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Abstract

The rapidly growing of Location-based Social Net-
works(LBSNs) provides a vast amount of check-
in data, which enables many services, e.g., point-
of-interest (POI) recommendation. In this paper,
we study the next new POI recommendation prob-
lem in which new POIs relating to users’ current
location are to be recommended. The problem
complexity lies in the difficulty in precisely learn-
ing users’ sequential information and personalizing
the recommendation model. To this end, we re-
sort to the Metric Embedding method that avoids
drawbacks of the commonly used Matrix Factor-
ization technique in the recommendation. We
propose a personalized ranking metric embedding
method (PRME) to model personalized check-in
sequences. We further develop a PRME-G model,
which integrates sequential information, individual
preference and geographical influence, to improve
the recommendation performance. Experiments on
two real-world LBSNs datasets demonstrate that
our new algorithm outperforms the state-of-the-art
next POI recommendation methods.

1 Introduction
With the increasing popularity of location-based social net-
works (LBSNs), users would like to share their locations by
checking-in points-of-interest(POIs). The large amount of
check-in data offers opportunity to better understand users’
mobility behavior, based on which recommending POIs will
become valuable. POI recommendation is of great value to
help users explore their surroundings. Importance of POI rec-
ommendation has attracted a significant amount of research
interest on developing recommendation techniques [Cho et
al., 2011; Ye et al., 2011; Cheng et al., 2012; Yuan et al.,
2013; Lian et al., 2014; Li et al., 2015].

Compared to the POI recommendation, the next POI rec-
ommendation [Cheng et al., 2013] gets relatively little re-
search attention. Besides users’ preference, the next POI rec-
ommendation additionally considers the sequential informa-
tion of users’ check-ins. The sequential influence is important
for POI recommendation because human movement exhibits

sequential patterns [Ye et al., 2013]. We verify users’ se-
quential behavior in the analysis of two real-world datasets.
Meanwhile, we observe that users often visit new POIs that
they have not visited before. In this paper, we focus on the
Next New POI recommendation problem (simplified as N2-
POI recommendation), which is to recommend new POIs to
visit at the next step given a user’s current location.

The challenge of N2-POI recommendation is to learn tran-
sitions of users’ check-ins that are commonly represented by
a first-order Markov chain model. Due to the sparse transi-
tion data, it is difficult to estimate the transition probability in
Markov chain, especially for the unobserved transition. Fac-
torized Personalized Markov Chain (FPMC) [Rendle et al.,
2010] method has been used to calculate the item transitions.
FPMC exploits matrix factorization technique to factorize the
Markov transition matrix. To model the transition, FPMC
represents each item with two independent vectors. However,
these two vectors are related to the same item and their latent
relationship is not exploited (more details in Section 2). Con-
sequently, this technique is not sufficiently effective to learn
the item transitions.

By projecting every POI into one object in a low-
dimensional Euclidean latent space, we use the Metric Em-
bedding algorithm to effectively compute the location tran-
sition in a Markov chain model. Intuitively, the distance of
two objects measures the strength of their sequential relation.
We further propose a pair-wise ranking Metric Embedding
algorithm that ranks potential POIs in a latent space. Sub-
sequently, we develop a Personalized Ranking Metric Em-
bedding model (PRME), which jointly models the sequential
information and individual preference. Since users incline to
visit the POIs close to their current positions, geographical in-
fluence is important for the recommendation task. We extend
the PRME model to accommodate geographical influence in
the N2-POI recommendation. We summarize the following
main contributions in this paper.

• We develop a pair-wise Metric Embedding algorithm to
model the sequential transition of POIs. To the best of
our knowledge, this is the first work that uses the Metric
Embedding method for the POI recommendation.

• To model the personalized sequential information, we
propose a novel PRME algorithm , which jointly consid-
ers sequential transition and user preference. We further

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322321975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


develop a PRME-G algorithm to incorporate geographi-
cal influence for the N2-POI recommendation problem.

• We conduct comprehensive experiments by comparing
our algorithms with state-of-the-art techniques over two
real-world datasets.

2 Related Work
Location recommendation has attracted intensive research at-
tention recently. Most of previous methods are based on Col-
laborative Filtering (CF) technique. One of the most widely
CF algorithm is the user-based CF [Ye et al., 2011; Yuan et
al., 2013; Chen et al., 2015], which takes advantage of check-
ins of similar users for the recommendation purpose. An-
other CF method is Matrix Factorization [Cheng et al., 2012;
Lian et al., 2014], which learns the general taste of a user
by factorizing the observed user-item preference matrix. The
CF based algorithms mainly exploit the user preference to
make recommendations. Currently, geographical influence
has been fused with the CF algorithms to enhance POI recom-
mendation. For example, Gaussian Mixture distribution[Cho
et al., 2011; Cheng et al., 2012] and power law distribution
[Ye et al., 2011; Yuan et al., 2013] have been proposed to
model the geographical influence.

Sequential influence has been considered for the POI rec-
ommendation. Most of the studies utilize the Markov chain
property to predict the next check-ins. Zhang et al. [Zhang et
al., 2014] predict the sequential probability through an addi-
tive Markov chain. However, this method fails to assign the
transition probability for the unobserved data because it di-
rectly constructs the Markov chain model based on check-in
data. Instead of using transition pattern of POIs, [Liu et al.,
2013; Ye et al., 2013] exploit the transition pattern of POI
categories to predict future check-ins. However, the accuracy
of these methods highly depends on the category information.

FPMC [Rendle et al., 2010] is the state-of-the-art person-
alized Markov chain algorithm. To model the Markov chain
transition, FPMC associates each item l with two indepen-
dent vectors: ~Fl to embody the transition to other items, and
~Tl to represent getting transition from other items. The tran-
sition from item li to another item lj is embodied as the inner
product of the latent vectors ~Fli · ~Tlj . However, FPMC fails
to model relations among multiple items. For example, given
li → lj and lj → lk, transition li → lk is expected to have
a high probability because both li and lk have close relations
with lj . However, FPMC fails to reflect such relationship due
to the independent assumption on ~Flj and ~Tlj . This drawback
limits its performance.

The work by Cheng et al. [Cheng et al., 2013] is most re-
lated to ours. The research aims to recommend POIs for the
next hours by merging consecutive check-ins in the previous
hours. It directly employs FPMC to model the personalized
POI transition. Based on the current POI, their method only
considers the POIs in the defined region as candidates. Lian
et al. [Lian et al., 2013] also adopts FPMC to represent the
short- and long-term preference to predict the next check-in.
Differently from these studies, we propose a metric embed-
ding model to learn the personalized sequential information.

Embedding items in a low-dimension Euclidean space is
mainly used for the purpose of visualization and exploratory
data analysis [Roweis and Saul, 2000; Hinton and Roweis,
2002]. Recently Metric Embedding is adopted in the mu-
sic playlist prediction. Chen et al. [Chen et al., 2012;
2013] propose a Logistic Markov embedding (LME) for gen-
erating the playlists. LME maps each song to one point (or
multiple points) in a latent Euclidean space. The transition
probability from one song to another is related to the Eu-
clidean distance of the two songs in the latent space. The
research [Wu et al., 2013; Moore et al., 2013] embeds users
and songs into a common latent space to represent the person-
alized Markov Chain. Our work differs from the aforemen-
tioned studies in that we exploit pair-wise ranking scheme
to learn the parameters, and adapt Metric Embedding for the
POI recommendation task by incorporating multiple factors.

3 Next New POI Recommendation
We use two publicly available datasets. The first dataset is the
FourSquare check-ins within Singapore [Yuan et al., 2013]
while the second one is the Gowalla check-ins dataset within
California and Nevada [Cho et al., 2011]. We use one-year
data in both datasets. Each check-in is a tuple in the form of<
user, POI, time >. Each POI is associated with the latitude
and longitude. In the preprocessing of the data, we remove
users who have check-in fewer than 10 POIs, and POIs which
have been visited by fewer than 10 users. The basic statistics
are summarized in Table 1.

Dataset #User #POI #Check-in Time range
FourSquare 1917 2675 155365 08/2010-07/2011
Gowalla 4996 6871 245157 11/2009-10/2010

Table 1: Statistics of two datasets

3.1 Observations on real-world datasets
Observation 1: exploration of new locations
Figure 1 shows the ratio of new POIs for every 50 days. For
example, the ratio at the 100th day is the proportion of POIs
checked at the 100th day that have not been visited in the
previous days. The ratio of new POIs is pretty high (most
of the ratios above 0.4) on both datasets, which implies that
people always like to explore new POIs. This observation is
in accordance with the recent findings [Lian et al., 2013].
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Figure 1: The ratio of new POIs with number of days on two real-
world datasets.

Observation 2: temporal Influence
Figure 2(a) shows the cumulative distribution function (CDF)
of the time difference of two sequential check-ins. Figure 2(a)
demonstrates that more than 50% successive check-ins occur



in less than 24 hours. Meanwhile, there are still many con-
secutive check-ins occur in a long time. For more than 25%
consecutive check-ins, their time difference is larger than 48
hours.
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(b) Geographical distance
Figure 2: CDF of time difference and geographical distance of two
consecutive check-ins.

Observation 3: spatial influence
We compute the geographical distance of two consecutive
check-ins and plot the CDF distribution in Figure 2(b), which
shows that 70% consecutive check-ins have less than 10km
in both datasets. The CDF curve increases fast when dis-
tance is small, which implies that most check-ins occur in
near areas. This result indicates that users’ next movements
are influenced by their current locations. The finding is
in accordance with the reported result [Yuan et al., 2013;
Cheng et al., 2013].

3.2 Next new POI problem definition
When two check-ins occur in short time period, markov chain
property exists [Cheng et al., 2013]. This motivates us to con-
sider the POI transition within a short period, which means
the next POI is influenced by current POI. Following [Zhang
et al., 2014], if the time difference of two consecutive check-
ins is smaller than τ , sequential influence shall be considered.
Here τ is the time threshold. In Section 6, we investigate the
impact of τ . Meanwhile, according to observation 1, users in-
cline to visit new POIs for their exploration interests, which
makes it meaningful to suggest new POIs for users.

Based on the sequential property within a short time period
and users’ willingness of new POIs, we formally define the
N2-POI recommendation problem below.

Definition 1 (N2-POI Recommendation Problem ) For a
set of users U and a set of POIs L, C is the historical check-in
data, and Lu is the set of POIs that user u has visited before.
Given current POI lc of user u, the N2-POI problem is to
recommend a set of POIs Su,lc ⊂ L for the user u to visit
next and the POIs are new to the user

Su,l
c

= {l ∈ L \ Lu}
Note that we want to solve the N2-POI recommendation,

which only recommends new POIs to users. In contrast, a
next POI prediction task outputs both the visited and un-
visited POIs as the results. As reported in [Lian et al., 2013],
if we only use the frequently visited POIs of a user to predict
his next POIs, a high prediction precision can be achieved.
In addition, it’s challenging to estimate the implicit transition
probability of potential new POIs based on the sparse histor-
ical data. Thus, the N2-POI recommendation is harder than
the next POI prediction.

4 Personalized Ranking Metric Embedding
We first introduce Metric Embedding algorithm with Pair-
wise Ranking to model location transitions in Section 4.1.
The Personalized Ranking Metric Embedding (PRME) is
then presented in Section 4.2. Section 4.3 states PRME-G
model, which jointly incorporates sequential transition, user
preference and geographical influence.

4.1 Pairwise Ranking Metric Embedding
Embedding POIs in latent space
To model the sequential information, we need learn the tran-
sition probability in a Markov chain model. However, due to
the data sparsity, it is infeasible to estimate the transitions by
using standard counting methods. Metric embedding model
can be used to handle the data sparsity and be generalized
to the unobserved data. We represent each POI as one point
in a latent space. We assume that Euclidean distance between
POIs in the latent space reflects the transition probability. The
larger the distance, the lower the strength of transitions. With
all POIs embedded in a latent space, our model estimates the
sensible transition probabilities of POIs. It is also possible
to assign meaningful probabilities to those unobserved tran-
sitions.

In the Metric Embedding model, each POI l has a position
X(l) in a K-dimensional space. Given the observed sequen-
tial POI transitions, the goal is to learn the positions of all
POIs. We relate the transition probability of a pair, li and lj ,
to the Euclidean distance as defined in Eq. 1.

P̂ (lj |li) =
e−||X(lj)−X(li)||2

Z(li)
(1)

where ||X(li) − X(lj)||2 =
∑K

k=1(Xk(li) − Xk(lj))
2, K

is the number of dimensions of the latent space and Z(li) =∑|L|
n=1 e

−||X(ln)−X(li)||2 is the normalization term.
Compared to matrix factorization in FPMC, Metric Em-

bedding (ME) can better model the sequential transition. It
represents each item as a single point in a latent space rather
than two independent vectors. This representation is more
natural to embody the latent relations of items. E.g. given
observed transition li → lj and lj → lk, li → lk is expected
to a potential transition. ME is able to capture this kind of re-
lation. ||X(li)−X(lk)||2 would be small, because bothX(li)
and X(lk) will be pulled closely to a same position X(lj).

Ranking based metric embedding
Eq. 1 only exploits the observed check-ins to learn the latent
position of each POI. Since the observed data is very sparse,
we learn the latent position by fitting the rankings for the POI
transition. Consequently, we can additionally make use of the
unobserved data to learn the parameters. We utilize POI pairs
as training data and optimally estimate the pair-wise ranking.
We assume that the observed next POI is more related to cur-
rent POI than the unobserved POI. For example, if transition
lc → li is observed and lc → lj is not observed, POI li should
be ranked higher than POI lj . We model it as a ranking> over
POIs:

li >lc lj ⇔ P̂ (li|lc) > P̂ (lj |lc) (2)



The goal of POI recommendation is to provide a ranking of
all the items, and accordingly recommend the top items. Fur-
thermore, since we are interested in the ranking of POIs, we
can simplify the computation by only keeping the Euclidean
distance ||(X(li), X(lj)||2 in the latent space (abbreviated as
Dli,lj ). Instead of utilizing the exponential function, we di-
rectly use the Euclidean distance to rank the POIs.

P̂ (li|lc) > P̂ (lj |lc)⇒ e−||(X(li),X(lc)||2 > e−||(X(lj),X(lc)||2

⇒ ||(X(li), X(lc)||2 < ||(X(lj), X(lc)||2

⇒ Dlc,lj −Dlc,li > 0

(3)

4.2 Personalized Ranking Metric Embedding
Individual preference has been proved to be an important fac-
tor for the POI recommendation because each user would pre-
fer some favorite POIs. Given current location lc of user u,
the recommended N2-POI shall not only be related to lc, but
also capture user’s preference.

We use ME to model the user-item preference. We project
each POI and each user into a latent space. The distance
between a user and a POI reflects the strength of their re-
lations. Intuitively, if user u likes POI l, the distance
||(X(u), X(l))||2 in latent space should be small. Otherwise,
||(X(u), X(l))||2 would be large. By doing this, we model
the user-item preference in a latent low-dimension space.

Since RME exploits transition data of all users, it does
not reflect the user-specific transition. We further develop a
Personalized Ranking Metric Embedding (PRME) method,
which considers sequential information and individual pref-
erence together. We utilize two latent spaces: one is the se-
quential transition space and the other is the user preference
space. Each POI l has one latent position XS(l) in the se-
quential transition space, and the Euclidean distance of two
POI li and lj is defined as DS

li,lj
= ||(XS(li), X

S(lj)||2.
In the user preference space, each user u has a latent po-
sition XP (u) and each POI l has a latent position XP (l).
DP

u,l = ||(XP (u), XP (l)||2 denotes the Euclidean distance
of user u and POI l in the user preference space.

Given current location lc of user u, we model personalized
sequential transition for a candidate POI l by combining the
two kinds of metric. As two components contributes differ-
ently into the metric score of POI l, we use a linear interpola-
tion to weight the two metrics.

Du,lc,l = αDP
u,l + (1− α)DS

lc,l (4)

where α ∈ [0, 1] controls the weight of different kinds of
distance.

Based on observation 2 (in Section 3.1), some successive
check-ins have large time difference, which may indicate
their irrelevance. We assume that if the time interval between
two adjacent check-ins is larger than threshold τ , only the
user preference is considered. We then recompute the dis-
tance metric Du,l,lc below.

Du,lc,l =

{
DP

u,l if ∆(l, lc) > τ

αDP
u,l + (1− α)DS

lc,l else
(5)

where ∆(l, lc) is the time difference of two successive check-
ins l and lc.

4.3 Incorporating Geographical Influence
As stated in Section 3.1, given current location, users would
like to visit the near POIs rather than the far way POIs. Ge-
ographical distance affects users’ visiting behavior. Thus we
propose a PRME-G model to incorporate the geographical in-
fluence into the PRME model.

We accommodate the geographical influence by using the
weight of the geographical distance. For any pair of POIs,
we can calculate the geographical distance via their longitude
and latitude. Given the geographical distance dlc,l, we use
a weight function wlc,l (w(d) = (1 + d)0.25 in this paper).
The fused distance metric becomes DG

u,lc,l · wlc,l. When the
distance of a POI is large, the fused metric would be large,
and thus this POI is less likely to be recommended to users.
The integrated metric with geographical influence is defined
as below.

DG
u,lc,l =

{
DP

u,l if ∆(l, lc) > τ

wlc,l ∗
(
αDP

u,l + (1− α)DS
lc,l

)
else

(6)
Note that the PRME-G model is not special for N2-POI

recommendation and is general for solving next POI predic-
tion problem. We do not show the improvement for predicting
next POI due to the limited space.

5 Parameter Learning
5.1 Optimization Criterion
Assuming that users’ check-ins are independent with each
other, then we can derive the optimization criterion of PRME
model. Analogous to Bayesian Personalized Ranking (BPR)
approach [Rendle et al., 2009], we estimate the PRME model
by using maximum a posterior (MAP):

Θ = argmax
Θ

∏
u∈U

∏
lc∈L

∏
li∈L

∏
lj∈L

P (>u,lc |Θ)P (Θ) (7)

Θ = {XS(L), XP (L), XP (U)} is the set of parameters.
Using logistic function σ(z) = 1

1+e−z , ranking probability
can be further written as

P (>u,lc |Θ) = P
(
(Du,lc,lj −Du,lc,li) > 0|Θ

)
= σ(Du,lc,lj −Du,lc,li)

(8)

Assuming Gaussian priors on the parameters, we have the
final objective function in Eq. 9, where λ is the regularization
term.

Θ = argmax
Θ

log
∏
u∈U

∏
lc∈L

∏
li∈L

∏
lj∈L

(
σ(Du,lc,lj −Du,lc,li)P (Θ)

)
= argmax

Θ

∑
u∈U

∑
lc∈L

∑
li∈L

∑
lj∈L

log
(
σ(Du,lc,lj −Du,lc,li)

)
− λ||Θ||2

(9)

5.2 Learning Algorithm
Directly solving Eq. 9 is time consuming. Following the ap-
proach of BPR, we independently draw the training tuple and
utilize Stochastic Gradient Descent to update the parameters.
Based on the historical check-in data, we can obtain a set of
observations {< u, lc, li >}, where lc is the current location



of user u and li is the next check-in. For each observation,
we randomly generate a POI lj , which is not observed given
u and lc. Given a training tuple < u, lc, li, l

j >, the update
procedure is describe as below.

Θ← Θ + γ
∂

∂Θ

(
logσ(z)− λ||Θ||2

)
← Θ + γ

(
(1− σ(z))

∂z

∂Θ
− 2λΘ

) (10)

where z = Du,lc,lj −Du,lc,li , γ is the learning rate.
The learning algorithm of PRME is summarized in Algo-

rithm 1. First, we initialize all the parameters with a Normal
distribution (Line 1). For each observation < u, lc, li >, we
randomly generate a POI lj that user u has not visited after lc.
We then calculate the time difference ∆(lc, li) to determine
whether it is related to lc. If ∆(lc, li) < τ , latent positions
in both user preference latent space (Line 6) and sequential
transition space (Line 7) are updated. If ∆(lc, li) ≥ τ , only
user preference is taken into account (Line 9). Note that all
the update procedures (Lines 6,7,9) are based on Eq. 10. For
PRME-G model, we utilize DG

u,lc,l in Eq. 9 as the optimiza-
tion criterion and use the similar procedure to learn parame-
ters.

The time complexity of the algorithm is O(IK|C|), where
I is the number of iterations, K is the number of dimensions
and |C| is the number of observed check-ins in the dataset.

Algorithm 1: PRME
input : check-in data C, learning rate γ, regularization λ,

component weight α, time threshold τ
output: model parameters Θ = {XS(L), XP (L), XP (U)}

1 Initialize Θ with Normal distributionN (0, 0.01);
2 repeat
3 for Each observation < u, lc, li > do
4 Randomly generate an unobserved POI lj ;
5 if ∆(lc, li) < τ then
6 Update XP (u), XP (li), X

P (lj);
7 Update XS(lc), XS(li), X

S(lj);

8 if ∆(lc, li) ≥ τ then
9 Update XP (u), XP (li), X

P (lj);

until convergence;
10 return Θ = {XS(L), XP (L), XP (U)}

6 Experiments
6.1 Experimental Setup
Experimental setting
In the experiments, we use the two datasets introduced in Sec-
tion 3. For the one-year check-ins data, we use the check-ins
in the first 10 months as training set, the 11th month as tun-
ing set, and the last month as test set. We exploit two well-
known measure metrics [Yuan et al., 2013], namely Preci-
sion@N and Recall@N (denoted by Pre@N and Rec@N re-
spectively). Given a user and his current location, we use the
next check-in in successive τ hours as the ground truth. The
time window threshold τ is set at 6 hours following [Cheng et
al., 2013]. Based on the tuning set, the number of dimensions
is set atK = 60, learning rate γ = 0.005, regularization term
λ = 0.03 and component weight α = 0.2.

Evaluated methods
In the experiments, we compare PRME and PRME-G with
the following baselines:

• Popu: the most popular POIs are recommended (user
count ranking scheme in [Ye et al., 2013]).
• UCF: User based CF [Yuan et al., 2013; Ye et al., 2011]
• MF: Matrix Factorization with BPR [Rendle et al.,

2009], which factorizes the user-item preference matrix.
• MC: first order Markov chain model [Zhang et al.,

2014], which computes the transition probability by
counting method.
• PME: the personalized metric embedding [Wu et al.,

2013; Moore et al., 2013], which projects users and POIs
in a common latent space.
• FPMC: state-of-the-art personalized next POI recom-

mendation algorithm [Cheng et al., 2013; Rendle et al.,
2010].

6.2 Performance of Methods
We compare the precision and recall of various methods in
Figure 3. The lower precision and recall of Popu method in-
dicates that this naive approach is not feasible for the next
POI recommendation. Both UCF and MF perform poorly be-
cause they do not make use of sequential information. This
results shows the conventional POI recommendation algo-
rithms, which mainly exploit the user preference, are not
effective for the N2-POI recommendation. The relatively
high performance of MC method demonstrates that the se-
quential information plays an important role in the N2-POI
recommendation. The PME performance is not acceptable
because the learning of sequential transition and user pref-
erence would be interfered with each other in a common
latent space. Note that FPMC is state-of-the-art personal-
ized Markov chain algorithm. PRME consistently outper-
forms FPMC, which illustrates that representing each POI as
one point in latent space is more effective than two indepen-
dent vectors. PRME-G achieves the best performance, which
shows that the geographical influence is beneficial for theN2-
POI recommendation. All reported improvements over base-
line methods are statistically significant with p-value < 0.01.

We further compare PRME and FPMC with the localized
region constraint [Cheng et al., 2013]. Figure 4 shows the
precision with different region constraints. The local region
constraint means we only consider the candidate POIs with
no more than d km (d=10, 20 and 40) from current loca-
tion. Note that PRME and FPMC use the same setting. Under
different local region constraints, PRME outperforms FPMC,
which further verifies the advantage of PRME.

6.3 Effect of Parameters
Effect of time threshold τ
Figure 5 depicts the impact of the time threshold τ (τ = 3, 6
and 24 hours). PRME and PRME-G outperform the baselines
with various τ . Besides, when τ is large, the performance
of sequence based methods (MC, PME, FPMC,PRME and
PRME-G) decreases. This is because the location sequential
transition becomes weak when time difference is large.
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Figure 3: The result of methods on Foursquare and Gowalla.

(a) Pre@10 on FourSquare (b) Rec@10 on FourSquare (c) Pre@10 on Gowalla (d) Rec@10 on Gowalla

Figure 5: The effect of time threshold τ on Foursquare and Gowalla.

(a) Foursquare (b) Gowalla
Figure 4: Different localized region constraint on two datasets.

Effect of component weight α
Figure 6 shows the effect of weight α. The performance at
α = 0 (only sequential transition) is much better than α = 1
(only user preference). This result implies that sequential in-
fluence is more important than user preference in theN2-POI
recommendation problem. The best performance is obtained
when α = 0.2. Hence, we set α = 0.2 in our experiments.
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Figure 6: Effect of component weight α.

Effect of number of dimensions K
We further investigate the impact of K with FPMC and
PRME. Figure 7 shows the precision and recall for various

K. When K ≥ 20, PRME outperforms FPMC in recommen-
dation quality, which implies the superiority of PRME. The
performance of FPMC and PRME increases with K because
high dimensions can better embody the latent metric relation-
ships. Empirically, we set K = 60 in our experiments, which
achieves a satisfying trade off between recommendation qual-
ity and running time.
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Figure 7: Effect of the number of dimension for PRME.

7 Conclusion and Future Work
In this paper, we study the next new POI recommendation
problem. We propose a novel pair-wise Metric Embedding
to model the sequential POI transition. We further develop
PRME-G jointly modeling three factors: sequential transi-
tion, individual preference and geographical influence. Per-
formance of our algorithms is demonstrated by extensive ex-
periments on two datasets.

Several interesting future directions exist for further explo-
ration. First, metric embedding can be used to provide visu-
alization of the POI-POI and user-POI relationships. Second,
PRME model is not specific for POI recommendation task
and can utilized for other applications, such as product rec-
ommendation and friend recommendation.
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