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Abstract 
 
Wave-based control of under-actuated, flexible systems has many advantages over other 

methods. It considers actuator motion as launching a mechanical wave into the flexible system 

which it absorbs on its return to the actuator. The launching and absorbing proceed 

simultaneously. This simple, intuitive idea leads to robust, generic, highly efficient, precise, 

adaptable controllers, allowing rapid and almost vibrationless re-positioning of the system, 

using only sensors collocated at the actuator-system interface. It has been very successfully 

applied to simple systems such as mass-spring strings, systems of Euler-Bernoulli beams, 

planar mass-spring arrays, and flexible 3-D space structures undergoing slewing motion. In 

common with most other approaches, this work also assumed that, during a change of position, 

the forces from the environment were negligible in comparison with internal forces and 

torques. This assumption is not always valid. Strong external forces considerably complicate 

the flexible control problem, especially when unknown, unexpected or un-modelled. The 

current work extends the wave-based strategy to systems experiencing significant external 

disturbing forces, whether enduring or transient. The work also provides further robustness to 

sensor errors. The strategy has the controller learn about the disturbances and compensate for 

them, yet without needing new sensors, measurements or models beyond those of standard 

wave-based control. 
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1 Introduction 

There is an enormous literature, for over five decades now, on the control of flexible 

mechanical systems. Several textbooks have been published (e.g. [1-4]) as well as 

encyclopaedic review papers (e.g. [5-8]). These books and papers refer in turn to many 

hundreds of papers on the topic. Much of the literature on flexible system control assumes that 

external disturbing forces are negligible in comparison with forces internal to the system. This 

is quite reasonable, for example, in many robotics and gantry crane applications, especially 

when the devices are indoors. But clearly flexible systems are always disturbed by their 

environment to some extent, and the interaction can sometimes be strong. This paper considers 

coping with such strong external interactions.  

The sources and nature of external forces are diverse. They can have very different time 

profiles, ranging from impulsive forces occurring any time during or after a manoeuvre (e.g. 

from impacts), to more slowly varying forces, either transient (e.g. from friction or viscous 

damping) or enduring (e.g. from on-going contact reaction or changed gravitational strain). 

Often the forces arrive unexpectedly, so that the level of the forces, where they act on the 

system and their timing will not be known beforehand. Even where they are known or can be 

measured, the effects of such forces on the flexible system and its control system will often be 

poorly modelled. The effect of an impact, for example, can be very different depending on the 

impacting body’s dynamics, its collision path (obliqueness), its inertia, rigidity, hardness, and 

surface texture. Similar variations will arise on the side of the flexible system undergoing the 

impact. For all these reasons, strong external disturbing forces pose a major challenge to the 

approaches to controlling flexible systems published to date. By their nature they are difficult 

to model and to deal with in a generic way. 

The topic of this paper is adapting the wave-based control (WBC) technique, for under-

actuated flexible systems, to enable it to cope with such strong external forces. The term 

“under-actuated” means that there are fewer controllers than degrees of freedom, and 

frequently just one actuator is controlling a flexible system with arbitrarily many degrees of 

freedom. Transient and enduring disturbing forces have different effects on the WBC technique 

and so, when both are potentially present, the control law needs to be modified in two ways to 

deal with the two effects simultaneously and comprehensively. But before considering the two 

modifications, a brief review of the unmodified WBC will be presented, to set a context, to 

remind readers and to make the paper more self-contained. There is, however, no attempt to be 

comprehensive. More about the nature of WBC, its merits, and its advantages over other 

methods are available in many other papers [9-21]. 



The ideas presented here apply to a wide range of under-actuated flexible systems: lumped, 

distributed or mixed; uniform or not; translating, rotating or both simultaneously; moving in a 

line, plane or in three dimensions; with wide ranges in the level of internal damping; with linear 

or non-linear elasticity; with single or multiple actuators, in series or in parallel; with actuators 

having far from ideal behaviour; with number of degrees of freedom ranging from one to 

infinity; and so on [9-21]. To restrict the paper length and to minimise confusion, however, the 

paper will restrict its focus to two specific systems, both with single actuators.  

The first is a rectilinear, system of a string of masses and springs controlled by a linear 

actuator, as in Fig.1. This system is a test-bed for the basic strategies. Its control system also 

gives the building blocks for controlling systems with more complex motions. The second is a 

mass-spring array, here in a beam-like arrangement (long and narrow), undergoing translation 

and rotation in the plane, controlled by an actuator which can translate and rotate, with three 

degrees of freedom. This arrangement, with its 10 spring masses moving in the plane, could 

also be regarded as a 20 DOF planar mechanism. See Fig.3. In this second case the flexible 

system undergoes bending, shearing, extension, and compression, in a complex motion. It 

might be remarked in passing that, although this system is relatively simple in concept, it is still 

of much higher order and complexity than most of those appearing in the literature to date on 

control of flexible systems, and, for example, automatically models centrifugal and Coriolis 

effects. 

Such lumped models are of interest in their own right, in modelling systems having 

inherently lumped characteristics, such as robot arms and some space structures. They can also 

be considered as finite-order approximations of distributed systems. For example, by choosing 

suitable spring and mass values for the array, the lumped array could, for example, simulate 

Euler-Bernouilli or Timoshenko beam-like behaviour, with specified density and elastic 

moduli, whether uniform or non-uniform throughout.  

These modelling considerations, however, are not relevant to the message of the paper. For 

present purposes the array is a generic, representative flexible system, with no damping, having 

many degrees of freedom (actually 23 DOF in total, including 3 for the actuator) and complex 

internal dynamics. It is a system which is difficult to move rapidly from rest in one position to 

rest in another, while controlling its vibrations, all to be achieved by a single actuator, using 

measurements at the actuator interface. Such dynamic complexities are intended to test the 

controller rather than to model any given system more or less precisely. Because the proposed 

control system is nonspecific, not model-dependent, and robust to system changes, the flexible 



system which it is controlling could be modelled by any preferred technique, of arbitrary 

complexity. Of course, the controller can also be directly applied to, and tested on, hardware 

real physical system, which is the main purpose of the work, thereby dispensing with any need 

for a model, even for testing. 

In this paper, this section, Section 1, has been introductory. Section 2 reviews the standard 

implementation of WBC which has previously been shown to function well, in many 

applications, in the absence of external, disturbing forces. Section 3 then considers how various 

external forces can affect the wave-based control performance. Section 4 shows how standard 

WBC can be adapted to deal with these external disturbing forces, both enduring and transient. 

The adaptation for enduring forces also prevents possible position drifting under WBC due to 

steady-state zero errors in force sensors. Comparative results are presented in Section 5 while 

Section 6 has comments and conclusions. 

2  Review of standard WBC 

To review the basic idea, consider first a rectilinear mass-spring system, moving in one 

dimension, controlled by a single actuator, with no external forces, an example of which is 

shown in Fig.1 for a 3-mass case, which could be uniform or not. As explained, a directly-

controlled actuator is indirectly controlling the attached, lumped flexible system. To move the 

system from rest to rest through a target displacement, the requested motion input to the 

actuator, c(t), is set to be the sum of a “launch” displacement a(t) of half the reference 

displacement, ½r(t), and a measured “return” displacement, b(t). The returning motion 

component b(t) provides active vibration damping. Furthermore, it can be proven [20] that, in 

the absence of external disturbances, the additional net displacement caused by adding b(t) 

equals the second half of the target displacement, ½r(∞). Thus the wave leaves behind an 

associated net displacement, on passing through the system, from actuator to tip and back to the 

actuator, leaving the system at rest at the new target position.  

 
Fig. 1:  WBC of rectilinear system without external disturbances: x = c = a+b = ½r + b 

 
x 

1
2�  Ref c 

b 

+ 

- 

 

Actuator 
k1 
 m1 m2  

k2 
 m3 a 

Return wave 

f 

k3 



Thus WBC seamlessly combines position control and active vibration damping in a single 

actuator motion. As required, the position control and active vibration damping reach their 

completion at the same time, as otherwise further movement of the actuator to achieve the one 

would perturb the other. This simple, intuitive wave-based idea leads to robust, generic, highly 

efficient, precise, adaptable controllers, allowing rapid and almost vibrationless re-positioning 

of the system, using only sensors collocated at the actuator-system interface. The reference 

displacement, r(t), can have any desired shape, including step, ramp, or s-shaped (double 

parabola), provided it settles at the target, rest displacement, r(∞). 

The returning wave b(t) can be determined from two independent interface measurements. 

The two variables used in the WBC implementation of this paper are the actuator position, x(t), 

and the force, f(t), which the actuator applies to the flexible system. Measuring b(t) provides 

what could be described as real-time system identification. It gives the sub-system directly 

controlling the actuator the information about the system dynamics it needs to achieve its goal. 

As system dynamics change (e.g. due to change of payload, change in system configuration, or 

even physical damage) the returning wave changes, while the control strategy and control law 

remain unchanged. This is partly why the control system is so robust. The apparent delay 

between the launch and return wave becomes larger and easier to observe as the system 

becomes longer or more flexible, whereas for shorter, stiffer systems, the absorbing action 

begins almost immediately and strongly overlaps the launch action. Again the one control law 

copes with all cases and needs no adjusting. 

In the literature [9- 21] there are various ways to define b(t) and the simplest version is used 

here. In the following control law it is based on a force integral (3rd line): 
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The Y parameter is a mechanical admittance term and here it is assumed to be constant. The 

force f(t) is taken as positive when the first spring is in compression. 

By way of motivation and justification for this control law, two important points can be 

noted. Firstly, by differentiating c(t) = a(t) + b(t) with respect to time, it can be seen that, 

certainly when a(t) becomes constant, the b(t) component of the actuator motion is providing a 

viscous damping effect for the returning motion, that is, a velocity proportional to the force 

associated with the returning wave, with a damping coefficient equal to 1/Y. In other words, it 



causes the actuator to provide active vibration damping with an appropriate damping 

coefficient, or a terminating impedance to returning waves, which minimises their reflection on 

arrival back to the actuator.  

Secondly, for rest-to-rest manoeuvres, when the initial and final momenta are zero, the force 

integral in b(t) will return to zero, so the final position of x(t) must equal r(∞), the final value of 

r(t). Note that this effect is independent of the value of Y. For a lumped system, Y can be set to 

1/√(k1m1), that is, the reciprocal of the square root of the product of the spring stiffness at the 

interface, k1, by the first lumped mass, m1. But responses and zero steady-state errors are 

assured for a wide range of values of Y, say up to ±50% of the suggested, nominal value. Such 

variations have only secondary effects, seen only in the transient parts of the response. The Y 

value can be used as a fine-tuning parameter, for example to achieve some desired trade-off 

between rise-time, overshoot and settling time. 

The control strategies presented here still function when non-ideal actuator behaviour is 

taken into account, including saturation, loading effects and real dynamic responses [21]. The 

only requirement is that the final position be correct, that is x(∞)=c(∞), which is easily 

achieved in practice. For simplicity, however, we here assume ideal actuator behaviour, 

implying x(t) = c(t), as assumed in Eq.(1).  

The discussion above has been in terms of launching a wave of a(t) = ½r(t), and absorbing 

the  measured returning b(t) wave. But once conceived in this way, the controller can then be 

put in a very simple form, namely 

 𝑐𝑐(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) − 𝑌𝑌 ∫𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑, (2) 

as shown in Fig. 2. This control law, Eq.(2), is simply a rearrangement of Eq.(1). The 

equivalence of the two is exact only when x(t) = c(t), but when this requirement is relaxed, and 

realistic actuator dynamics are used, the simple control law remains very effective. It implies 

only one feedback measurement, namely the force f(t). The actuator sub-controller will still 

need to measure x(t) to ensure it follows c(t) as closely as possible, but the WBC requires only 

f(t). 

The simplicity of Eq.(2) tends to hide aspects of how it works. In Fig.2, if the system starts 

from rest, it can be shown that the value of the feedback variable, d(t), is initially close to ½r(t), 

so c(t) is about ½r(t), which is the launch wave, as before. Later the force integral returns to 

zero, and c(t) rises to r(t), thereby absorbing the returning wave and vibrations, as before. This 

is equivalent to adding b(t) to a(t) as in Fig.1. If required, the return wave, b(t) of Fig.1, can be 

determined from the variables in Fig.2 as ½(x(t) - d(t)). 



 
Fig. 2: A simplification of Fig.1 giving similar performance (identical if x=c) 

Figures 1 and 2 show systems undergoing translation only. For systems whose motion is 

rotational rather than translational, a similar control strategy works well [14, 21]. The variables 

r(t) and x(t) will then correspond to the angular displacements, and f(t) to a torque (moment). 

The axis for taking moments can be the actuator axis, but only if the rotational actuator 

undergoes fixed-axis rotation. If the rotary actuator also undergoes translation, then moments of 

forces should be taken either about a fixed point in space (such as the initial actuator axis 

position) or about the system mass centre (which would then need to be calculated and updated 

continually). This is to ensure that angular momentum about that point will be conserved 

between the start and end of the motion. 

This control strategy has been thoroughly tested on flexible systems of many kinds, sizes 

and flexibilities, lumped and distributed, undergoing different kinds of motion, including 

translation, rotation, and simultaneous translation and rotation in the plane and in 3-D space 

[13-19]. This testing has been carried out in numerical simulation and experimentally [13]. 

 
Fig. 3: Planar mass-spring array controlled by actuator which translates and rotates. 

More challenging than the rectilinear case above is the mass-springs array of Fig.3, with a 

directly controlled actuator which can translate and rotate in the plane. In other words, the 

actuator has its own sub-controllers which can give controlled x(t) and y(t) translation and θ(t) 

rotation in the plane. For the present the plane is horizontal, so that gravity effects are constant 

and ignorable. The WBC implementation for this system has three controllers (each as in Fig.2 
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or Eq.(2)) working in parallel, independently of each other. So each line in the control 

arrangement of Fig.3 has three signals. The three inputs to the actuator sub-controllers are each 

made up of half the corresponding reference variable minus the feedback term based on an 

admittance times the time integrals of fx, fy and MO. Thus there is one WBC algorithm for each 

actuator translation component, x(t) and y(t), and one for rotation, θ(t). 

In the absence of external disturbances or external forces which change during the 

manoeuvre, these control systems give very rapid, rest-to-rest motion to target, with no steady-

state error, for rectilinear, planar and (although not considered here) even for 3-D flexible 

systems undergoing both translation and rotation in space [20]. As a measure of its rapidity, the 

rest-to-rest time is typically no more than about 15% longer than the theoretical minimum time 

when an ideal, acceleration-limited actuator is assumed, and, by suitable choice of reference 

input, it can even achieve that minimum time exactly [15]. 

WBC can be viewed as standing between two broad classes of strategies for controlling 

under-actuated flexible devices, combining the benefits of both while avoiding their respective 

drawbacks. One class embraces essentially open loop techniques (e.g. time-optimal, input 

shaping, time-delay filtering, sliding mode and posicast), even if sometimes they are 

subsequently refined with a degree of feedback. See for example, [22-28]. These methods can 

give excellent performance under specified conditions, but they usually depend on having 

accurate system models and so they are not robust to system changes, modelling errors or 

external disturbances. Some also assume actuator performances which are far from realistic.  

The second class of flexible control systems uses generic techniques (e.g. classical feedback 

such as PID control, passivity-based control, LQR, energy, and Lyapunov-based methods) 

which are blind to some characterising features of flexible system dynamics. Some of these 

techniques wait for an error to arise and then move to correct it, and for this reason cannot be 

even close to optimal. Others rely on having a very good system model, or require special 

tuning for each case within each application. ([1-3]).  

By contrast, WBC is generic and robust to modelling, actuation and implementation errors. It 

anticipates the error and moves the actuator to absorb it before it becomes established. It first 

identifies, then measures and finally exploits the propagation delay effects inherent in flexible 

systems, but without relying on a full system model, achieving close to time-optimal 

performance. It has the benefits of feedback yet without requiring multiple sensors. It has the 

stability associated with the collocation of sensor and actuator, despite the physical distance 

between the actuator and the controlled tip ([28]). 



Because no system model is required, the strategy is inherently robust to system changes and 

unknown and un-modelled system dynamics. References [15] and [29], for example, consider 

the robustness aspects of WBC. Furthermore, because the wave measurements are made after 

the actuator, and so are based on motion actually achieved by a given actuator, WBC 

automatically deals with non-ideal actuator behaviour including actuator saturation and 

bandwidth limitations. This can be understood as follows. If, due to poor dynamics, the actuator 

absorbs, say, only 90% of the returning wave, the 10% is reflected into the system. This 10% is 

thus re-launched and soon returns to the actuator, where 90% of the 10% is then absorbed. Thus 

the system still quickly settles, with just a minor extension of the settling time. 

The merits of model-free control have previously been identified, for example in [8], which 

considers two model-free approaches, one energy-based and the other using neural adaptive 

control. Of the two, the energy-based approach is closest to WBC in its philosophy and in its 

focus on work-energy at the actuator-system interface. It is, however, less generic and less 

optimised. Unlike WBC it does not deliberately, and explicitly, manage and exploit the launch-

and-absorb, two-way momentum-and-energy transfer, between actuators and flexible 

structures, as they pass through the dynamics of the interfaces. 

3 External disturbances: effects and categories 

The interface force (or torque) in the control systems above (in the absence of external 

disturbances), such as f(t) in Fig.1 or 2, is the dynamic force experienced by the actuator, due to 

the interaction between its own motion (which it has initiated) and the resulting motion of the 

flexible system to which it is attached and which it is attempting to control. It is strongly 

dominated by the system inertia and by the internal flexible dynamics. For rest-to-rest motion, 

this internal, dynamic force starts and ends at zero, and its integral over time must also be zero 

(since there is no net momentum change). 

As noted above, frequently, in comparison with these internal forces, external forces are 

negligible. This is the case, for example, for a robot moving through air and in many crane 

systems (if the usual swinging of the load under gravity is considered to be analogous to an 

internal, elastic force). But not always. Where external forces are significant relative to the 

internal, and particularly when they are not constant or are un-modelled, they pose a challenge 

to any control scheme for flexible systems. In the case of WBC, their effects manifest 

themselves as a change in the return wave, b(t), which in turn leads to errors in the final 

position, if not properly handled. 



This paper considers how to adjust the control law to cope with external forces of different 

kinds. Sometimes such forces are predictable or quantifiable beforehand; sometimes they are 

entirely unpredictable in size, direction or timing. Likewise auxiliary sensor information may, 

or may not, be available. In keeping with the WBC philosophy to date, however, it is here 

assumed that no such foreknowledge or extra measurements are available, and that all 

measurements, control and system identification should be done at the actuator interface. As 

before, the only measured variable is the interface force (assuming the actuator sub-controller is 

already measuring the interface motion). This restriction arguably increases the challenge, but 

meeting this challenge results in exceptional robustness in the control law to both external and 

internal changes and disturbances. 

4 WBC modifications to cope with various disturbances 

 
Fig. 4: New controller to cope with all types of external forces acting on the flexible system. 

Figure 4 shows modifications to the control system to deal with all kinds of external 

disturbances while retaining the many benefits of standard WBC. It shows an implementation 

for the rectilinear system (as in Fig.2), which then easily extends to systems translating and 

rotating in the plane (or indeed moving in 3-D). The various aspects of the controller will now 

be explained. 

As before, the input to the overall system is a reference signal, r(t), corresponding to the 

desired displacement over time of the flexible system. To achieve rest-to-rest motion this 

reference changes to a target displacement, perhaps as a ramp, or (more gently) as an s-shaped, 

double parabola curve, or (less gently) as a step. The essential requirement is that it should 

settle at the target position, r(∞). 

The main feedback line in the box (the heavy line), as before, takes the time integral of the 

force multiplied by the admittance Y. When this is fed into the actuator it again causes the 

actuator to act as a viscous damper to the interface force, thereby acting as an active vibration 

damper, rapidly absorbing vibrational energy from the system for as long as vibrations persist. 
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Again this would be fine if there were no disturbances and the oscillating force returned to 

zero. However any continuing (or DC) component present in the measured force f(t) will, when 

integrated, cause a drift in the feedback signal which in turn causes actuator drift. The solution 

is to subtract from f an estimate of this fDC, obtained as a running average of f over a suitable 

time interval T1, and calculated as 

 𝑓𝑓𝐷𝐷𝐷𝐷 = 1
𝑇𝑇1� ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑡𝑡

𝑡𝑡−𝑇𝑇1
. (3) 

Here the averaging time, T1, should be long enough to smooth over residual oscillations in f and 

short enough to track any longer-term variations in fDC. In practice a value slightly longer than 

the lowest periodic time of the flexible system works well. This ensures that only the 

oscillatory components of f(t) contribute to the feedback to the actuator, with an average value 

which quickly approaches zero. In the time domain, the control law for the actuator is now  
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(4) 

An added bonus is that this control law will also automatically take care of a secondary 

problem frequently noticed in practical implementations of the scheme. There will generally be 

some zero-errors in the force measurement, for example due to strain gauge zero voltage 

offsets. The subtraction of the DC component of the measured f(t) in Eq.(4) also removes such 

zero-offset errors, which, no matter how small, would otherwise cause the actuator to drift from 

the reference position as their effects are integrated over time. 

But this is not enough. Certainly if, at steady state, the combination (f – fDC) is exactly zero, 

and all the oscillations have been absorbed, the system will appear to settle. But if the system 

has undergone impulsive external forces, it may take a long time to settle at the target position, 

r(∞). Impulsive (transient) forces become negligible after they act. But while acting they impart 

a (potentially large) change to the system momentum, and they make an extra contribution to 

the external force integral. Most of this contribution can endure long after vibrations have 

ceased and the integrand, (f – fDC), has become zero. It causes an apparent settling in the wrong 

place, with a very slow crawl to the correct final value. Mathematically it is like an integration 

constant, being carried by the integral. It could also be compared to integration wind-up, which 

takes a long time to clear the system (even though its source and nature are quite different from 

the integration wind-up found in PID control systems, for example). 

To deal with these effects a further adaptation of the control law proves very beneficial. A 

time averaged (or a filtered and delayed) version of the entire last term in Eq.(4) is used to 

cancel this term over a relatively short time. This ensures that, as things settle, the feedback 



quickly returns to zero, leaving the actuator at target, despite any accumulated values in the 

force integral. This is achieved, again, without interfering with the active vibration effects 

associated with the vibratory components of f, which ensures settling. This control arrangement 

is shown in Fig.4. The equivalent actuator control law in the time domain is 
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where, for brevity, the time dependence of variables is not explicitly shown. The second 

averaging time, T2, can be similar or identical to T1. In any case its value is not critical. Except 

for the additional, fourth term, Eq.(5) is identical to Eq.(4). At steady state the sum of the last 

two terms will be zero, so c(∞)= r(∞). In fact, each of the last two terms individually also 

approach zero, but very slowly, while the final value of 1
𝑇𝑇1� ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑡𝑡

𝑡𝑡−𝑇𝑇1
 approaches the 

steady state force at the actuator.  

These corrections are designed to remove unwanted components but without interfering with 

the active vibration damping associated with any vibratory components in f, so vibrations are 

continuously absorbed throughout the manoeuvre, with rapid settling at target. The same 

applies if there are further disturbances after reaching steady state in a new position. 

The same modifications easily extend to the WBC of the planar mass-spring array. In this 

case, as already explained, the control system comprises three WBC systems acting in parallel, 

similar to the above, one for the x-motion, one for the y-motion, and one for the rotation, θ. The 

spring forces acting at the interface are resolved into horizontal and vertical forces, to give fx 

and fy, and the moment of these forces are taken about a fixed origin (taken as O in Fig.3). The 

admittance values for each of the component WBC systems can be used as tuning parameters to 

achieve a preferred trade-off between classical performance metrics such as rise time, settling 

time and overshoot (all of which are already small in any case). 

5 Sample Results 

Representative results are now presented for both the rectilinear and planar systems with no 

external disturbances, and then under significant external disturbances of different kinds. For 

the rectilinear model the sample system is uniform with spring stiffness k=400 N/m and mass 

m=1 kg, with three masses. The parameters for the planar model are given in Table 1. The mesh 

is uniform, with kx, ky and kd the spring stiffness in horizontal, vertical and diagonal directions 

respectively, m the mass values and l the (unstretched) spacing between masses throughout the 



mesh. These values are arbitrary in the sense that similar results are obtained when different 

values are chosen, the system size or shape are varied, or the number of masses and springs is 

increased or reduced. 

Table 1: Parameter values for the model of Fig. 2 

 

 

First consider the effects of enduring, smooth, non-impact, external forces. Perhaps the most 

obvious example of such a force is when, during a manoeuvre, gravity becomes active or the 

orientation of a system changes with respect to gravity. Changing gravity effects could arise in 

the “rectilinear” system of Fig.1 as suggested by Fig.5. The control system works very well for 

this system. Clearly it is no longer “rectilinear”. Arguably it could be called “quasi-rectilinear” 

but it really is planar. So, for this case, the illustrative results are taken for the planar array of 

Fig.3, but now with the plane of motion vertical (with, say, the x-axis horizontal and y-axis 

vertical). Gravity, acting in the negative y-direction, now plays a strong role, particularly under 

rotations. To increase the challenge, it is assumed that the controller has no information initially 

about the weight of the system, perhaps because it is fully supported before the manoeuvre 

begins, resting on a platform of some kind.  

 
Fig. 5: Quasi rectilinear system experiencing changing external forces from gravity requiring a modified 

WBC 

In the first test then, the reference input is in the vertical direction, with a ramped 

displacement up to one meter, with and without gravity. Although apparently simple, this 

motion involves a strongly slewing action of a very flexible system having many degrees of 

freedom. Figure 6 shows how the actuator responds to this input under different control 

strategies. 

In the absence of gravity, standard WBC, described in Eqs. (1) or (2), gives a good response. 

The system quickly reaches the target displacement while absorbing the flexible system 

vibrations. When gravity effects are incorporated, however, the same controller fails badly. 

Following an initial inadequate attempt to follow the reference, there is then a dramatic falling 
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away, as the control system interprets the weight of the system as a returning wave, which it 

tries to absorb, leading to an ever-increasing error.  

The third curve shows the response under gravity when the WBC system is modified as in 

Fig.4 or Eq.(4) or (5). The system travels quickly to target, with no overshoot, and settles 

rapidly. This implies that the controller is managing to detect and separate the additional force 

at the actuator due to the system weight under gravity (applied suddenly and unknown 

initially), and to compensate for this, automatically, without impairing the active vibration 

damping action associated with the vibratory dynamics of the system. Thus, at the cost of a 

modest increase in the settling time, the revised strategy achieves a combination of position 

control and active vibration damping, in a robust way, using only forces measured at the 

interface. 

 
Fig. 6: WBC response to slewing reference motion, with and without gravity, using standard WBC, 

Eq.(2), and modified, Eq.(4). 

Figure 7 shows a controlled rotation through 1 radian, in the vertical plane (under gravity), 

of the planar array system of Fig.3. The controller actively absorbs the vibrations and brings the 

system to rest as required. Note that there is an apparent steady-state error, but only because the 

response shows the angle at the tip, whereas the input is the angle at the actuator. Due to the 

gravitational strain these are not identical, indicating a final curvature along the structure. This 

difference can be considered more a question of statics than of dynamics, and if required can 

easily be compensated for in various ways. For example, if the reference, target input (1 radian 

in this case) is intended for the tip rather than for the actuator, then the actuator input can easily 

be offset to achieve this, either using a pre-calculated offset, experience, or an adjustment 

determined by observation of the strain. 



 

 
Fig.7: A rotational maneuver under gravity using WBC and the control system of Fig.4. 

Although not shown, the controller was found to work well when the system was 

simultaneously translated in x and y directions while also being rotated. The system was also 

tested for the effects of sensor offset errors and slowly drifting errors. Under the original WBC 

law of Eq. (1) or (2) when such an error was introduced into the models a slow drift was 

observed in the final position, but under the revised control strategy the system stayed precisely 

at the target position. 

Now consider impulsive forces. The first example is with the three-mass rectilinear system, 

undergoing a strong impact at the tip during a controlled rightwards displacement. See Fig. 8. 

The impulse is about 8 N.s, with a force of 100 N acting over 0.08 seconds. It acts to oppose the 

system motion, which has a target displacement of 1 m to the right. The system is uniform with 

spring stiffness k=400 N/m and mass m=1 kg. 

 
Fig. 8: Three-mass rectilinear flexible system undergoes an opposing impulsive force 

Figure 9 shows the response of the third mass under the unmodified WBC of Eq.(2) and then 

under the modified control system of Fig.4. In all cases the system is hit at the same time, about 

t=4s, while at the settling stage shortly after reaching the target. Under standard WBC, Eq.(2), 

the system settles very well, but in the wrong position with a large steady-state error. What has 

happened is that the controller has absorbed the returning wave as before, but it now has the 
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added leftwards momentum from the external impact. This pushes the system back, causing it 

to come to rest well short of target (reference) input of 1m.  

 
Fig. 9: Tip response of three-mass rectilinear system subject to strong impact under standard and 

modified WBC laws 

The first modification, Eq.(4), designed to remove errors due to steady-state forces, reacts to 

the position error to try to remove it, but it does so poorly. Given enough time it would 

eventually correct the error, but the delay would be far too long. As can be seen the control law 

of Eq.(5) or Fig.4 reacts quickly to absorb the vibration and again settle the system exactly at 

target. 

The second illustration, Fig.10, uses the planar array system of Fig.3 undergoing a complex 

translational manoeuvre under gravity. The x and y reference motions have different slopes and 

different final values. In addition to the gravity effects, there are two impacts on the tip of the 

system, in the y-direction at about t= 3s and in the x-direction around t= 4.5s. The magnitudes 

and timing of these impacts are unknown to the controller. The control law is Eq.(5) or Fig.4. 

The following can be observed.  



 
Fig.10: Response of planar system under gravity with two impacts, under the modified WBC. 

The initial y oscillations of the tip are caused by the vertical translation and the initial effects of 

gravity, which the control system works to overcome while positioning the system to target. 

The system is beginning to settle at target when the impacts occur. There is some cross-

coupling between the x and y impact effects. These are unequal because the stiffness along the 

longitudinal beam axis (x-direction) is considerably greater than in the transverse, bending y-

direction. The reference inputs refer to the actuator displacements, whereas the outputs are 

those of the tip. The apparent error in the final settling position of the tip is simply the 

deflection due to the weight of system. If the target position is intended to apply to the final 

position of the tip, the actuator control reference should be adjusted to allow for this deflection. 

As a final example, viscous forces were added to all the masses in the model. Each mass was 

given an external damping force proportional to its absolute velocity, which therefore changes 

magnitude and direction with the system motion and oscillations. Unlike impact forces, viscous 

forces continue for as long as the system is in motion. With standard WBC the external viscous 

dampers will absorb some of the motion which would otherwise return to the actuator and be 

absorbed. This results in a final settling of the system short of the target displacement, as seen 

in Fig.11. If the viscous damping coefficients are known, it is possible to predict the net 

shortfall, and so compensate for it [30]. But the application of the control law of Eq.(5) also 

works, as can be seen in Fig.11. An advantage of this strategy is that it does not need any 

information about the viscosity coefficients. 



 
Fig.11: System experiencing external viscous forces, under standard and modified WBC 

Note that if the damping forces are all internal, for example with viscous dampers connected 

between masses (rather than to ground), then the unmodified WBC system works perfectly. In 

this case, although there is certainly a loss of mechanical energy, there is no momentum lost to 

the environment during a manoeuvre. This is the decisive point, because despite the dampers, 

all the forces are still internal, and the external forces are still negligible. 

5 Concluding remarks 

Complete motion control of a complex, under-actuated flexible system, undergoing 

unquantified external disturbances, has been achieved using simple measurements taken only at 

the actuator. This complete, robust control, by a single actuator, has been achieved without a 

detailed system model. The controller needs no measurements from other parts of the system or 

details of the system properties (such as inertias, stiffnesses, dimensions, vibration modes, or 

damping). Neither does it need to know the size, location and timing of the external forces. The 

modifications to WBC here presented also retain the many advantages of standard WBC, 

including strong robustness to system variations, robustness to actuator dynamic limitations, 

precision, speed of response and ease of implementation. 

No detailed system model is needed. It is true that the controller requires two or three 

parameters, namely Y, T1 and T2, but a) these are easily estimated, and b) none of them is 

critical. It is found, for example, that changing their values by ±50% or more from the 

suggested nominal values still produces good control responses, with no steady-state error. The 

main effects are variations in the transient behaviour. If desired, they can be tuned to achieve a 

classical trade-off between rise time, overshoot (small in any case) and settling time. 



If desired, further information can be extracted from the measure interface force and from 

the waveform of the measured return wave b(t). Such information could be useful in some 

applications for system identification, system monitoring, or environment monitoring. For 

example, the modified returning wave and measured fDC can be used to say whether or not an 

external force acted on the system during the manoeuvre; whether or not it continues at the end; 

the associated momentum and the energy added to, or removed from, the system; whether the 

waveform was impulsive (impact-like) or spread over time; and approximately when the 

interaction happened. 

The relative magnitudes of the external and internal forces can vary widely, depending on 

both the system dynamics (stiffness and inertia values) and on the nature of the external forces. 

The proposed control systems will cope with the entire range of possibilities, and the extremes 

where one or other set of forces dominates. 

The WBC literature has an alternative way to resolve interface motion into outgoing and 

returning waves, especially for lumped systems, based on “wave transfer functions” [14, 21]. 

All the techniques and results here presented can also be obtained using these techniques. They 

would involve a way of evaluating the content of the boxes in the diagrams for calculating the 

returning waves different from the control laws given above. They give a slight improvement in 

the control performance at the cost of a small increase in computational complexity. It was 

decided in this paper, however, to do the wave analysis exclusively using the simple force 

integral and interface admittance approach. 
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