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ABSTRACT 

Objective: To establish the prevalence of red dot markers in a sample of wrist radiographs and to 

identify any anatomical and/or pathological characteristics that predict “incorrect” red dot 

classification. 

Methods: Accident and emergency (A&E) wrist cases from a digital imaging and communications in 

medicine/ digital teaching library were examined for red dot prevalence and for the presence of 

several anatomical and pathological features. Binary logistic regression analyses were run to 

establish if any of these features were predictors of incorrect red dot classification. 

Results: 398 cases were analysed. Red dot was “incorrectly” classified in 8.5% of cases; 6.3% were 

“false negatives” (“FNs”) and 2.3% false positives (FPs) (one decimal place). Old fractures [odds ratio 

(OR), 5.070 (1.256–20.471)] and reported degenerative change [OR, 9.870 (2.300–42.359)] were 

found to predict FPs. Frykman V [OR, 9.500 (1.954–46.179)], Frykman VI [OR, 6.333 (1.205–33.283)] 

and non-Frykman positive abnormalities [OR, 4.597 (1.264–16.711)] predict “FNs”. Old fractures and 

Frykman VI were predictive of error at 90% confidence interval (CI); the rest at 95% CI. 

Conclusion: The five predictors of incorrect red dot classification may inform the image 

interpretation training of radiographers and other professionals to reduce diagnostic error. 

Verification with larger samples would reinforce these findings. 

Advances in knowledge: All healthcare providers strive to eradicate diagnostic error. By examining 

specific anatomical and pathological predictors on radiographs for such error, as well as extrinsic 

factors that may affect reporting accuracy, image interpretation training can focus on these 

“problem” areas and influence which radiographic abnormality detection schemes are appropriate 

to implement in A&E departments. 

 

BACKGROUND 

Diagnostic error in accident and emergency (A&E) department medical imaging may negatively 

impact on patient care and the reputation of the hospital, and potentially result in litigation—

phenomena that all healthcare providers strive to eradicate.1 In a district general A&E, Guly1 

reported 779 “false negative” (“FN”) diagnoses over 4 years—patients discharged with unidentified 

fractures or dislocations. 77.8% of these were owing to radiograph misinterpretation, and such 

misdiagnoses may become disabling or life threatening if not immediately recognized. Furthermore, 
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the distress that false-positive (FP) results may cause is highlighted in mammography and may 

reduce service use2—something that A&E departments must also avoid. Three potential strategies to 

prevent such errors—employed individually or in unison—are apparent: improve image 

interpretation training for A&E staff, 24-h reporting services and radiographer abnormality detection 

schemes (RADS).1 Immediate image interpretation to inform diagnostic decisions is frequently 

undertaken by A&E staff, before the radiological report is available. However, it has been claimed 

that junior doctors (whose responsibility this often is) are insufficiently experienced, trained or 

supervised.3 Reported retrospective error rates vary between 2.5% and 6.8%,4,5 with up to 68% 

reported in prospective studies.6 Reliable comparison of such studies is challenging with the inability 

to control significant variables such as FP exclusions, nontrauma inclusions and length of data 

collection.7,8 Nevertheless, the variability in image interpretation skills is striking and not conducive 

to a reliable 24-h service. The image interpretation gold standard is the full radiological report.9 

National Confidential Enquiry into Patient Outcome and Death9 stated that all emergency patients 

should have immediate reporting of projection radiography and CT examinations to influence A&E 

treatment decisions. The Royal College of Radiologists10 issued standards for a 24-h “hot” reporting 

service, but the UK shortage of radiologists per million population is a barrier—47 radiologists per 

million compared with 67 per million in much of Europe and Australia.10,11 Also, significant 

geographical variation makes the actual provision of 24-h reporting difficult to establish. The use of 

reporting radiographers in projection radiography in the UK may alleviate the deficit in radiologist 

numbers (indeed, radiographer reports have been shown to be equivalent to those of consultant 

radiologists12), but it is suggested they are underutilized with regard to working hours (typically, 9 

am–5 pm, Monday–Friday).13 Future development of this service in line with 7-day working and/or 

increases in radiologist numbers could improve the report turnaround time, but at present, 

immediate reporting is not always a reality.13 RADS are the third option to minimize diagnostic error, 

by alerting A&E staff to the presence of fracture/abnormality.14 92.8% of UK hospitals use RADS; 

77.8% of these using red dot— a method initiated in 1985 involving radiographers attaching 

asterisks to radiographs considered to demonstrate abnormality.15,16 There are moves towards 

refining this system to provide a written comment [preliminary clinical evaluation (PCE)] rather than 

a simple indication of abnormality, which is considered less ambiguous than red dot.17,18 Numerous 

studies have examined the diagnostic accuracy of red dot systems.19–21 The variability of the 

reported sensitivities (45.8–81.3%) and specificities (96.4–98.0%) from these studies shows it is not 

yet clear what the benefits are of using these tests. Without a stated or clearly defined benchmark, it 

is impossible to tell how “hard” the radiographs were to diagnose. This weakens the use of 

sensitivity and specificity as markers of radiographer ability, as conclusions are hard to draw across 

articles if the difficulty of the “tests” is unclear. Therefore, it is hard to evaluate effectively the merit 

of the red dot in relation to other RADS in this way.20 Studies to investigate predictive factors for 

diagnostic errors in radiology have focused on extrinsic factors affecting reporters. Night-shift 

fatigue [odds ratio (OR), 1.94; confidence interval (CI), 1.18–3.21], increased workload and 

inexperience [OR, 1.6 (1.5–1.7) and OR, 1.3 (1.2–1.4), respectively] have been shown to predict 

reporter error by evaluation of “major” interpretation discrepancies between initial reports (junior 

staff) and senior review.22,23 Ruutiainen et al22 defined this as a discrepancy influencing patient 

management, whereas Davenport et al (p. 923)23 used a scale of interobserver agreement that 

changed during the study, with categories including “difficult diagnosis, not ordinarily expected to be 

made” and “change in report may be clinically significant”, making it difficult to dissect what 

specifically constituted error. The subjective nature of this decreases internal validity, but if 

validated by other groups, these conditions extrinsic to the interpreted images may have wider 

implications for radiographers and red dot performance. Kim et al24 identified patient age as a 

predictor for discordant radiograph interpretation and was the only study to propose a pathological 



factor (presence of degenerative change) as a reason for error. However, this was suggested 

alongside difficulties in history taking and physical examination and warrants further investigation. 

Importantly, follow-up review of reports may identify errors, but too late to influence treatment or 

discharge.22 Red dot (at the time of imaging) may impact on patient management. Given the limited 

consideration of intrinsic predictive factors for diagnostic error, in particular those that are directly 

applicable to radiographic practice, the aims of this study were to establish the prevalence of red dot 

in a sample of radiographs taken in A&E departments following trauma and to identify anatomical 

and/or pathological predictors for “incorrect” red dot classification. 

 

METHODOLOGY 

A retrospective, quantitative approach was used to examine existing radiographic cases using a 

digital imaging and communications in medicine/digital teaching library (DTL). The DTL was 

constructed from a radiology information system (RIS)/picture archiving and communication system 

migration from clinical sites and therefore represented clinical practice at the time (2009/2010). 

Previous ethical approval was obtained from the National Information Governance Board for this 

migration, confirming all patient, staff and site data were extracted and given pseudonyms, so these 

details are completely anonymous to users.25 Therefore, demographics of the reporters cannot be 

identified, although reporting radiographers are shown to be equivalent to radiologists in plain-film 

emergency imaging.12 Similarly, the demographics of the radiographers performing the examination 

are also unknown. Institutional ethical release for this study was obtained prior to data collection to 

ensure the safety of the researcher, and that the confidentiality was protected. 

Sample 

A single examination type was selected for review to reduce confounding factors associated with 

analysing multiple body areas and classification systems in one study. The wrist has been stated as 

the most commonly fractured area (maximizing sample size),26,27 with delayed diagnosis causing 

continued pain and disability.28,29 This clinical justification was reinforced by the availability of 

objective-recognized classifications of wrist fractures. The Frykman classification has been found to 

have better interobserver reliability than does Arbeitsgemeinschaft fur 

Osetosynthesefragen/Orthopaedic Trauma Association, and so the former was selected for use in 

this study.30–33 Figure 1 illustrates the classification as used. Odd-numbered classifications depict 

fracture location, and even-numbered classifications include ulnar styloid involvement. Types I and II 

are extra-articular, Types III and IV are intra-articular at the radiocarpal joint (RCJ), Types V and VI 

are intra-articular at the distal radioulnar joint (DRUJ) and Types VII and VIII are intraarticular at both 

the RCJ and DRUJ.30 A non-probability, purposive sample was obtained from the DTL and subjected 

to inclusion and exclusion criteria.  

 

The inclusion criteria were wrist examinations, A&E referrals (first attendance for each injury) and all 

age groups (to reflect a typical A&E workload). The red dot scheme is implemented in A&E 

environments for highlighting fractures.16 It is not utilized for patients with known fractures such as 

following a cast fitting (postreduction), surgery or in musculoskeletal clinics, so these were excluded. 

Where a report was unavailable for a particular case, it was also excluded for the absence of a gold-

standard diagnosis. Following a pilot study of five cases, it was established that each case would take 

approximately 2min to assess. Therefore, all 452 A&E wrist cases in the DTL could be examined in 

the time available. 



Predictors 

Given the lack of previous research, three other anatomical/ pathological characteristics were 

selected as potential predictors of error in image interpretation, measured by correct or incorrect 

red dot classification. Degenerative change has been linked to radiograph misinterpretation,24 whilst 

epiphyseal growth plates may obscure paediatric fracture detection.28,35 Old fractures also present 

susceptibility to error, as they may be misinterpreted as acute injuries or confused with tumours, 

warranting inclusion in this study.36,37 These predictors were identified following a systematic search 

of the literature and by subsequent hand searches, given the lack of focus on anatomical and 

pathological reasons for errors in the literature. 

Procedure 

All cases in the DTL were available for sampling.25 “Wrist” and “accident and emergency” terms were 

inputted into the RIS advanced search tool to obtain the sample. The reports were read, inclusion 

and exclusion criteria were applied and, if included, the radiographs were examined by the 

researcher (RK). The accession numbers, red dot prevalence, abnormality status (present or not) and 

the presence of the stated characteristics (including Frykman classifications and non-Frykman 

positive group for abnormal cases) were recorded in a pro forma. The non-Frykman positive group 

was included for radiographs with an abnormality, but which did not fit any of the Frykman 

classification groups. Degenerative change and old fracture presence were recorded separately, 

whether they were mentioned in the report or observed but not reported. Not all anatomical/ 

pathological features (such as growth plates) are described in reports but may be significant. Report 

terminology was utilized to aid Frykman classification if this detail was included (i.e. “intra-articular”, 

“comminuted”, “ulnar styloid involvement”). Otherwise, this was performed by eye, primarily with 

the dorsopalmar (DP) projection as in Figure 1, but with the lateral projection used to assess the 

extent of fracture lines, for example, to establish if the fracture extended into a joint space, thus 

affecting classification. An expert reviewer (reporting radiographer with 13 years’ experience) was 

consulted if there was uncertainty regarding Frykman classification. 



 

 

Data analysis 

Data analysis was performed using SPSS® Statistics (IBM Corporation, Armonk, NY).38 The four 

outcome groups were collated to allow “yes/no” (correct/incorrect red dot classification) input 

required by SPSS but were still discernible as demonstrated in Table 1. Crosstab analyses were 

performed for each factor against the outcome to see if any associations existed. This was 

performed in a split field, to observe if “abnormal” or “normal” diagnosis also affected whether an 

anatomical/pathological factor was significant. The level of significance was set at 10% (p=0.10) 

rather than 5% (p=0.05) to maximize the opportunity for any further trends to be identified, given 

the limited sample size. 



 

 

Binary logistic regression models were used to identify which factors were predictive of red dot error 

and to test their independence from each other. FP error and “FN” error were regarded as 

dependent variables, and Frykman I–VIII classification, non-Frykman positives, degenerative change 

(reported), degenerative change (unreported) epiphyseal growth plate(s), old fracture (reported) 

and old fracture (unreported) were regarded as independent variables. One model was run for cases 

where no abnormality was present, to establish predictors for FP error, and another for 

fractured/abnormal cases for FN error. All potential factors were inputted into each model 

nonhierarchically, and those with the highest p-value (i.e. nonsignificant) removed following each 

run until only the significant (p=0.10) remained. This step-wise technique is suitable for exploratory 

studies, as the presence or absence of other variables can affect which are significant.39,40 True 

diagnostic accuracy was incalculable owing to the potential for radiographer non-participation, 

affecting the classification of cases as “FNs”. It cannot be established whether an abnormality was 

erroneously missed or the radiographer opted out of red dot. The red dot outcomes (Table 1) were 

referred to as true positive (TP), “FN”, FP and true negative (TN), with inverted commas around “FN” 

reflecting the provisory nature of this label. 

 

RESULTS 

Decisions and exclusions 

There were 54 exclusions from the 452 A&E wrist cases; therefore, 398 cases were eligible for full 

analysis. 45 cases were excluded as post-reduction projections, 7 where no report was available, 1 

for a repeat entry of a case and 1 case that was performed following insertion of metalware abroad. 

The annotation “?*” (query fracture/abnormality) was observed in eight cases. It was considered TP 

if the report confirmed a fracture (five cases) and FP where “no fracture” was observed (three 

cases). Four TPs were paediatric, whilst the FPs had unreported degenerative change, an old fracture 

and growth plates, respectively. There was one examination of “bilateral wrists”, so projections for 

both wrists were found under the same accession number. 

The left wrist was TP, whereas the right was “FN”. These were recorded separately in the pro forma, 

as it was the first attendance for each wrist, with different red dot outcomes. Another case had two 

separate accession numbers—one for the initial wrist projections and another for an additional, 

modified (oblique) projection. A fracture was queried in the second visit, and it may have been a 

different examining radiographer. Indeed, both examinations were reported separately, not 

necessarily by the same reporter. Therefore, two entries met the inclusion criteria and were entered 

individually. 

An expert reviewer (reporting radiographer) was consulted to clarify the Frykman classification of 

three cases, with agreement settled at Frykman I (extra-articular), V (DRUJ articulation) and VIII (RCJ 

and DRUJ articulation with ulnar styloid involvement). In a fourth case, the report did not mention 



an ulnar styloid fracture, but the expert reviewer agreed one was present. As the report was the 

specified gold standard, it was classified as Frykman VII (no ulnar styloid involvement), highlighting 

the weakness of a single, “human” gold standard. The Frykman V was FP; the others TP. 

Prevalence 

Of the 398 cases, 364 (91.5%) had correct red dot classification— 135 (33.9%) TPs and 229 (57.5%) 

TNs. 25 (6.3%) of the samples were “FNs” and 9 (2.3%) FPs (1 decimal place). This prevalence 

appears to be similar to other studies examining red dot (although these went on to calculate 

diagnostic accuracy). Hargreaves and Mackay19 in their assessment of radiographer red dot 

performance prior to a training programme and the retrospective Brown and Leschke21 study, both 

also had the lowest to highest prevalence groups as FP, “FN”, TP and TN, respectively, despite 

differences in the overall number of cases analysed. 

 

The frequency distribution of abnormal radiographs is given in Figure 2. Of these cases, 88 (55%) had 

fractures that were classified via Frykman. No existing data were found for comparison. Frykman 

defines intra-articular fractures individually at the RCJ (III and IV) and DRUJ (V and VI), and in 

combination (VII and VIII) but only gives DP projections. However, two projections (DP and lateral) 

are standard practice as the wrist is three dimensional.41 The most difficult to classify were therefore 



fractures that were not obvious on DP but evident on lateral projections. However, lateral 

projections were useful to analyse the extent of fracture lines and thus whether they were 

intraarticular (affecting classification). Making the distinction between extra- and intra-articular 

fractures was sometimes challenging owing to suboptimal DP positioning and natural variation, 

where the extent of distal radioulnar articulation differs between individuals. Thus distinguishing 

between Types I and V (extra- vs intra-articular) and Types II and IV (extra- vs intra-articular with 

ulnar styloid involvement) was problematic, seen with expert reviewer consultation. 

 

There were 168 individual abnormalities overall in the 160 cases: 88 Frykman fractures and 80 

abnormalities that could not be classified by the Frykman classification (the latter included 

nonfractures: radio-opaque foreign bodies, acute scapholunate joint widening and carpometacarpal 

joint dislocation). In three cases, two different non-Frykman abnormalities occurred in the same 

patient and in five other cases, a non-Frykman abnormality was observed alongside a Frykman 

fracture (therefore, 72 cases had just 1 non-Frykman abnormality only). If a red dot was observed on 

the radiographs with more than one abnormality, it was considered a TP. The abnormalities are 

detailed in Table 2, indicating the TPs and “FNs”.



 

 



Three of the FPs had degenerative change (two of which had this mentioned in the report), one had 

an old fracture, three had both reported degenerative change and an old fracture and two had 

neither of these characteristics (one of which had growth plates). 

 

 

 

Figure 3 illustrates the distribution of the remaining factors that could influence red dot, as 

previously described in the literature. These were not exclusive and were present in some fracture 

cases (for example, a classified Frykman fracture may also demonstrate degenerative change). Some 

degenerative change was reported, and some not mentioned in the reports but observed by the 

researcher (RK). These two groups were considered separately in the analysis. Crosstabulations 

Crosstabulations (crosstabs) assessed each anatomical/ pathological factor against red dot 

classification, in nonfractured and fractured/abnormal instances. Old fractures, reported 

degenerative change and Frykman V fractures had higher than expected minimum counts and were 

significant (p=0.014, p=0.001 and p=0.062, respectively). The p-value is that of Fisher’s exact test, as 

the assumption of expected frequencies was violated.42 As the groups of interest are incorrect red 

dot classification, correct classification is shaded out (Tables 3–5). 

 



 

 

 

Logistic regression analyses 

Table 6 indicates the significant predictors for incorrect red dot classification, obtained by binary 

logistic regression analyses. Each model was statistically significant [ꭓ2 (14, n=398)=15.059 (non-

fractured); ꭓ2 (14, n=398)=10.883 (fractured/ abnormal)], indicating they could distinguish between 

correct and incorrect red dot classifications. Again, separating fractured and non-fractured groups 

yielded different significant factors, which vary for FPs and “FNs”. Two predictors of FP error were 

identified, with the corresponding logistic regression equation as follows: 



 

The ORs of old fractures—reported and degenerative change— reported were 5.070 and 9.870, 

respectively (Table 6); therefore, the risk of FP red dot error with old fracture—reported was 5.070 

times that without this characteristic; the risk of a FP red dot error with degenerative change—

reported was 9.870 times that without degenerative change (reported), controlling for other factors 

in the model. Thus, having degenerative change that is mentioned in the radiological report is an 

important predictive feature of FP image interpretation error. 

 

Three predictors of “FN” error were identified, with the logistic regression equation as follows: 

 

 

The ORs of Frykman V, Frykman VI and non-Frykman positives were 9.500, 6.333 and 4.597, 

respectively (Table 6); thus, the risk of missing a Frykman V fracture was 9.5000 times greater than 

without this fracture type present and was the most important predictor of “FN” image 

interpretation error. Neither Frykman VI nor non-Frykman positives were significant individually in 

crosstabs but were identified as predictors of “FN” red dot classification when considered with all 

the other variables in the logistic regressions, thus the inclusion of all predictors in the model was 

justified.40 



 

 



DISCUSSION 

The red dot RADS has been contested, despite the wide use in practice.18 The present study 

established red dot prevalence in a sample of A&E wrist radiographs (Figure 2), with 91.5% correct 

classification. This was not dissimilar to previous studies; Brown and Leschke21 had 93.5% with ten 

times the sample size. This strengthens the external validity and generalizability of the study, as 

radiographer practice in the DTL appears to correlate with other groups. Full verification is difficult, 

however, as the red dot protocols in the DTL and Brown and Leschke21 were unknown, whereas 

Hargreaves and Mackay19 defined their system. Consequently, diagnostic accuracy calculations were 

precluded. If red dot was voluntary, it would reflect the accuracy of a non-mandatory practice and if 

enforced would give a true reflection of radiographer ability (“FNs” could reduce, but FPs may 

increase). Neither could be confirmed, highlighting a drawback of retrospective studies in this area 

and reflecting the provisory use of inverted commas for “FNs”, incorrect and “error” throughout. 

Published data of enforced PCE would aid the direct comparison and evaluation of these RADS. 

There was no comparable Frykman prevalence data; therefore, this study may be the first 

assessment. The absence of existing data means this work cannot be verified and weakens the 

generalizability of findings until analogous figures are compiled. Focusing on one anatomical area 

allowed thorough exploration of fracture type via this established classification, strengthening 

internal validity. Classification was assigned on assessment of each radiograph; as anatomical 

description rather than eponym systems such as Frykman is generally used to describe fractures in 

radiological reports. This researcher assessment may be subjective, but use of a recognized 

classification system was favoured over approximations of fracture severity to evaluate fracture type 

as a predictor of error. The researcher (RK) was a Masters student at the time of data collection, thus 

inexperience may have affected the assessment. The reporters in the DTL include reporting 

radiographers and radiologists of varied experience and seniority; these factors that may affect 

report accuracy could not be taken into account as these details were extracted to protect identity. 

A study with broader scope could consider such alongside anatomical and pathological factors. 

In the context of RADS, this study represents the first exploration of anatomical/pathological 

predictors for “error”. Five predictors for incorrect red dot classification were identified: “old 

fractures—reported” and “degenerative change—reported” for FPs, “Frykman V”, “Frykman VI” and 

“non-Frykman positives” for “FNs”. Crosstabs indicated significant predictor– outcome relationships 

existed within the field (Tables 3–5), however, the subsequent emergence of the latter two 

predictors validated the inclusion of all factors (not just those significant via crosstabs) in the logistic 

regression models. “Old fractures— reported” and “Frykman VI” were significant at 90% CI, whereas 

the others were significant at 95% CI. This threshold relaxation uncovered these further predictors, 

however, verification with a larger sample at 95% CI would be needed to ensure Type I error did not 

occur (non-significant results reported as significant) and reinforce internal validity. 

Although previous research is sparse, reported degenerative change and the presence of old 

fractures have been associated with interpretation discrepancies.24,37 This study supports these 

findings with radiographers; therefore, image interpretation training may need to focus on such 

areas to improve FP and “FN” rates. Given the lower frequency of reported degenerative change 

(Figure 3), its predictive effect may have been masked if all cases of degeneration had been 

considered together. The omission of unreported degenerative change from reports may reflect 

clinical insignificance as well as insignificance on interpretation “error”. There were no unreported 

old fractures, thus separating this characteristic was inconsequential. Frykman V and VI are intra-

articular at the DRUJ, suggesting this fracture type may be harder to spot than are extra-articular or 

those with RCJ articulation. Of the non-Frykman positives, metacarpal fractures had the highest “FN” 



percentage, followed by radial fractures too proximal for Frykman classification (Table 2). Such 

“misses” may be attributable to radiographers not assessing the whole radiograph, although this 

cannot be established without further research. 

Limitations of the sample size may have prevented other predictors of error being detected, with 

only four and three cases in Frykman II and IV categories, respectively.43 A larger sample may be able 

to collect enough paediatric cases to allow classification using the Salter and Harris44 system. As a 

single group in this study, paediatric fractures contributed to 45% of non- Frykman positives (Table 

2), warranting further investigation. Additionally, a larger sample may allow for individual analysis of 

non-Frykman positives as potential predictors for error. Despite the described limitations, the study 

demonstrated that fracture type affects red dot “error”. 

The present study has expanded the knowledge surrounding red dot, whilst stimulating several 

recommendations for future research. Red dot appears to be effective (91.5% correct); however, the 

prevalence statistics would be complemented by qualitative research to understand fully the 

motivation (or lack of) for radiographer participation. This would also allow insight into the “?*” 

annotation; whether it is a crisis of confidence or whether radiographers would rather risk FP 

diagnosis than miss an abnormality. Conversely, if all “FNs” were errors, it would be interesting to 

see whether this is due to lack of time for full image assessment, or poor image interpretation skills. 

This could be quantitatively evaluated with eye tracking, as used to show experience improves 

reporting accuracy and speed of abnormality detection.45,46 Together with the present study, such 

insights may provide a strong basis to inform image interpretation training and to establish the most 

appropriate RADS to aid timely detection of abnormalities in the A&E setting. Extrinsic predictors 

such as radiographer experience, radiographer confidence, time of day and previous education could 

influence red dot error. These were not considered in this study and could be the focus of future 

work. 

CONCLUSION 

This study has established red dot prevalence and identified predictors for incorrect classification. 

The unknown protocol leaves questions regarding participation, but these predictors may inform 

image interpretation training to reduce both “FN” and FP errors and allow radiographers and other 

health professionals to impact more positively on patient diagnoses. There are numerous additional 

avenues for future study, which together would expand the understanding of “error” to evaluate the 

hotly debated RADS 
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