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Abstract. In this work, we consider the satisfiability problem in a logic that com-
bines word equations over string variables denoting words of unbounded lengths,
regular languages to which words belong and Presburger constraints on the length
of words. We present a novel decision procedure over two decidable fragments
that include quadratic word equations (i.e., each string variable occurs at most
twice). The proposed procedure reduces the problem to solving the satisfiability
in the Presburger arithmetic. The procedure combines two main components: (i)
an algorithm to derive a complete set of all solutions of conjunctions of word
equations and regular expressions; and (ii) two methods to precisely compute re-
lational constraints over string lengths implied by the set of all solutions. We have
implemented a prototype tool and evaluated it over a set of satisfiability problems
in the logic. The experimental results show that the tool is effective and efficient.

1 Introduction

The problem of solving word algebras has been studied since the early stage of math-
ematics and computer science [16]. Solving word equation (which includes concatena-
tion operation, equalities and inequalities on string variables) was an intriguing problem
and initially investigated due to its ties to Hilbert’s 10th problem. The major result was
obtained in 1977 by Makanin [37] who showed that the satisfiability of word equations
with constants is, indeed, decidable. In recent years, due to considerable number of
security threats over the Internet, there has been much renewed interest in the satisfia-
bility problem involving the development of formal reasoning systems to either verify
safety properties or to detect vulnerability for web and database applications. These ap-
plications often require a reasoning about string theories that combines word equations,
regular languages and constraints on the length of words.

Providing a decision procedure for the satisfiability problem on a string logic in-
cluding word equations and length constraints has been difficult to achieve. One main
challenge is how to support an inductive reasoning about the combination of unbounded
strings and the infinite integer domain. Indeed, the satisfiability of word equations com-
bined with length constraints of the form |x|=|y| is open [11,22] (where |x| denotes
the length of the string variable x). So far, very few decidability results in this logic are
known; the most expressive result is restricted within the straight-line fragment (SL)
which is based on acyclic word equations [22,7,36,12,23]. This SL fragment excludes
constraints combining quadratic word equations, the equations in which each string
variable occurs at most twice. For instance, the following constraint is beyond the SL
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fragment: ec≡x·a·a·y = y·b·a·x where x and y are string variables, a and b are letters,
and · is the string concatenation operation. Hence, one research goal is to identify de-
cidable logics combining quadratic word equations (and beyond), based on which we
can develop an efficient decision procedure.

There have been efforts to deal with the cyclic string constraints in Z3str2 [51,50],
CVC4 [34] and S3P [48]. While Z3str2 presented a mechanism to detect overlap-
ping variables to avoid non-termination, CVC4 proposed refutation complete proce-
dure to generate a refutation for any unsatisfiable input problem and S3P [48] provided
a method to identify and prune non-progressing scenarios. However, none is both com-
plete and terminating over quadratic word equations. For instance, Z3str2, CVC4 and
S3P (and all the state-of-the-art string solving techniques [7,8,6,9,12,23]) is not able to
decide the satisfiability of the word equation ec above.

In this work, we propose a novel cyclic proof system within a satisfiability pro-
cedure for the string theory combining word equations, regular memberships and Pres-
burger constraints over the length functions. Moreover, we identify decidable fragments
with quadratic word equations (e.g., the constraint ec above) where the proposed pro-
cedure is complete and terminating. To the best of our knowledge, our proposal is the
first decision procedure for string constraints beyond the straight-line word equations.
Our proposal has two main components. First, we present a novel algorithm to construct
a cyclic reduction tree which finitely represents all solutions of a conjunction of word
equations and regular membership predicates. Secondly, we describe two procedures to
infer the length constraints implied by the set of all solutions.

Contributions. We make the following technical contributions.
– We develop a algorithm, called ω-SAT, to derive a cyclic reduction tree as a finite

representation for all solutions of a conjunction of word equations and regular ex-
pressions. We show that if ω-SAT terminates with a reduction tree, the tree forms a
finite-index EDT0L system [41].

– We present a decision procedure, called Kepler22, with two decidable fragments
and provide a complexity analysis of our approach. This is the first decidable result
for the string theory combining quadratic word equations with length constraints.

– We have implemented a prototype solver and evaluated it over a set of hand-drafted
benchmarks in the decidable fragments. The experimental results show that when
compared with the state-of-the-art solvers, our proposal is both effective and effi-
cient in solving string constraints with quadratic equations and length constraints.

Organization. The rest of the paper is organized as follows. Sect 2 presents relevant
definitions. Sect 3 shows an overview of our approach through an example. We show
how to compute a cyclic reduction tree to finitely represent all solutions of a conjunction
of word equations and regular memberships in Sect 4. Sect 5 presents the proposed
decision procedure. Sect 6 and Sect 7 describe the two decidable fragments. Sect 8
presents an implementation and evaluation. Sect 9 reviews related work and concludes.

2 Preliminaries

Concrete string models assume a finite alphabetΣ whose elements are called letters, set
of finite words overΣ∗ including ε - the empty word, and a set of integer numbers Z. We



disj formula π ::= φ | π1 ∨ π2 formula φ ::= e | α | s∈R | ¬φ1 | φ1 ∧ φ2

(dis)equality e ::= s1=s2 term s ::= ε | c | x | s1 · s2
regex R ::= ∅ | ε | c | w | R1 · R2 | R1 +R2 | R1 ∩R2 | RC1 | R∗1
Arithmetic α ::= a1 = a2 | a1 > a2 | α1 ∧ α2 | α1 ∨ α2 | ∃v.α1

a ::=0 | 1 | v | |u| | i× a1 | −a1 | a1 + a2

Fig. 1: Syntax

work with a set U of string variables denoting words in Σ∗, and a set I of arithmetical
variables. We use |w| to denote the length of w∈Σ∗ and v̄ a sequence of variables. A
languageL over the alphabetΣ is a setL⊆Σ∗. A languageL is a set of words generated
by a grammar system. We use L(L) to denote the class of all languages L.

Syntax The syntax of quantifier-free string formulas, called STR, is presented in Fig. 1.
π is a disjunction formula where each disjunct φ is a conjunction of word equations
e, arithmetic constraints α and regular memberships s∈R. A word equation e is an
equality of string terms s. (We use either s or tr to denote a string term.) A string term
is a concatenation of the empty word ε, letters c ∈ Σ and string variables x. We often
write s1s2 to denote s1 · s2 if it is not ambiguous. Regular expressionR over Σ is built
over c ∈ Σ, w ∈ Σ∗, ε, and closing under union +, intersection ∩, complement C,
concatenation ·, and the Kleene star operator ∗. Regular expressionsR does not contain
any string variables.

We use E to denote a conjunction (a.k.a system) of word equations. π[t1/t2] denotes
a substitution of all occurrences of t2 in π to t1. We use function FV(π) to return all
free variables of π. We inductively define length function of a string term s, denoted
as |s|, as: |ε| = 0, |c| = 1, and |s1 · s2| = |s1| + |s2|. Notational length of the word
equation e, denoted by e(N), is the number of its symbols.

A word equation is called acyclic if each variable occurs at most once. A word
equation is called quadratic if each variable occurs at most twice. Similarly, a system
of word equations is called quadratic if each variable occurs at most twice.

A word equation system is said to be straight-line [22,7,36] if it can be rewritten (by
reordering the conjuncts) as the form

∧n
i=1 xi = si such that: (i) x1,...,xn are different

variables; and (ii) FV(si) ⊆ {x1, x2, .., xi−1}. A formula π ≡ e1∧e2∧...∧en ∧ Υ is
called in straight-line fragment (SL) if e1∧e2∧...∧en is straight-line and the regular ex-
pression Υ is of the conjunction of regular memberships xj∈Rj where xj∈{x1, ..., xn}.

Semantics Every regular expressionR is evaluated to the language L(R). We define:

SStacks def
= (U∪Σ)→Σ∗ ZStacks def

= I→ Z .

The semantics is given by a satisfaction relation: η,βη|=π that forces the interpreta-
tion on both string η and arithmetic βη to satisfy the constraint π where η ∈ SStacks,
βη∈ZStacks, and π is a formula. We remark that ∀η ∈ SStacks: η(c)=c for all c ∈ Σ and



η, βη |= π1∨π2 iff η, βη |= π1 or η, βη |= π2

η, βη |= π1∧π2 iff η, βη |= π1 and η, βη |= π2

η, βη |= ¬π1 iff η, βη 6 |=π1

η, βη |= s∈R iff ∃w∈L(R) · η, βη |= s = w
η, βη |= s1=s2 iff η(s1)=η(s2) and βη(s1)=βη(s2)
η, βη |= s1 6=s2 iff η, βη |= ¬(s1=s2)
η, βη |= a1�a2 iff η(a1) � η(a2), where � ∈ {=,≤}

Fig. 2: Semantics

η(t1t2)=η(t1)η(t2). The semantics of our language is formalized in Figure 2. If η,βη |=
π, we use the pair 〈η,βη〉 to denote a solution of the formula π. Let e≡x1·...·xl=xl+1·...·xn
be a word equation. If e is satisfied with the solution 〈η,βη〉, we also refer η(x1)·...·η(xl)
as a solution word of e. A solution word is minimal if the length of the solution word
(|η(x1)| + ... + |η(xl)|) is minimal. e1 is referred as a suffix of e2 if they are satisfied
and the solution word of e1 is a suffix of the solution word of e2.

Formal Language A deterministic finite automaton (DFA) A is a tuple:A=〈Q,Σ,δ,qo,QF 〉,
whereQ is a finite set of states, δ ⊆ Q×(Σ∪{ε})×Q is a finite set of transitions, q0∈Q
is the initial state and QF⊆Q is a set of accepting states. We use L(A) to denote the
(regular) language generated by a DFA A. It is known that the languages generated by
regular expressions are also in the class of regular languages [26].

A context-free grammar (CFG) G is defined by the quadruple: G=〈V , Σ, P , S〉
where V is a finite nonempty set of nonterminals, Σ is a finite set of terminals and
disjoint from V , and P⊆V×(V ∪Σ)∗ is a finite relation. For any strings u, v∈(V ∪Σ)∗,
v is a result of applying the rule (α, β) to u u⇒G v if ∃(α, β) ∈ P u1, u2 ∈ (V ∪Σ)∗

such that u = u1αu2 and v = u1βu2. L(G)={w ∈ Σ∗ | S ⇒∗G w} to denote a
language produced by the CFG G. Given a CFG G=〈V , Σ, P , S〉, we use GX (where
X ∈ V ) to denote a sub-language of L(G), defined by L(GX)={w ∈ Σ∗ |X ⇒∗G w}.

Normal Form π≡E∧Υ∧α is called in the normal form if it is of the form: E is a system
of word equations, Υ is a conjunction of regular memberships (e.g., X∈R) and α is a
Presburger formula. (For the transformation of a formula presented in Fig. 1 into the
normal form, [29,15] described how to eliminate negation over word equations, and
disjunction of word equations and [7] showed how to remove the negation and the
concatenation operator over regular expressions.)

Problem Definition Throughout this work, we consider the following problem.

PROBLEM: SAT−STR.
INPUT: A string constraint π in normal form over Σ.
QUESTION: Is π satisfiable?



E0≡abx=xba∧ay=yaF

E11≡ab=ba∧ay=ya E12≡bax1=x1ba∧ay=ya

E21≡ay=ya♥

E31≡ε=ε E32≡ay1=y1a♥

E22≡abx2=x2ba∧ay=yaF

[ε/x] [ax1/x]

[ε/x1] [bx2/x1]

[ε/y]
[ay1/y]

[y/y1]

[x/x2]

Fig. 3: Reduction Tree T3.

3 Overview and Illustration

The overall of our idea is an algorithm to reduce an input constraint to a set of solvable
constraints. In this section, we first define the reduction tree (subsection 3.1). After that,
we illustrate the proposed decision procedure through an example (subsection 3.2).

3.1 Cyclic Reduction Tree

Formally, a cyclic reduction tree Ti is a tuple (V,E, C) where

– V is a finite set of nodes where each node represents a conjunction of word equa-
tions E .

– E is a set of labeled and directed edges (E , σ, E ′) ∈ E where E ′ is a child of E .
This edge means we can reduce E to E ′ via the label σ, a substitution, s.t.: E ′ ≡ Eσ.

– And C is a back-link (partial) function which captures virtual cycles in the tree.
A cycle, e.g. C(Ec→Eb, σ), in C means the leaf Eb is linked back to its ancestor
Ec and Ec ≡ Ebσ. In this back-link, Eb is referred as a bud and Ec is referred as a
companion.

A path (vs, ve) is a sequence of nodes and edges connecting node vs with node ve.
A leaf node is either unsatisfiable, or satisfiable or linked back to an interior node, or
not-yet-reduced. If a leaf node is not-yet-reduced, it is marked as open. Otherwise, it is
marked as closed. A trace of a tree is a sequence of edge labels of a path in the tree. We
refer a trace as solution trace if it corresponds to a path (vs, ve) where vs is the root and
ve is a satisfiable leaf. This trace represents a (infinite) family solutions of the equation
at the root.

3.2 Illustrative Example

We consider the following constraint: π ≡ abx=xba∧ay=ya ∧ |x|=2|y|where x, y are
string variables and a, b are letters. This constraint is beyond the straight-line fragment
[22,7,36,12,23]. Moreover, as the length constraint |x|=2|y| is not regular-based, the
automata-based translation proposed in [12] cannot be applied.

The proposed solver Kepler22 could solve the constraint π above through the fol-
lowing three steps. First, it invokes procedure ω-SAT to construct a cyclic reduction tree



to capture all solutions of the word equations E0≡abx=xba ∧ ay=ya. Next, it infers
a precise constraint αxy implied by string lengths of all solutions. Lastly, it solves the
conjunction: αxy∧α where α is the arithmetic constraint in the input π.

The representation of all solutions ω-SAT derives the reduction tree T3 (V,E,C),
shown in Figure 3, as the finite presentation of all solutions for E0. In particular, the
root of the tree is E0. E0 has two children E11 and E12, which are obtained by re-
ducing x into two complete cases: x=ε and x=ax1 where x1 is fresh. Note that E12
is obtained by first applying the substitution: E ′12≡E0[ax1/x]≡abax1=ax1ba∧ay=ya
prior to subtracting the letter a at the heads of the two sides of the first word equation.
Next, while E11 is classified as unsatisfiable, (underlined) and marked closed, E12 is
further reduced into two children, E21 and E22. They are obtained by reducing x1 at the
head of the right-hand side (RHS) of E12 into two complete cases: x1=ε to generate
E ′21≡E ′12[ε/x1]≡ab=ab∧ay=ya and x1=bx2 (where x2 is a fresh variable) to generate
E ′22≡e′12[bx2/x1]≡babx2=bx2ba. Next, E ′21 is further reduced into E21 by matching a,
b letters; and E ′22 is further reduced into E22 by matching b letters at the heads of its
two sides. Lastly, E22 is linked back to E0 to form the back-link C(E0→E22, [x/x2]).
Similarly, E21 is reduced until all leaf nodes are marked closed.

A path (vs, ve) with trace σ represents for ve≡vsσ. If ve is satisfiable, then σ rep-
resents for a family of solutions (or valid assignments). For instance, in Fig. 3, the path
(E0, E31) has the trace σ31=[ax1/x, ε/x1, ε/y]. As E31 is satisfiable, we can derive a so-
lution of E0 based on σ31 as: x=a and y=ε. Moreover, trace solution that is involved in
cycles represents a set of infinite solutions, since we can construct infinitely many solu-
tion traces by iterating through the cycles an unbounded number of times. For example,
all solution traces σij obtained from the path (E0, E31) above is as:

σij≡ [ax1/x] ◦ [bx2/x1, x/x2, ax1/x]i ◦ [ay1/y, y1/y]j ◦ [ε/x1 ◦ ε/y]

where ◦ is the substitution composition operation, σk means σ is repeatedly composed
zero, one or more times, and i≥0, j≥0.

Computing αxy constraint Based on the solution trace σij above, Kepler22 first gener-
ates a conjunctive set of constrained Horn clauses to define the relational assumptions
over lengths of x and y in the set of all solutions. After that it infers the length constraint
as: αxy≡∃i.|x|=2i+1∧i≥0∧|y|≥0. Now, the satisfiability of π is equi-satisfiable to the
following formula: π′≡(∃i. |x|=2i+1∧i≥0∧|y|≥0) ∧ |x|=2|y|. As π′ is unsatisfiable,
so is π.

4 The Representation of All Solutions

In this section, we first present procedure ω-SAT which constructs a cyclic reduction
tree for a conjunction of word equations E (subsection 4.1). After that, we describe how
to combine the tree with regular membership predicates Υ (subsection 4.2). Finally, we
discuss the correctness in subsection 4.3.



4.1 Constructing Cyclic Reduction Tree

ω-SAT transforms a conjunction of word equations E into a cyclic reduction tree Tn
which represents all its solutions. This procedure starts with the tree T0 with only the
input E at the root. After that, in each iteration it chooses one leaf node to reduce (us-
ing function reduce) or to make a back-link (using function link back) until every leaf
node is either irreducible or linked back. A leaf node is irreducible if it either trivially
true (i.e., w1=w1∧...∧wi=wi where w1, ..., wi∈Σ∗) or trivially false (i.e., either it is
of the form: c1tr1=c2tr2∧E where c1, c2 are different letters or its over-approximation
over the length functions is unsatisfiable). Function reduce takes a leaf node Ei as in-
put and produces a set Li each element of which is a pair of a node Eij and a cor-
responding substitution σj such that Eij=Eiσj . For each pair (Eij , σj)∈Li, it adds an
new open node Eij and a new edge (Ei, σj , Eij ). As a result, reduce extends the current
tree with the new nodes and new edges. In particular, function reduce is implemented
as: Li=

⋃
{matchs(Eij ) | Eij∈complete(Ei)} where function matchs exhaustively

matches and subtracts identical letters and string variables at the heads of left-hand side
(LHS) and right-hand side (RHS) of each word equation using function match. In the
following, we describe the details of the functions used by ω-SAT.

Matching match(e) matches two terms at the heads of LHS and RHS of e as follows.

match(u1·tr1=u2·tr2) =

{
match(tr1=tr2) if u1, u2 are identical
u1·tr1=u2·tr2 otherwise

where u1, u2 are either letters or string variables.

Procedure complete The overall goal of our reduction is to transform every word equa-
tion, say e≡u1tr1=u2tr2 where Ei=e∧E , into a set of “smaller” string equation ei
such that if e is satisfied, ei is a suffix of e. Word equations in a node are reduced in a
depth-first manner. Intuitively, our reduction over the word equation e is based on the
possible arrangements of two carrier terms, the terms at the heads of LHS and RHS of
e. Suppose that e is satisfied. Let l1, r1 be the starting and ending positions of u1 in the
solution word of e. Similarly, let l2, r2 be the starting and ending positions of u1 in the
solution word of e. Obviously, l1=l2. Our reduction, function complete, considers all
possible arrangements based on these positions. For arrangements in one-side (LHS or
RHS), it considers the cases: l1=r1 (i.e., u1=ε), l1<r1 and l2=r2 (i.e., u2=ε), l2<r2.
For arrangements between the two sides, it considers the cases: r1≥r2 and r2≥r1. In
particular, function complete considers the following two scenarios of the carrier terms.
Case 1: One term is a letter and another term is a string variable, e.g. x1tr1=c2tr2.
complete generates the set Li as Li≡{(Ei1 , σ1); (Ei2 , σ2)} where

– 1a) σ1=[ε/x1]
– 1b) σ2=[c2x

′
1/x1], x′1 is a fresh variable and referred as a subterm of x1.

Case 2: These terms are two different string variables, e.g. x1tr1=x2tr2. complete
generates the set Li as : Li≡{(Ei1 , σ1); (Ei2 , σ2); (Ei3 , σ3); (Ei4 , σ4)} where

– 2a) σ1=[ε/x1],



– 2b) σ3=[x2x
′
1/x1], x′1 is a fresh variable and referred as a subterm of x1,

– 2c) σ2=[ε/x2]
– 2d) σ4=[x1x

′
2/x2], x′2 is a fresh variable and referred as a subterm of x2.

As both Case 2b and Case 2d include the scenario where x1=x2, the reduction tree
generated represents a complete but not minimal set of all solution.

Linking back link back links a leaf node Eb to an interior node Ec if after some substitu-
tion σcyc, two nodes are identical: Ec≡Ebσcyc. In addition, for every entryX/X ′ ∈ σcyc
where X and X ′ are string variables, X ′ is a subterm of X . σcyc can be considered as a
permutation function on both U and the alphabetΣ. We recap that we refer to this cycle
as a triple C(Ec→Eb, σcyc) where Ec is called a companion, Eb is called a bud.

4.2 Combining with regular memberships

We propose to derive a finite representation of all solutions of a conjunction of word
equations and regular expressions. using procedure widentree. Procedure widentree

takes a pair of a reduction tree Tn of E0 (generated by ω-SAT) and a conjunction of regu-
lar expressions Υ as inputs and manipulates the reduction tree Tn through the following
three steps. First, it constructs a DFAA=〈Q,Σ,δ,qo,QF 〉which generates the same lan-
guage with Υ . Letm be the number states inQ andM=m!. Intuitively,m+1 is the min-
imal times of a cycle to obtain the minimal solutions of E0∧Υ . M is the periodic of the

e0≡abx=xba

e′12≡bax1=x1ba

e21≡ba=ba e′22≡abx2=x2ba

e10≡abx3=x3ba

e1
′

12≡bax4=x4ba

e121≡ba=ba e1
′

22≡abx5=x5ba

e20≡abx6=x6baF

e2
′

12≡bax7=x7ba

e221≡ba=ba e2
′

22≡abx8=x8baF

[ax1/x]

[ε/x1] [bx2/x1]

[x3/x2]

[ax4/x3]

[ε/x4] [bx5/x4]

[x6/x5]

[ax7/x6]

[ε/x7] [bx8/x7]

[x6/x8]

Fig. 4: Extending Tree T2 with x ∈ a∗.

sets of all solutions. Secondly, it
unfolds every cycles C(Ec→Eb, σ)
of Tn m+M times. It updates
link back functions by eliminat-
ing the old back-link between Eb
and Ec prior to generating a new
back-link between Ebm+M

and Ecm
as well as marking Ebm+M

as
closed. We note that a solution cor-
responding to a trace which vis-
its the companion Ecm l+1 times
(i.e., including k new cycles above)
has the form: S ≡ u1wm+1+lMu2.
Lastly, it collects label σj for every
path (E0, Ej) in the new tree where
E0 is the root, Ej is a leaf node
that is neither unsatisfiable nor a
bud prior to evaluating Ej . From
σj , it generates the following for-
mula: πj≡

∧
{Xi=si|(si/Xi)∈σj}∧Υ . πj is in a straight-line fragment where the sat-

isfiability problem SAT-STR is decidable [36].

Example 1. To illustrate our first decidable fragment, we use the following word equa-
tion as a running example: abx=xba where x is string variable and a, b are letters. This



e0≡abx=xbaF

e11≡ab=ba e12≡bax1=x1ba

e21≡ε=ε e22≡abx2=x2baF

[ε/x] [ax1/x]

[ε/x1] [bx2/x1]

[x/x2]

Fig. 5: Reduction Tree T2.

is the first equation in the motivating example (section 3.2). Its reduction tree T2 is pre-
sented in Fig. 5. We now illustrate how to use procedure widentree above to extend the
tree to represent all solutions of π1≡abx=xba ∧ x∈a∗. To do that, widentree first de-
rives for the regular expression x ∈ a∗ a DFA as:A = 〈{q0},{a},{((q0, a), a)},q0,{q0}〉,
and then identifies m=1 and M=m!=1. Secondly, it clones the cycle of T2 m+M =
1 + 1 = 2 more times. The resulting tree is described in Fig. 4. Lastly, it discharges the
satisfiability of solutions corresponding to the paths which start from the root and end
at leaf nodes e21, e121 or e221. The evaluation is as follows.

path formula outcome
(e0, e21) x=ax1∧x1=ε ∧ x∈a∗ SAT

(e0, e
1
21) x = ax1∧x1=bx2∧x2=x3 ∧ x3=ax4∧x4=ε ∧ x∈a∗ UNSAT

(e0, e
2
21)

x = ax1∧x1=bx2∧x2=x3 ∧ x3=ax4∧x4=bx5∧
x5=x6∧x6=ax7∧x7=ε ∧ x∈a∗ UNSAT

4.3 Correctness

In the following, we formalize the correctness of the proposed procedures and show the
relationship between the derived reduction tree with EDT0L system [41].

Proposition 1. Suppose that ω-SAT takes a conjunction E as input, and produces a
cyclic reduction graph Tn in a finite time. Then, Tn represents all solutions of E .

Proposition 2. Suppose that Υ ≡ X1∈R1∧...∧Xn∈Rn (Xi∈FV(E0),∀1 ≤ i ≤ n)
is a conjunction of regular memberships and Tn be the reduction tree derived for E0.
Then, widentree(Tn, Υ ) produces a reduction tree representing all solutions of E0∧Υ .

An interactionless Lindenmayer system (0L system) [41] is a parallel rewriting sys-
tem which was introduced in 1968 to model the development of multicellular system.
The class of EDT0L languages forms perhaps the central class in the theory of L sys-
tems. The acronym EDT0L refers to Extended, Deterministic, Table, 0 interaction, and
Lindenmayer. In the following, we give a formal definition of EDT0L system.

Definition 1 An ET0L system is a quadruple G=〈V , Σ, P, S〉 where V is a finite
nonempty set of nonterminals (or variables), Σ is a finite set of terminals and disjoint
from V , S∈V is the start variable (or start symbol), P is a finite set each element of
which (called a table) is a finite binary relation included in V × (V ∪Σ)∗. It is assumed
that ∀P ∈ P,∀x∈V,∃tr∈(V ∪ Σ)∗ such that (x, tr) ∈ P . An EDT0L system is a
deterministic ET0L system in which ∀P∈P,∀x ∈ V,∃!tr∈(V ∪Σ)∗ s.t. (x, tr) ∈ P .



For a production (x,tr) of P in P , we often write: x→ tr. We also write x→P tr for
“x→ tr is in P”. Let G=〈V , Σ, P, S〉 be an ET0L system.
1. Let x,y ∈ (V ∪ Σ)∗, and x contains k nonterminals v1,..., vk in V . We say that
x directly derives y (in G), denoted as x ⇒G y, if there is a P ∈ P such that
y is obtained by substituting vi by si, respectively for all i ∈ {1, ..., k}, where
v1 →P s1, ..., vk →P sk. In this case, we also write x⇒P y.

2. Let ⇒∗G be the reflexive transitive closure of the relation ⇒. If x ⇒∗G y then we
say that x derives y (in G).

3. The language of G, denoted by L(G), defined by L(G) = {w ∈ Σ∗ | S ⇒∗G w}.
A grammar system that is k-index is restricted so that, for every word generated by

the grammar, there is some successful derivation where at most k nonterminals appear
in every sentential form of the derivation [42]. A system is finite-index if it is k-index
for some k. We use L(L)FIN to denote the class of all L languages of finite-index.

Corollary 4.1 A reduction tree derived by ω-SAT forms a finite-indexEDT0L system.

Example 2. The tree in the Fig. 5 above forms the following finite-index EDT0L.
G=〈{S, x, x1, x2}, Σ, {P1, P2}, S〉 where P1 = {(S, abx), (x, ax1), (x1, ε)} and
P2 = {(S, abx), (x, ax1), (x1, bx2), (x2, x)}.

5 Decision Procedure

Decision Procedure: Kepler22(E∧Υ∧α)
1 Tn ← postprotrim(ω−SAT(E));
2 if (is false(Tn)) return UNSAT;
3 Tn+1 ← widentree(Tn, Υ )
4 if (is false(Tn+1)) return UNSAT;
5 αw ← extract pres(Tn+1);
6 return SATpres(αw∧α);

Fig. 6: Satisfiability Solving.

We present decision procedure Kepler22 to
handle SAT-STR. Kepler22 takes a con-
straint, say E∧Υ∧α, as input and returns SAT
or UNSAT. It works as follows. First, it in-
vokes ω-SAT to construct a reduction tree
Tn as a finite representation of all solutions
of E . After that, Tn is post-processed using
procedure postpro as below to explicate all
free variables. This step is critical to the next
step. Secondly, it uses procedure widentree

to extend Tn with membership predicates Υ and obtains Tn+1. Note that unsatisfi-
able nodes in the reduction tree are eliminated. Thirdly, it computes the length con-
straints which are precisely implied by all solutions generated through procedure
extract pres(Tn+1).These length constrains, say αw, are computed as an existentially
quantified Presburger formula. Lastly, Kepler22 solves that satisfiability of the con-
junction αw∧α which is in the Presburger arithmetic and decidable [21].

e
F
i

ei0 e
F
ij

[ε/x]
[cjx

′/x]

[x/x′]

Fig. 7: Free Variable x.

Post-Processing Given a path from the root e0 to a sat-
isfiable leaf node ei, a variable x appearing in this path
is called free if it has not been reduced yet. This means
x can be assigned any value in Σ∗ in a solution. Proce-
dure postpro aims to replace a free variable by a sub-tree
which represents for arbitrary values in Σ∗. The sub-tree
is presented in Fig. 7. This tree has a base leaf node (with substitution [ε/x]) and k



cycles (k is the size of the alphabet Σ) one of which represents for a letter ci ∈ Σ. If a
satisfiable leaf node has more than one free variable, each variable is replaced by such
sub-tree and these sub-trees are connected together at base nodes.

Correctness The correctness of step 1 and step 2 have been shown in the previous sec-
tion. Thus, the remaining tasks to show Kepler22 is a decision procedure in a fragment
are the termination of ω-SAT as well as the decidability of extract pres(Tn+1).

6 STREDT0L Decidable Fragment

Computing length constraint in this fragment is based on Parikh’s Theorem [38], one of
the most celebrated theorem in automata theory. The Parikh image (a.k.a. letter-counts)
of a word over a given alphabet counts the number of occurrences of each symbol in the
word without regard to their order. The Parikh image of a language is the set of Parikh
images of the words in the language. A language is Parikh-definable if its Parikh image
precisely coincides with semilinear sets which, in turn, can be computed as a Pres-
burger formula. In particular, Parikh’s Theorem [38] states that context-free languages
(and regular languages, of course) are Parikh-definable. In fact, given a context-free
grammar, we can compute its Parikh image in polynomial time [49,19]. Moreover, the
authors in [42] show that finite-index EDT0L languages [41] are also Parikh-definable.
In our work, we use Par(L) to denote the Parikh images computed for the language L.

A given constraint, say E∧Υ∧π, is said to be in the fragment if the following two
conditions hold. First, ω-SAT terminates on E . Secondly, π ≡ α1∧..∧αn where FV(αi)
contains at most one string length ∀i ∈ {1...n}. By the first condition, Kepler22
can derive for E a finite-index EDT0L system (Corollary 4.1). Moreover, finite-index
EDT0L can be translated into a Parikh-equivalent DFA (by Parikh’s Theorem [38,42]).
This means length of each string variable in the set of all solutions can be computed
as a DFA. By the second condition, each constraint α1 is based on the length of one
string variable. Hence, this constraint can be translated into another DFA. As regular
languages are closed under intersection. Therefore, the satisfiability of π is decidable.

Kepler22 uses extract pres(Tn+1) to compute the length constraints represented
for all solutions of E∧Υ as follows. Firstly, it transforms Tn+1 into a finite-index
EDT0L system. Secondly, it transforms theEDT0L grammar into a Parikh-equivalent
CFG G (see [42]). Lastly, it computes the length constraints αw for every string vari-
ables as: αw≡

∧
{Par(L(Gx)) | x ∈ FV(E∧Υ )}.

6.1 Parikh Image of CFG

In order to infer the Parikh image for a given CFG, we first transform the CFG into
a Parikh equivalent communication-free Petri net and then compute the Parikh image
of the communication-free Petri net [49]. The correctness was presented in [18,45,49].
Procedure Par takes a CFG G=〈V , Σ, P , s0〉 as input and produces a Presburger
formula to represents the Parikh image of all words derived from the start symbol s0.
In particular, it first transforms the CFG into a communication-free Petri net and then
generates a Presburger formula αG for this net.



A net N is a quadruple N=〈S, T , W, s0〉 where S is a set of places, T is a set
of transitions, W is a weight function: (S × T ) ∪ (T × S) → N, and s0 is the start
place in the net. If W (x, y)>0, there is an edge from x to y of weight W (x, y). A net is
communication-free if for each transition t there is at most one place swithW (s, t) > 0
and furthermore W (s, t) = 1. A marking M , a function S → N, associates a number
of tokens with each place. A communication-free Petri net is a pair (N,M) where N is
a communication-free net and M is a marking.

The CFG G is transformed into a communication-free Petri net (NG,MG) as:
NG=〈V ∪Σ, P , W, s0〉. If A→s is a production p ∈ P then W (A, p)=1 and W (B, p)
is the number occurrences ofB in s, for eachB∈V ∪Σ. Finally,MG(s0)=1 andMG(X)=0
for all other X∈V ∪Σ and X 6=s0. Let xc be a new integer variable for each letter c∈Σ,
yp be a new integer variable for each rule p∈P , and zs be a new integer variable for
each symbol s∈V ∪ Σ. We assume that we have m variables yp1 , .., ypm and n vari-
ables zs1 , .., zsn . We note that xc is used to count the number occurrences of the letter
c∈Σ in a word derived by the grammar G. The output αG is generated through the fol-
lowing two steps. Firstly, the procedure generates a quantifier-free Presburger formula
αcount which constrains the occurrences of letters in words derived by the grammar G.
In particular, αcount is a conjunction of the four following kinds of subformulas.

– xc≥0 for all c∈Σ.
– For each X∈V , let p1, ..., pk be all productions which X is on the left-hand side.

And we recap W (X, p) denotes the number occurrences of X on the right-hand
side of the production rule p. Then, αcount contains the following conjunct:

MG(X) +Σp∈PW (X, p)yp −Σk
i=1ypi = 0

– For each c ∈ Σ, αcount contains the following conjuncts:

xc = Σp∈PW (c, p)yp ∧ (xc = 0 ∨ zc > 0)

– For each s ∈ V ∪ Σ, let p1,...,pl be the productions where s is on the right-hand
side andX1,...Xl are their corresponding left-hand sides. Then, αcount contains the
following conjunct: (zs=0 ∨

∨l
i=1(zs = zXi+1∧ypi>0∧zXi>0). If one of theXi

is the start symbol s0, the corresponding disjunct is replaced by zs=1∧ypi>0.

Secondly,αG is generated as:αG ≡ ∃yp1 , .., ypm , zs1 , .., zsn .|s0|=Σc∈Σxc∧αcount.

Example 3. For the EDT0L in Ex. 2, we generate the following Parikh-equivalent
CFG G1 〈V1, Σ, P1, S1〉 where the start symbol S1 is fresh, V1={S1, x, x1, x2, x3}
and P1≡{(S1, abx), (x, ax1), (x1, bx2), (x2, x), (x, x3), (x3, ax1), (x1, ε)}.

Next, we show how to compute Par(L(G1x)), Parikh image of CFG G1x . Let xa
and xb be integer variables which count the occurrences of letters a and b, resp., of
every word. Let y1, y2,..., y7 be integer variables representing for the each production
in P1 following the left-right order. And let za, zb, zS1

, zx, zx1
, zx2

and zx3
be integer

variables which reflect the distance of the corresponding symbols to the start symbol
x in a spanning tree on the subgraph of the transformed net induced by those p with
yp>0. The first kind of conjuncts in αcount is: xa≥0∧xb≥0. The second is:



Variable conjunct
x 1 + (y4 + y1)− (y2 + y5) = 0
S1 0 + 0− y1 = 0
x1 0 + (y2 + y6)− (y3 + y7) = 0

Variable conjunct
x2 0 + y3 − y4 = 0
x3 0 + y5 − y6 = 0

The third kind of conjuncts inαcount corresponding to letter a and b is: xa=y1+y2+y6∧
(xa=0∨za>0) and xb=y1+y3∧(xb=0∨zb>0), respectively. The fourth is as follows.
x zx = 0 ∨ (zx = zx2

+ 1 ∧ y4 > 0 ∧ zx2
> 0) ∨ (zx = zS1

+ 1 ∧ y1 > 0 ∧ zS1
> 0)

S1 zS1 = 0
x1 zx1 > 0 ∨ (zx1 = 1 ∧ y2 > 0) ∨ (zx1 = zx3 + 1 ∧ y6 > 0 ∧ zx3 > 0)
x2 zx2

> 0 ∨ (zx2
= zx1

+ 1 ∧ y3 > 0 ∧ zx1
> 0)

x3 zx3
> 0 ∨ (zx3

= 1 ∧ y5 > 0)
a za>0 ∨ (za=zS1

+1 ∧ y1>0 ∧ zS1
>0) ∨ (za=1∧y2>0) ∨ (za=zx3

+1 ∧ y6>0 ∧ za>0)
b zb > 0 ∨ (zb = zS + 1 ∧ y1 > 0 ∧ zS1 > 0) ∨ (za = zx1 + 1 ∧ y3 > 0 ∧ za > 0)

Then, the length constraint of x is inferred as:
αG1x

≡ ∃y1, .., y7, za, zb, zx, zS1 , zx1 , zx2 , zx3 .|x|=xa+xb∧αcount
≡ ∃y1, .., y7, za, zb, zx, zS1 , zx1 , zx2 , zx3 .|x|=2y3+1∧xa=y3+1∧xb=y3∧αcount

6.2 STREDT0L: A Syntactic Decidable Fragment

Definition 2 (STREDT0L Formulas) E∧Υ∧α1∧..∧αn is called in fragment STREDT0L if E
is a quadratic system and FV(αi) contains at most one string length ∀i ∈ {1...n}.

For example, ec≡xaby=ybax is in STREDT0L. But π ≡ abx=xba∧ay=ya ∧ |x|=2|y|
(Sect. 3.2) is not in STREDT0L as the arithmetic constraint includes two string lengths.

The decidability relies on the termination of ω-SAT over quadratic systems.

Proposition 3. ω-SAT runs in factorial time in the worst case for quadratic systems.

Let SAT-STR[STREDT0L] be the satisfiability problem in this fragment. The follow-
ing theorem immediately follows from Proposition 3, Corollary 4.1, Parikh image of
finite-index EDT0L systems [42].

Theorem 1. SAT-STR[STREDT0L] is decidable.

7 STRflat Decidable Fragment

We first describe STRdecflat fragment through a semantic restriction and then show the
computation of the length constraints. After that, we syntactically define STRflat.

Definition 3 The normalized formula E∧Υ∧α is called in the STRdecflat fragment if ω-
SAT takes E as input, and produces a tree Tn in a finite time. Furthermore, for every
cycle C(Ec→Eb, σcyc) of Tn, every label along the path (Ec, Eb) is of the form: [cY/X]
where X , Y are string variables and c is a letter.

This restriction implies that every node in a Tn belongs to at most one cycle and Tn does
not contain any nested cycles. We refer such Tn as a flat(able) tree. It further implies
that σcyc is of the form σcyc ≡ [X1/X

′
1, ..., Xk/X

′
k] and X ′j is a (direct or indirect)

subterm of Xj for all j ∈ {1...k}. We refer the variables Xj for all j ∈ {1...k} as
extensible variables and such cycle as C(Ec→Eb, σcyc)[X1,...,Xk].



Procedure extract pres From a reduction tree, we propose to extract a system of
inductive predicates which precisely capture the length constraints of string variables.

First, we extend the syntax of arithmetical constraints in Fig. 1 with inductive defi-
nitions as: α ::= a1 = a2 | a1 > a2 | α1∧α2 | α1∨α2 | ∃v.α1 | P(v̄). In intuition, α
may contain occurrences of predicates P(v̄) whose definitions are inductively defined.
Inductive predicate is interpreted as a least fixed-point of values [46]. We notice that
inductive predicates are restricted within arithmetic domain only. We assume that the
system P includes n unknown (a.k.a. uninterpreted) predicates and P is defined by a set
of constrained Horn clauses. Every clause is of the form: φij ⇒ Pi(v̄i) where Pi(v̄i) is
the head and φij is the body. A clause without head is called a query. A formula with-
out any inductive predicate is referred as a base formula and denoted as φb. We now
introduce Γ to denote an interpretation over unknown predicates such that for every
Pi ∈ P , Γ (Pi(v̄i)) ≡ φbi. We use φ(Γ ) to denote a formula obtained by replacing all
unknown predicates in φ with their definitions in Γ . We say a clause φb ⇒ φh satisfies
if there exists Γ and for all stacks η∈Stacks, we have η |= φb(Γ ) implies η |= φh(Γ ).
A conjunctive set of Horn clauses (CHC for short), denoted by R, is satisfied if every
constraints inR is satisfied under the same interpretation of unknown predicates.

We maintain a one to one function that maps every string variable x∈U to its re-
spective length variable nx∈I. We further distinguish U into two disjoint sets: G a set
of global variables and E a set of local (existential) variables. While G includes those
variables from the root of a reduction tree, E includes those fresh variables generated by
ω-SAT. Given a tree Tn+1 (V,E, C) (where E0∈V be the root of the tree) deduced from
an input E0∧Υ , we generate a system of inductive predicates and CHCR as follows.

1. For every node Ei∈V s.t. v̄i=FV(Ei)6=∅, we generate an inductive predicate Pi(v̄i).
2. For every edge (Ei, σ, Ej)∈E, v̄i=FV(Ei)6=∅, v̄j=FV(Ej), w̄j=FV(Ej) ∩ E, we

generate the clause: ∃w̄j . gen(σ) ∧ Pj(v̄j)⇒ Pi(v̄i) where gen(σ) is defined as:

gen(σ) ==


nx=0 if σ≡[ε/x]

nx=ny+1 if σ≡[cy/x]

nx=ny+nz if σ≡[yz/x]

3. For every cycle C(Ec→Eb, σcyc)∈C, we generate the following clause:∧
{vbi=vci | [vci/vbi ] ∈ σcyc} ∧ Pc(v̄c)⇒ Pb(v̄b)

The length constraint of all solutions of E0∧Υ is captured by the query: P0(FV(E0)).
In the following, we show that if Tn is a flat tree, the satisfiability of the generated

CHC is decidable. This decidability relies on the decidability of inductive predicates in
DPI fragment which is presented in [46]. In particular, a system of inductive predicates
is in DPI fragment if every predicate P is defined as follows. Either it is constrained by
one base clause as: φb ⇒ P(v̄) or it is defined by two clauses as:

φb1∧..∧φbm ⇒ P(v̄) ∃w̄.
∧
{v̄i+t̄i=k}∧P(t̄)⇒ P(v̄)

where FV(φbj) ∈ v̄ (for all i ∈ 1..m) and has at most one variable; t̄ ⊆ v̄ ∪ w̄, v̄i is the
variable at ith position of the sequence v̄, and k ∈ Z.



To solve the generated clauses R, we infer definitions for the unknown predicates
in a bottom-up manner. Under assumption that Tn does not contain any mutual cycles,
all mutual recursions can be eliminated and predicates are in the DPI fragment.

Proposition 4. The length constraint implied by a flat tree is Presburger-definable.

Example 4 (Motivating Example Revisited). We generate the following CHC for the
tree T3 in Fig. 3.

∃nx1 .nx=nx1+1 ∧ P12(nx1 ,ny) ⇒ P0(nx,ny)
nx1=0 ∧ P21(ny) ⇒ P12(nx1 ,ny)
∃nx2

.nx1
=nx2

+1 ∧ P22(nx2
, ny)⇒ P12(nx1

,ny)
nx2

=nx ∧ P0(nx, ny) ⇒ P22(nx2
,ny)

ny=0 ⇒ P21(ny)
∃ny1 .ny=ny1+1 ∧ P32(ny1) ⇒ P21(ny)
ny1=ny ∧ P21(ny) ⇒ P32(ny1)
P0(nx,ny) ∧ (∃k.nx=4k+3) ∧ nx=2ny

After eliminating the mutual recursion, predicate P21 is in the DPI fragment and gener-
ated a definitions as: P21(ny) ≡ ny≥0. Similarly, after substituting the definition of P21
into the remaining clauses and eliminating the mutual recursion, predicate P0 is in the
DPI fragment and generated a definitions as: P0(nx,ny) ≡ ∃i.nx=2i+1∧ny≥0.

STRflat Decidable Fragment A quadratic word equation is called regular if it is either
acyclic or of the form Xw1 = w2X where X is a string variable and w1, w2 ∈ Σ∗. A
quadratic word equation is called phased-regular if it is of the form: s1·...·sn = t1·...·tn
where si=ti is a regular equation for all i ∈ {1...n}.

Definition 4 (STRflat Formulas) π≡E∧Υ∧α is called in the STRflat fragment if ei-
ther E is both quadratic and phased-regular or E is in SL fragment.

For example, π ≡ abx=xba∧ay=ya ∧ |x|=2|y| is in STRflat. But ec≡xaby=ybax is
not in STRflat.

Proposition 5. ω-SAT constructs a flat tree for a STRflat constraint in linear time.

Let SAT-STR[STRflat] be the satisfiability problem in this fragment.

Theorem 2. SAT-STR[STRflat] is decidable.

8 Implementation and Evaluation

We have implemented a prototype for Kepler22, using OCaml, to handle the satisfia-
bility problem in theory of word equations and length constraints over the Presburger
arithmetic. It takes a formula in SMT-LIB format version as input and produces SAT

or UNSAT as output. For the problem beyond the decidable fragments, ω-SAT may not
terminate and Kepler22 may return UNKNOWN. We made use of Z3 [14] as a back-end
SMT solver for the linear arithmetic.



Table 1: Experimental Results

#
√
SAT #

√
UNSAT #7SAT #7UNSAT #UNKNOWN #timeout ERR Time

Trau [4] 8 73 8 0 354 117 40 713m33s
S3P [3] 55 110 1 0 100 253 81 801m55s

CVC4 [1] 120 143 0 69 0 268 0 795m49s
Norn [2] 67 98 0 3 432 0 0 336m20s

Z3str3 [5] 69 102 0 0 292 24 113 77m4s
Z3str2 [51] 136 66 0 0 380 18 0 54m35s
Kepler22 298 302 0 0 0 0 0 18m58s

Evaluation As noted in [22,12], all constraints in the standard Kaluza benchmarks [43]
with 50,000+ test cases generated by symbolic execution on JavaScript applications
satisfy the straight-line conditions. Therefore, these benchmarks are not be suitable to
evaluate our proposal that focuses on the cyclic constraints. We have generated and ex-
perimented Kepler22 over a new set of 600 hand-drafted benchmarks each of which is
in the the proposed decidable fragments. The set of benchmarks includes 298 satisfiable
queries and 302 unsatisfiable queries. For every benchmark which is a phased-regular
constraint in STRflat, it has from one to three phases. We have also compared Kepler22
against the existing state-of-the-art string solvers: Z3-str2 [52,51], Z3str3 [9], CVC4
[34], S3P [48], Norn [7,8] and Trau [6]. All experiments were performed on an Intel
Core i7 3.6Gh with 12GB RAM. Experiments on Trau were performed in the Virtual-
Box image provided by the Trau’s authors.

The experiments are shown in Table 1. The first column shows the solvers. The
column #

√
SAT (resp., #

√
UNSAT) indicates the number of benchmarks for which the

solvers decided SAT (resp., UNSAT) correctly. The column #7SAT (resp., #7UNSAT) in-
dicates the number of benchmarks for which the solvers decided UNSAT on satisfiable
queries (resp., SAT on unsatisfiable queries). The column #UNKNOWN indicates the number
of benchmarks for which the solvers returned unknown, timeout for which the solvers
were unable to decide within 180 seconds, ERR for internal errors. The column Time
gives CPU running time (m for minutes and s for seconds) taken by the solvers.

The experimental results show that among the existing techniques that deal with
cyclic scenarios, the method presented by Z3-str2 performed the most effectively and
efficiently. It could detect the overlapping variables in 380 problems (63.3%) with-
out any wrong outcomes in a short running time. Moreover, it could decide 202 prob-
lems (33.7%) correctly. CVC4 produced very high number of correct outcome (43.8%
- 263/600). However, it returned both false positives and false negatives. Finally, non-
progressing detection method in S3P worked not very well. It detected non-progressing
reasoning in only 98 problems (16.3%) but produced false negatives and high number
of timeouts and internal errors (crashes). Surprisingly, Norn performed really well. It
could detect the highest number of the cyclic reasoning (432 problems - 72%). Trau
was able to solve a small number of problems with 8 false negatives. The results also
show that Kepler22 was both effective and efficient on these benchmarks. It decided
correctly all queries within a short running time. These results are encouraging us to ex-
tend the proposed cyclic proof system to support inductive reasoning over other string
operations (like replaceAll).



To highlight our contribution, we revisit the problem ec≡ xaay=ybax (highlighted
in Sect. 1) which is contained in file quad−004−2−unsat of the benchmarks. Kepler22
generates a cyclic proof for ec with the base case e1c∨e2c where e1c≡ec[ε/x]≡aay=yba
and e2c≡ec[ε/y]≡xaa=bax. It is known that for certain words w1, w2 and a variable
z the word equation z·w1=w2·z is satisfied if there exist words A, B and a natural
number i such that w1=A·B, w2=B·A and z=(A·B)i·A. Therefore, both e1c and e2c
are unsatisfiable. The soundness of the cyclic proof implies that ec is unsatisfiable.
For this problem, while Kepler22 returned UNSAT within 1 second, Z3str2 and Z3str3
returned UNKNOWN, S3P, Norn and CVC4 were unable to decide within 180 seconds.

9 Related Work and Conclusion

Makanin notably provides a mathematical proof for the satisfiability problem of word
equation [37]. In the sequence of papers, Plandowski et.al. showed that the complexity
of this problem is PSPACE [39]. The proposed procedure ω-SAT is closed to the (more
general) problem in computing the set of all solutions for a word equation [27,40,20,28,13].
The algorithm presented in [27] which is based on Makanin’s algorithm does not ter-
minate if the set is infinite. Moreover, the length constraints derived by [40,28] may not
be in a finite form. In comparison, due to the consideration of cyclic solutions, ω-SAT
terminates even for infinite sets of all solutions. ω-SAT is relevant to the Nielsen trans-
form [44,17] and cyclic proof systems [10,30,32,31]. Our work extends the Nielsen
transform to the set of all solution to handle the string constraints beyond the word
equations. Furthermore, in contrast to the cyclic systems our soundness proof is based
on the fact that solutions of a word equation must be finite. The description of the sets
of all solutions as EDT0L languages was known [20,13]. For instance, authors in [20]
show that the languages of quadratic word equations can be recognized by some push-
down automaton of level 2. Although [28] did not aim at giving such a structural result,
it provided recompression method which is the foundation for the remarkable proce-
dure in [13] which prove that languages of solution sets of arbitrary word equations are
EDT0L. In this work, we propose a decision procedure which is based on the descrip-
tion of solution sets as finite-index EDT0L languages. Like [20], we also show that sets
of all solutions of quadratic word equation are EDT0L languages. In contrast to [20],
we give a concrete procedure to construct such languages for a solvable equation such
that an implementation of the decision procedure for string constraints is feasible. As
shown in this work, finite-index feature is the key to obtain a decidability result when
handling a theory combining word equations with length constraints over words. It is
unclear whether the description derived by the procedure in [13] is the language of finite
index. Furthermore, node of the graph derived by [13] is an extended equation which is
an element in a free partially commutative monoid rather than a word equation.

Decision procedures for quadratic word equations are presented in [44,17]. More-
over, Schulz [44] also extends Makanin’s algorithm to a theory of word equations and
regular memberships. Recently, [24,25] presents a decision procedure for subset con-
straints over regular expressions. [35] presents a decision procedure for regular mem-
berships and length constraints. [22,7] presents a decidable fragment of acyclic word
equations, regular expressions and constraints over length functions. It can be implied



that this fragment is subsumed by ours. [36,12,23] presents a straight-line fragment
including word equations and transducer-based functions (e.g., replaceAll) which is
incomparable to our decidable fragments. Z3str [52] implements string theory as an
extension of Z3 SMT solver through string plug-in. It supports unbounded string con-
straints with a wide range of string operations. Intuitively, it solves string constraints
and generates string lemmas to control with Z3’s congruence closure core. Z3str2 [51]
improves Z3str by proposing a detection of those constraints beyond the tractable frag-
ment, i.e. overlapping arrangement, and pruning the search space for efficiency. Similar
to Z3str, CVC4-based string solver [33] communicates with CVC4’s equality solver to
exchange information over string. S3P [47,48] enhances Z3str to incrementally inter-
change information between string and arithmetic constraints. S3P also presented some
heuristics to detect and prune non-minimal subproblems while searching for a proof.
While the technique in S3P was able to detect non-progressing scenarios of satisfiable
formulas, it would not terminate for unsatisfiable formulas due to presence of multi-
ple occurrences of each string variable. Our solver can support well for both classes of
queries in case of less than or equal to two occurrences of each string variable.

Conclusion We have presented the solver Kepler22 for the satisfiability of string con-
straints combining word equations, regular expressions and length functions. We have
identified two decidable fragments including quadratic word equations. Finally, we have
implemented and evaluated Kepler22. Although our solver is only a prototype, the re-
sults are encouraging for their coverage as well as their performance. For future work,
we plan to support other string operations (e.g., replaceAll). Deriving the length con-
straint implied by more expressive word equations would be another future work.
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