be used to solve the QoSC variant, but not vice versa.
Here we also want to compare the best QoSZ algorithm against
those designed specifically for the QoSC variant. From these
figures, it is observed that Greedy-C performs comparably to
Optimal-C, while outperforms all other algorithms, including
Greedy-Z. The latter performs better than SetCover-C when
pQoSC is high (Figure 8(b)).

The data obtained from this set of experiments also highlight
that the QoS requirement in the QoSZ formulation is harder
to meet compared to that in the QoSC formulation. This is
illustrated by the smaller number of servers required to meet
pQoSC, compared to that for pQoSZ, especially for higher
QoS requirements. For example, in Figure 8(b), using the best
algorithm for each problem variant, pQoSC = 0.95 requires
only 3 servers, whilst the same pQoSZ needs thrice that
number.

Figure 8(d) shows the effect of various correlation values
on all QoSC algorithms. While SetCover-C’s performance
improves when δ increases, Greedy-C seems insensitive to this
parameter. This is due to the fact that in the QoSC formulation,
we count only the number of individual clients with QoS,
without considering whether the zones that those clients are
in would meet the QoS requirement or not. Therefore, the
clients’ virtual locations are not very important to Greedy-C.
On the other hand, SetCover-C performs similarly to Greedy-
C when δ becomes high enough, e.g., larger than 0.6 in this
experiment. The reason is similar to what we have explained
previously for SetCover-Z.

Figure 9(a) and 9(b) show the performance of all QoSC
algorithms in different client distributions and latency datasets,
respectively. The key observations are similar to those in the
previous section, which further confirm the effectiveness of
Greedy-C.

2) Dynamic latency data: We now evaluate the perfor-
mance of QoSC algorithms under dynamic Internet conditions.
We use a similar approach to that used for evaluating the
QoSZ algorithms. The only difference here is how we calculate
the ratio of QoSC violations. With the QoSC variant, we
determine the ratio of clients with QoS for each round of

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 1 2 3
n
u
m

b
e
r

o
f
se

rv
e
rs

client distribution type

Random-C
SetCover-C

Greedy-C

(a) Client distributions

 0

 10

 20

 30

 40

 50

 60

 70

 80

REAL1 REAL2 BRITE1 BRITE2

n
u
m

b
e
r

o
f
se

rv
e
rs

latency dataset

Random-C
SetCover-C

Greedy-C

(b) Latency datasets

Fig. 9. Impacts of different client distributions and latency datasets

latency measurement. If the ratio is below the given pQoSC,
then it will be considered as a QoSC violation. The ratio of
QoSC violations over the entire measurement period will then
be computed similarly to that of the QoSZ variant.

Figure 10 plots the ratio of QoSC violations, while Figure
11 plots the QoSC variations over time of the three propose
algorithms. We observe similar effects of latency variation
on the QoSC guarantees, as in the previous experiments
for the QoSZ variant. More specifically, slightly lowering
the original pQoSC requirement reduces the ratio of QoSC
violations significantly for all QoSC algorithms. Hence, to
meet a certain QoSC requirement with low violation ratio, a
DVE infrastructure service provider may choose to carry out
over provisioning. For example, to provide a QoSC guarantee
of 0.8 in 99% of the time, the service provide may run Greedy-
C with an input pQoSC = 0.9 (the actual QoSC violation ratio
in this case is around 0.002 as shown in Figure 10(a)).

Figure 10(c), 11(b) and the third row of Table VII show
another example of over provisioning. Given pQoSC = 0.95
and the delay bound D = 150ms. We run Greedy-C with a
lower delay bound of 125ms, while SetCover-C is run with
the original delay bound of 150ms. It is noted that Greedy-C
now can provide much lower ratios of QoSC violations for
all QoSC guarantees but still use less servers compared to the
other two algorithms.

Finally, Figure 12(a) shows that the violation ratio of
Greedy-C is the lowest among the three algorithms, when us-
ing iPlane’s estimates as the input latency matrix. Figure 12(b)
also shows that Greedy-C is less sensitive to inaccurate input

13

 0

 0.2

 0.4

 0.6

 0.8

 1

0.9 0.85 0.8

ra
ti
o

 o
f

Q
o

S
C

 v
io

la
ti
o

n
s

QoSC guarantee

Random-C
SetCover-C

Greedy-C

(a) pQoSC = 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.95 0.9 0.85

ra
ti
o

 o
f

Q
o

S
C

 v
io

la
ti
o

n
s

QoSC guarantee

Random-C
SetCover-C

Greedy-C

(b) pQoSC = 0.95

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.95 0.9 0.85

ra
ti
o

 o
f

Q
o

S
C

 v
io

la
ti
o

n
s

QoSC guarantee

Random-C
SetCover-C

Greedy-C

(c) pQoSC = 0.95, delay bound
D = 150ms for SetCover-C
and Random-C, D = 125ms for
Greedy-C

Fig. 10. Impacts of dynamic latency data - QoSC variant

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800

p
Q

o
S

C

measurement round

Random-C
SetCover-C

Greedy-C

(a) D = 150ms for all algo-
rithms

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800

p
Q

o
S

C

measurement round

Random-C
SetCover-C

Greedy-C

(b) D = 150ms for SetCover-
C and Random-C, D =
125ms for Greedy-C

Fig. 11. Impacts of dynamic latency data - QoSC variant, pQoSC = 0.95

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.95 0.9 0.85

ra
ti
o

 o
f

Q
o

S
C

 v
io

la
ti
o

n
s

QoSC guarantee

Random-C
SetCover-C

Greedy-C

(a) Ratios of QoSC violations
using inaccurate input data ob-
tained from iPlane

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0.95 0.9 0.85

d
if
fe

re
n

c
e

 i
n

 r

a
ti
o

s
 o

f
Q

o
S

C
 v

io
la

ti
o

n
s

QoSC guarantee

Random-C
SetCover-C

Greedy-C

(b) Differences in the ratios
of QoSC violations between
iPlane and directly measured
input data

Fig. 12. Impacts of inaccurate input data obtained from iPlane - QoSC
variant, pQoSC = 0.95

data compared to other QoSC algorithms. This observation is
similar to what we have seen in the QoSZ variant.

VI. RELATED WORK

Existing research involving server and network infrastruc-
ture to improve interactivity for DVEs has usually been
formulated as a resource-oriented load balancing problem,
i.e., the objective is to minimize server processing delay by
balancing the workload among servers rather than to reduce
the network latency between clients and their servers [21],

TABLE VII
NUMBER OF SERVERS SELECTED - QOSC VARIANT

Algorithm Random-C SetCover-C Greedy-C
Figure 10(a) 4 8 2
Figure 10(b) and 11(a) 8 8 3
Figure 10(c) and 11(b) 8 8 4
Figure 12(a) 7 11 3

[22], [23]. Recent work such as [4], [5] had been focusing
on efficient client-to-server assignment, referred to as the
zone mapping approach, to minimize network latency, thus
improving interactivity.

The zone mapping approach assumes a fixed, capacitated
server infrastructure already in place; for which the over-
all interactivity needs to be maximized given the resource
limitation. Our work in this paper, with two novel problem
formulations, focuses on a different problem and objective,
but could be used to complement the zone mapping approach.
For instance, the DVE administrator may use the proposed
server provisioning algorithms to provision enough servers to
meet the minimum QoS requirement based on his/her business
objective and strategies. After that, zone mapping algorithms
can be used to further improve the QoS level if needed,
or to deal with dynamic changes in the DVE like client
joining/leaving/moving around the virtual world.

In [3], several server provisioning algorithms had been
proposed to select appropriate locations to place DVE servers.
However, [3] does not take into account the virtual locations
of clients, thus the improvement over random provisioning
is not very significant. Furthermore, in addition to pair-wise
client-server network latencies, the provisioning algorithms
in [3] also need complete and accurate knowledge regarding
underlying AS-level Internet topology, which is quite costly
(in terms of resource and time) to obtain reliably.

In another closely related work, an algorithm was proposed
in [20] for game clients to select the best server in terms
of interactivity in a distributed manner. For the distributed
algorithm to work, a mirrored architecture was assumed,
which replicates the DVE zones at multiple servers spread
across the Internet. This approach shares some similarities

14

with the web server replica placement problem in Content
Distribution Networks (CDNs) [24], [25]. However, unlike
web replications, much more complicated consistency issues
should be dealt with in DVEs [26]. In either our QoSZ or
QoSC formulation, only one server has the control over the
state of a zone, thus consistency can be maintained more
easily.

It is also noted that our problem formulation shares some
similarity with the well-known facility location problem in
operations research [27]. This problem can be briefly defined
as follows. Given a set of locations i, building a facility at
each location i costs fi. Each client j needs to be assigned
to a facility. The cost of such assignment is djcij , where dj

and cij denote the demand of client j and distance between
facility i and client j, respectively. The objective is to find
the number and location of each facility with the minimum
total cost. In our problem, we also aim to minimize the total
number of “facilities”, i.e., servers used. The main differences
are that we need to guarantee a certain level of QoS, and
there are inter-server network links which enable a “facility”
to indirectly serve clients.

VII. CONCLUSIONS

In this paper, we consider a new problem, referred to as
the interactivity-constrained server provisioning problem. The
main goal is to the minimize resource needed, i.e., the number
of servers that need to be provisioned, to achieve a pre-
specified QoS requirement in large-scale, highly interactive
DVEs. To this end, we have proposed two different formula-
tions for the problem, namely QoSZ and QoSC, and shown
that both are NP-hard. These two formulations would offer
DVE administrators more flexibility in selecting the right QoS
requirements for their DVEs, considering various business
constraints they may face in the real world.

A number of computationally efficient heuristics have also
been developed for the problem. Extensive simulation study on
realistic network models and dynamic latency data collected
from large-scale Internet latency measurements have shown
that two new greedy algorithms, taking into account inter-
server dependency, work best for the QoSZ and QoSC variants,
respectively. The experiments with dynamic Internet latency
data also suggest some important considerations, e.g., over
provisioning sometimes is necessary for real-world deploy-
ments of the provisioning algorithms, in light of fluctuations
in Internet performance. Last but not least, the best algorithms,
namely Greedy-Z and Greedy-C, appear to be quite resilient to
inaccurate input data such as the round-trip latency obtained
from iPlane. This further confirms the practicality of these
algorithms for real-world DVE server provisioning.

ACKNOWLEDGEMENT

This work is supported in part by the Singapore National
Research Foundation under Grant NRF2007IDM-IDM002-
052. The authors would also like to thank Harsha V. Mad-
hyastha, the creator of iPlane [8], for helping to obtain the
iPlane’s latency estimations.

REFERENCES

[1] S. Singhal and M. Zyda, Networked virtual environments: design and
implementation. Reading, MA: Addison-Wesley, 1999.

[2] V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. Epema, and T. Fahringer,
“Efficient management of data center resources for massively multi-
player online games,” in Proc. of ACM/IEEE Supercomputing, 2008,
pp. 1–12.

[3] D. Ta, S. Zhou, R. Ayani, W. Cai, and X. Tang, “Network-aware server
placement for highly interactive distributed virtual environments,” in
Proc. of IEEE DS-RT, 2008, pp. 95–102.

[4] D. Ta, S. Zhou, X. Tang, W. Cai, and R. Ayani, “Efficient zone
mapping algorithms for distributed virtual environments,” in Proc. of
ACM/IEEE/SCS PADS, 2009, pp. 137–144.

[5] D. Ta and S. Zhou, “A two-phase approach to interactivity enhancement
for large-scale distributed virtual environments,” Computer Networks,
vol. 51, no. 14, pp. 4131–4152, 2007.

[6] “Internet delay space synthesizer - datasets,” Available at
http://www.cs.rice.edu/ bozhang/ds2/matrix/, retrieved Jul 2010.

[7] “Brite internet topology generator,” Available at
http://www.cs.bu.edu/brite, retrieved Jul 2010.

[8] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. E. Anderson,
A. Krishnamurthy, and A. Venkataramani, “iplane: An information plane
for distributed services,” in USENIX OSDI, 2006, pp. 367–380.

[9] D. Ta, S. Zhou, X. Tang, W. Cai, and R. Ayani, “Qos aware server provi-
sioning for distributed virtual environments,” in Proc. of ACM/IEEE/SCS
PADS, 2010, pp. 20–28.

[10] T. Henderson and S. Bhatti, “Networked games: a QoS-sensitive appli-
cation for QoS-insensitive users?” in Proc. of ACM SIGCOMM, 2003,
pp. 141–147.

[11] L. Pantel and L. Wolf, “On the impact of delay on real-time multiplayer
games,” in Proc. of ACM NOSSDAV, 2002, pp. 23–29.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.

[13] B. Zhang, E. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang,
“Measurement-based analysis, modeling, and synthesis of the internet
delay space,” in Proc. of ACM SIGCOMM/USENIX Internet Measure-
ment Conference, 2006, pp. 85–98.

[14] D. Ta, T. Nguyen, S. Zhou, X. Tang, W. Cai, and R. Ayani, “A framework
for performance evaluation of large-scale interactive distributed virtual
environments,” in Proc. of IEEE International Conference on Scalable
Computing and Communications, 2010.

[15] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A lightweight network
location service without virtual coordinates,” in Proc. of SIGCOMM
Conference, 2005.

[16] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating Latency
between Arbitrary Internet End Hosts,” in Proc. of ACM SIGCOMM
IMW, 2002.

[17] “http://pyxida.sourceforge.net,” Retrieved on June 2010.
[18] W. C. Feng and W. C. Feng, “On the geographic distribution of online

game servers and players,” in Proc. of NetGames, 2003, pp. 173 – 179.
[19] C. D. Nguyen, F. Safaei, and P. Boustead, “Optimal assignment of

distributed servers to virtual partitions for the provision of immersive
voice communication in massively multiplayer games,” Computer Com-
munications, vol. 29, no. 9, pp. 1260–1270, 2006.

[20] K. W. Lee, B. J. Ko, and S. Calo, “Adaptive server selection for large
scale interactive online games,” Computer Networks, vol. 49, no. 1, pp.
84–102, 2005.

[21] C. E. B. Bezerra and C. F. R. Geyer, “A load balancing scheme for
massively multiplayer online games,” Multimedia Tools Appl., vol. 45,
no. 1-3, pp. 263–289, 2009.

[22] M. Lim and D. Lee, “A task-based load distribution scheme for multi-
server-based distributed virtual environment systems,” Presence, vol. 18,
no. 1, pp. 16–38, 2009.

[23] J. Lui and M. Chan, “An efficient partitioning algorithm for distributed
virtual environment systems,” IEEE Transaction on Parallel and Dis-
tributed Systems, vol. 13(3), pp. 193–211, 2002.

[24] E. Cronin, S. Jamin, C. Danny, and R. Yuval, “Constrained mirror
placement on the internet,” IEEE Journal on Selected Areas of Com-
munication, vol. 20, no. 7, pp. 1369–1382, 2002.

[25] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web
server replicas,” in Proc. of IEEE INFOCOM, 2001, pp. 1587–1596.

[26] S. Zhou, W. Cai, B. S. Lee, and S. J. Turner, “Time-space consistency
in large-scale distributed virtual environments,” ACM Transactions on
Modeling and Computer Simulation, vol. 14(1), pp. 31–47, 2004.

[27] Z. Drezner, Facility Location: A Survey of Applications and Methods.
Springer, 1995.

