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ABSTRACT 1 

Background 2 

Dementia with Lewy bodies is characterized by transient clinical features, including 3 

fluctuating cognition and visual hallucinations, implicating dysfunction of cerebral hub 4 

regions, such as the pulvinar nuclei of the thalamus. However, the pulvinar is 5 

typically only mildly affected by Lewy body pathology in dementia with Lewy bodies, 6 

suggesting additional factors may account for its proposed dysfunction.  7 

Methods 8 

We conducted a comprehensive analysis of post-mortem pulvinar tissue using 9 

whole-transcriptome RNA sequencing, protein expression analysis and histological 10 

evaluation.  11 

Results 12 

We identified 321 transcripts as significantly different between dementia with Lewy 13 

bodies cases and neurologically normal controls, with gene ontology pathway 14 

analysis suggesting enrichment of transcripts related to synapses and positive 15 

regulation of immune function. At the protein level, proteins related to synaptic 16 

efficiency were decreased, whilst general synaptic markers remained intact. Analysis 17 

of glial sub-populations revealed astrogliosis without activated microglia, which was 18 

associated with synaptic changes but not neurodegenerative pathology.  19 

Discussion 20 

These results indicate that the pulvinar, a region with relatively low Lewy body 21 

pathological burden, manifests changes at the molecular level which differ from 22 

previous reports in a more severely affected region. We speculate that these 23 

alterations result from neurodegenerative changes in regions connected to the 24 

pulvinar, and likely contribute to a variety of cognitive changes resulting from 25 

decreased cortical synchrony in dementia with Lewy bodies. 26 

 27 

 28 
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INTRODUCTION 1 

Dementia with Lewy bodies (DLB) is thought to be the second most common form of 2 

neurodegenerative dementia after Alzheimer’s disease (AD) (1). Clinically, DLB is 3 

marked by four core symptoms of fluctuating cognition, parkinsonism, visual 4 

hallucinations and rapid eye movement sleep behavior disorder, against the 5 

backdrop of global cognitive decline (2). Pathologically, DLB is characterized by 6 

pathological aggregates of α-synuclein in nerve cell bodies and nerve cells 7 

processes termed Lewy bodies and Lewy neurites, respectively (3). However, 8 

varying degrees of AD-type pathology, consisting of extracellular amyloid-β plaques 9 

and intraneuronal tangles of abnormally hyperphosphorylated tau, are frequent 10 

concomitant features (4, 5).  11 

Visuo-perceptual and attentional functions are impaired in DLB (6-8), and may 12 

promote the occurrence of visual hallucinations (9-12). The pulvinar contributes to 13 

visuo-perceptual and attentional functions (13), has reciprocal connectivity with 14 

widespread cortical regions (14), and is a putative ‘hub’ that coordinates neural 15 

activity across the cortex (15). Dysfunction of highly interconnected hubs has been 16 

postulated as important in eliciting the clinical manifestation of neurodegenerative 17 

disorders, including DLB, by diminishing network coherence and coordinated neural 18 

activity (16). Whilst most research on network connectivity in neurodegenerative 19 

disorders has focused on AD (17), connectivity is decreased to a greater degree in 20 

DLB compared to AD, with particular impairments in long-distance connections (18). 21 

Metabolic deficits (19) and increased tissue diffusivity (20) have previously been 22 

reported in the pulvinar in DLB. We have previously reported neuronal loss in the 23 

pulvinar, which may promote attentional dysfunction and visual hallucinations in DLB 24 

(21). However, Lewy body pathology is relatively mild in the pulvinar (22) and the 25 

sub-regions most severely affected by α-synuclein aggregation did not show 26 

neuronal loss (21). Therefore, it is difficult to relate the myriad changes described 27 

previously in the pulvinar with the manifest burden of α-synuclein pathology. On that 28 

basis, we have investigated differential gene expression with whole-transcriptome 29 

RNA sequencing (RNA-seq), protein quantification assays and histological analysis 30 

to evaluate changes to the pulvinar which may be relevant to the clinical features of 31 

DLB.  32 
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METHODS 1 

Tissue preparation 2 

All tissue was obtained from Newcastle Brain Tissue Resource (NBTR), a UK 3 

Human Tissue Authority-approved research tissue repository, and ethical approval 4 

was granted by Newcastle University Ethics Board and the Joint Ethics Committee of 5 

Newcastle and North Tyneside Health Authority (ref: 08/H0906/136). DLB cases had 6 

been part of prospective clinical studies, and had received detailed clinical 7 

assessments during life and case note review after death. All cases had consented 8 

to the use of their brain tissue for research purposes. Neuropathological assessment 9 

was conducted according to standardized neuropathological diagnostic procedures 10 

(4, 23-26). Clinical and pathological data was collated to establish a clinico-11 

pathological consensus diagnosis. The present study included cases with a clinical 12 

diagnosis of DLB confirmed by neuropathological post-mortem assessment. DLB 13 

cases were compared to aged individuals with an absence of neurological features 14 

intra vitam low age-associated neurodegenerative pathology. Demographic 15 

information is provided in Supplementary Tables 1 and 2.  16 

At autopsy, tissue from the left hemisphere was cut into 1 cm thick coronal sections 17 

and rapidly frozen at -80°C between copper blocks. The pulvinar was identified by its 18 

location in the posterior pole of the thalamus from which approximately 50 mg of 19 

tissue was dissected with a cooled scalpel (27).  Frozen tissue was obtained from a 20 

cohort of 15 control and 14 DLB cases (Supplementary Table 1).  21 

The right hemisphere was fixed in 10% formalin and dissected into blocks for 22 

neuropathological assessment. 10 μm sections were taken from the pulvinar at the 23 

level of the posterior aspect of the lateral geniculate nucleus and the amygdala and 24 

stained with antibodies against a range of protein targets using Menarini Menapath 25 

Polymer detection kits (Menarini, Berkshire, UK) and counterstained with 26 

haematoxylin. Fixed pulvinar tissue was obtained from a cohort of 14 controls and 14 27 

DLB cases (Supplementary Table 2). 28 

 29 

RNA isolation and sequencing 30 
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Frozen tissue was placed in 5-10 volumes of pre-cooled RNAlater solution (Ambion, 1 

Warrington, UK) and stored at -80°C. Tissue was removed from RNAlater and 2 

rapidly homogenized in TRI-reagent (Ambion) and stored at -80°C. RNA was 3 

extracted using a spin column method, as per manufacturer’s instructions (Ribopure, 4 

Ambion), and 1 μg of RNA was DNase-treated (Turbo-DNase free, Ambion). The 5 

RNA concentration was determined using a Nanodrop ND 1000 Spectrophotometer 6 

(Nanodrop Technologies) and RNA integrity number (RIN) examined with an Agilent 7 

2100 Bioanalyzer RNA 6000 Nano Assay (Agilent Technologies, Stockport, UK). 8 

RNA-seq libraries were prepared using TruSeq Ribo Zero Gold kits (Illumina, CA, 9 

USA). Clustering was performed with 10 nM libraries pooled in groups of six libraries 10 

per lane of each flow cell. We then sequenced 200 bp paired-end libraries on a 11 

HiSeq2500 sequencer. Sequence reads were aligned using Salmon []. Genes with 12 

low expression (row mean counts for <1) were removed, then differential expression 13 

was estimated using DESEQ2 (28) using the following model to correct for biological 14 

correlates: 15 

Expression ~ Age + Gender + Post-mortem duration + Disease 16 

Within DESEQ2, p-values for differential expression from Wald tests were corrected 17 

for multiple testing using the Benjamini-Hochberg false discovery rate approach, with 18 

significant results reported at α=0.05. Gene ontology (GO) enrichment was 19 

performed using gProfileR (29). 20 

Transcriptomic changes were evaluated at the protein level using western blot 21 

analysis (Supplementary Protocol 1). 22 

 23 

Microscopy 24 

To quantify glial sub-populations and neuropathological lesions in the pulvinar in a 25 

separate cohort of cases and α-synuclein pathology in the amygdala of the cases 26 

used for the transcriptomic study, images were taken on a Zeiss AxioVision Z.1 27 

microscope using a DsFi1 camera (Nikon, Japan). As detailed previously (21, 30), 28 

Stereologer software was used to delineate a region of interest with a 2.5x objective, 29 

prior to placement of disector frames in a uniform, random arrangement. This 30 
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method prevented the introduction of bias by giving every area of the region of 1 

interest an equal probability of being sampled for analysis. Disector frame sizes were 2 

determined based on the size of the measured particles and their distribution across 3 

the region of interest. In all cases, amyloid-β (4G8 anti-amyloid-β, Covance, NJ, 4 

USA, 1:15000) was analyzed using 10x objective and α-synuclein (5G4 anti-α-5 

synuclein, Analytik Jena, Germany, 1:4500) and tau (AT8 anti-tau, Autogen, MA, 6 

USA, 1:4000); the microglial markers HLA-DP/DQ/DR (CR3/43, Dako, Denmark, 7 

1:1000), CD74 (LN-2, Santa Cruz, USA, 1:500) and Iba1 (Wako, Japan, 1:1000); 8 

and the astrocytic markers GFAP (Z0334, Dako, Denmark, 1:10000) and ALDH1L1 9 

(N103/39, Millipore, MA, USA, 1:7500) were measured using 20x objective.  10 

We determined the percentage area occupied by individual antibodies by analyzing 11 

images by determining  red-green-blue (RGB) thresholds using ImagePro Plus v.4.1 12 

image analysis system (Media Cybernetics, Bethesda, MA, USA). Size restriction 13 

was used with the 4G8 antibody to ensure intracellular amyloid-β was not included in 14 

the analysis. In addition to quantitative analysis, we qualitatively assessed Iba1 15 

morphology as described previously (31). We also qualitatively determined the 16 

presence of Alzheimer Type II astrocytes, the histopathological hallmark of 17 

manganism and hepatic encephalopathy (32), as their presence was noted in a 18 

substantial number of cases.  19 

These findings were correlated with densitometric analyses of neuropathological 20 

lesion burden to evaluate whether neuroglial marker expression was related to 21 

pathological protein deposition. A sub-set of cases used for histological analysis 22 

(8/14 control; 8/14 DLB) had been assessed as part of a previous stereological study 23 

of the pulvinar (21). Therefore, we additionally included stereological determination 24 

of total neuronal number within these analyses. 25 

 26 

  27 
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RESULTS 1 

Demographic data 2 

Demographic data for the RNA-seq and protein expression analysis cohort is shown 3 

in Supplementary Table 1. There was no significant difference between groups in 4 

age at death (t=0.18, df=22, p=0.862), post-mortem interval (t=0.17, df=22, p=0.863), 5 

and, where available, tissue pH (t=0.60, df=15, p=0.555). There was no significant 6 

difference in the proportion of males relative to females between DLB and control 7 

(χ²=2.10, df=1, p=0.148). Braak NFT stage was significantly higher in DLB compared 8 

to control (t=3.85, df=19, p=0.001).  9 

Demographic data for the histological analysis cohort is shown in Supplementary 10 

Table 2. There was no significant difference between groups in age at death 11 

(t=0.0.23, df=26, p=0.982) or post-mortem interval (t=1.23, df=26, p=0.217). There 12 

was no significant difference in the proportion of males relative to females between 13 

DLB and control (χ²=0.57, df=1, p=0.706). Braak NFT was significantly higher in DLB 14 

cases compared to controls (t=3.88, df=26, p=0.001). 15 

 16 

Nomination of differential pulvinar gene expression between DLB and controls by 17 

RNA sequencing 18 

Our RNA-seq analysis revealed a partial separation between DLB cases and 19 

controls in overall gene expression (Fig. 1). Quality control data is included in 20 

supplementary QC file. From this analysis, we nominated 321 transcripts significantly 21 

different between controls and DLB cases after correction for multiple testing. 22 

Subsequently, GO enrichment analysis demonstrated several pathways were 23 

enriched in DLB cases compared to control (Table 1). We focused on genes related 24 

to synapses (GO:0045202, p=1.75E-25) and positive regulation of immune system 25 

process (GO:0002684, p=7.75E-22). 26 

 27 

Validation of synaptic and immune proteins by western blot analysis 28 
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Analysis of protein expression using western blot analysis of general pre-synaptic 1 

markers demonstrated significantly lower expression of synaptophysin (U=30, 2 

p=0.015), NSF (U=25.5, p=0.006) and dynamin (U=37.5, p=0.047) in DLB compared 3 

to control (Figure 2). This was consistent with RNA-seq data, which demonstrated 4 

significantly lower expression of SYP (p=0.01), NSF (p=0.01) and DNM1 (p=0.03). 5 

However, no significant differences were found in STX1A, SNAP25, SV2B or 6 

GAP43, despite significantly lower expression at the mRNA level. 7 

Analysis of protein expression using western blot analysis of general post-synaptic 8 

markers identified significantly lower expression of the dendritic marker MAP2 9 

(U=35, p=0.034) in DLB compared to control (Figure 2), consistent with lower MAP2 10 

mRNA (p=0.04). The excitatory synaptic markers PSD-93 (U=25.5, p=0.011) and 11 

PSD-95 (U=27, p=0.009) were also lower in DLB compared to control (Figure 2), 12 

consistent with reductions in DLG3 (p<0.01) and DLG4 (p<0.01) mRNA.  13 

The inhibitory synaptic marker GABARAP (U=37, p=0.046) was significantly reduced 14 

in DLB compared to control (Figure 2), consistent with a reduction in GABARAP 15 

mRNA (p=0.04). However, protein levels of the inhibitory post-synaptic marker 16 

gephyrin were not significantly lower in DLB compared to control, despite being 17 

lower at the mRNA level. The GABA-ergic neuron marker GAD67 was lower in DLB 18 

compared to control on western blot (U=32, p=0.022), and also at the mRNA level 19 

(p=0.02; Figure 2).    20 

Analyses of CHI3L1, a positive regulator of immune system process and pro-21 

inflammatory marker (33), demonstrated significantly higher protein levels (U=35, 22 

p=0.034; Figure 3). The astrocytic marker GFAP was also higher in DLB relative to 23 

control (U=37, p=0.046; Figure 3). HSPA1B was significantly increased in DLB 24 

compared to control (U=22, p=0.003). However, SERPINH1/HSP47 and HSPA1A 25 

were not significantly different in DLB compared to control cases (Figure 3), despite 26 

showing differences for the same marker in RNA-seq.  27 

 28 

Microscopy 29 

As RNA-seq demonstrated an increase in transcripts related to positive regulation of 30 

immune system process, we histologically assessed markers of microglia and 31 
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astrocytes, the resident immune cells of the brain, in a separate cohort of DLB and 1 

control cases. We assessed the expression of the cytotoxic M1 microglial markers 2 

CD74 and HLA-DP/DQ/DR, the general microglial marker Iba1 and the astrocytic 3 

markers ALDH1L1 and GFAP in the pulvinar of DLB cases compared to control. We 4 

also assessed α-synuclein, amyloid-β and tau expression to evaluate whether 5 

immune cell expression was related to the presence of neurodegenerative 6 

pathologies.  7 

The observed Lewy body pathology was greater than that previously reported in 8 

another study of the pulvinar in DLB, which described an absence of Lewy bodies 9 

but sparse neuritic pathology (22). This discrepancy may be the result of our use of 10 

the 5G4 antibody, which is reported to show more widespread α-synuclein pathology 11 

(34). Nevertheless,  Lewy bodies were not frequently encountered within the pulvinar 12 

of most cases, with Lewy body burden typically corresponding to absent or mild 13 

deposition under previously described semi-quantitative assessment methods (4). 14 

However, we noted an abundance of α-synuclein immunoreactive dots and 15 

occasional fine threads, as noted previously with the 5G4 antibody (35). 16 

α-synuclein (U=0, p<0.001), amyloid-β (U=39, p=0.006) and tau (U=37, p=0.004) 17 

were higher in the pulvinar of DLB cases compared to those of controls (Fig. 4). 18 

Although AIF1 mRNA was significantly elevated in the DLB pulvinar on RNA-seq 19 

(p=0.003), its protein product Iba1 was not increased on histological analysis 20 

(Supplementary Figure 1). Similarly, CD74 mRNA was significantly higher in DLB 21 

(p=0.02) but was not different on histological analysis (Supplementary Figure 1). 22 

Although some specific sub-types of HLA-D were significantly increased at the 23 

mRNA level, there was no significant difference in expression of HLA-DP/DQ/DR on 24 

histological analysis (Supplementary Figure 1). The astrocytic marker ALDH1L1 was 25 

not significantly different on RNA-seq or histological analysis between DLB and 26 

controls. However, GFAP was significantly higher in DLB cases compared to 27 

controls at the mRNA level (p=0.001) and on histological analysis (U=18, p=0.001; 28 

Supplementary Figure 1). 29 

A range of different microglial morphologies were observed across cases and within 30 

experimental groups (Supplementary Figure 2). Possibly as a result of the 31 

considerable heterogeneity in morphologies within groups, no morphology was 32 
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significantly associated with either experimental group (χ²=4.5, p=0.214; 1 

Supplementary Figure 3). Furthermore, individual microglial morphologies were not 2 

associated with any histopathological or glial marker. Alzheimer type-II astrocytes 3 

were not more frequently encountered in DLB cases compared to control (χ²=2.8, 4 

p=0.104; Supplementary Figure 3). 5 

 6 

Relationship between synaptic loss and neuropathological changes 7 

To evaluate whether synaptic loss corresponded to neuropathological changes in a 8 

region projecting to the pulvinar, we quantified the burden of α-synuclein pathology in 9 

the amygdala, a region connected to the pulvinar through a pathway reported to be 10 

dysfunctional in DLB (20). Of the nine synaptic markers significantly reduced in DLB 11 

compared to control only PSD-93 was significantly negatively correlated with α-12 

synuclein burden in the amygdala (rs=-0.729, p=0.017; Supplementary Figure 4).  13 

 14 

Relationship between astrocytic increases and neuropathological, stereological and 15 

synaptic changes 16 

After identifying an increase in GFAP in DLB compared to control, we next evaluated 17 

the relation of this marker to the presence of neuropathological lesions, neuronal 18 

loss and synaptic changes. To prevent spurious correlations being identified due to 19 

group differences, DLB cases were analyzed separately from controls. The 20 

histological expression of GFAP was not significantly related to amyloid-β, tau or α-21 

synuclein in DLB cases. Within the sub-set of cases assessed using stereological 22 

determination of neuronal number (8/14) as reported previously (21), GFAP was not 23 

related to neuronal number. 24 

Employing two distinct cohorts of cases for transcriptomic and histological analyses 25 

limited our ability to compare histologically assessed glial markers and synaptic 26 

markers assessed with western blot. Therefore, we also assessed GFAP using 27 

western blot analysis to investigate whether GFAP expression was related to 28 

synaptic changes in DLB. GFAP (50 kDa) was significantly negatively correlated with 29 
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synaptophysin (rs=-0.621, p=0.041), dynamin (rs=-0.655, p=0.029), GABARAP (rs=-1 

0.673, p=0.023), and GAP43 (rs=-0.627, p=0.039) in DLB cases. 2 

 3 

Clinico-pathological correlations 4 

A sub-set of DLB cases (9/14) used for histological analysis had been subject to 5 

neuropsychological evaluation intra vitam. As detailed previously (30), these 6 

individuals had been assessed using the hallucinations subscale of the 7 

Neuropsychiatric Inventory (NPI) within two years prior to death (36). Comparison of 8 

NPI hallucinations score with neuropathological markers and GFAP demonstrated a 9 

significant positive correlation only between tau burden and NPI hallucination 10 

subscale score (rs=0.701, p=0.035). There were no significant correlations between 11 

NPI hallucinations subscale and any other variable.    12 
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DISCUSSION 1 

Using a transcriptomic approach, the present study has demonstrated synaptic 2 

changes and astrogliosis in the pulvinar in DLB. Notably, these findings occurred in a 3 

region that typically manifests relatively mild α-synuclein deposition yet is postulated 4 

to play a central role in the cognitive profile of DLB. The reported changes differ 5 

markedly from a previous study that employed RNA-seq in the cingulate gyrus, a 6 

region with more severe α-synuclein pathology (2), and which reported genes 7 

involved in neurogenesis and myelination enriched in DLB compared to control (37). 8 

The reported synaptic changes indicate lower expression levels of pre-synaptic 9 

proteins such as synaptophysin and NSF which support efficient turnover of vesicles 10 

following exocytotic events (38). In contrast, we found preservation of proteins 11 

necessary for vesicular exocytosis, such as SNAP25 (39), STX1A (40), and SV2B 12 

(41). Despite the interaction of α-synuclein with synaptic proteins, previous studies 13 

have not consistently demonstrated significantly lower levels of pre-synaptic markers 14 

in DLB (42).  15 

The role of glia in DLB has been a matter of controversy and debate, with conflicting 16 

reports in the literature. Microglial activation is induced by aggregated α-synuclein in 17 

vitro (43), though post-mortem studies have reported inconsistent findings (31, 44-18 

46). Despite RNA-seq demonstrating enrichment of transcripts related to positive 19 

regulation of immune system processes, we found no evidence of such changes at 20 

the protein level. Therefore, our data favor the view that microglia-mediated 21 

neuroinflammatory processes are not an important factor in the reported synaptic 22 

changes. However, it is impossible to exclude the possibility that an acute 23 

inflammatory response occurred earlier in the disease process but was undetectable 24 

in terminal stages.  25 

As GFAP immunoreactivity did not correlate with any pathological lesion or neuronal 26 

loss, astrogliosis does not seem to be a response to neurodegenerative lesions 27 

within the pulvinar. It is noteworthy that astrogliosis was not accompanied by 28 

microgliosis and thus does not appear to signify a neuroinflammatory state. 29 

Considering the negative relationship between reactive astrogliosis and several 30 

synaptic markers, we speculate that reactive astrogliosis may be a response to 31 

synaptic dysfunction, with the aim of supporting synaptic transmission. Further 32 
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studies are warranted to evaluate the role of astrocytes in Lewy body diseases, and 1 

whether they have a protective or degenerative function. Elucidating the role of 2 

astrocytic sub-populations in neurodegenerative disorders may identify novel 3 

therapeutic targets to augment protective functions or attenuate degenerative 4 

processes. 5 

The role of the pulvinar as a ‘hub’ modulating cortico-cortical activity may suggest 6 

that the present findings are the neuropathological substrate of desynchronous 7 

network coherence in DLB. The pulvinar exerts a powerful influence on cortical 8 

activity based on attentional demands (47) meaning its dysfunction likely impacts 9 

attention-mediated cortical functions. Attention is deficient in DLB (48, 49), and has 10 

been implicated in visual hallucinations and fluctuating cognition (11, 48). The search 11 

for the neuropathological substrates of symptoms such as visual hallucinations and 12 

cognitive fluctuations is impeded by the inherent difficulty in attributing a transient 13 

feature to a permanent neuropathological change. However, dysfunction of 14 

structures regulating cortical functioning on the basis of attention may be more likely 15 

to contribute to transient features of neurodegenerative diseases. 16 

The reported findings are within a region with relatively low levels of Lewy body 17 

pathology and differ from those reported in a more severely affected region, the 18 

cingulate gyrus (37). These findings indicate important molecular changes, in 19 

addition to previously reported neuronal loss (21), independent of the severity of 20 

local neuropathological changes. Although we noted a relationship between tau 21 

pathology in the pulvinar and the frequency and severity of visual hallucinations intra 22 

vitam, the overall levels of tau were very low in the pulvinar in DLB. Furthermore, 23 

these findings are hard to reconcile with our previous report of higher tau burdens in 24 

the pulvinar of Alzheimer’s disease cases without visual hallucinations compared to 25 

DLB (50). The tau burden in the pulvinar may be a proxy measure of global tau 26 

burden, which has been previously reported to influence the clinical phenotype of 27 

DLB (51). 28 

As the pulvinar is highly interconnected with numerous cortical and sub-cortical 29 

areas, one may speculate that the reported findings are a downstream result of 30 

neuropathological changes to regions connected to the pulvinar. We identified a 31 

strong negative correlation between PSD-93 and α-synuclein burden in the 32 



15 
 

amygdala, a region connected to the pulvinar. Whilst a similar relationship was not 1 

found with other synaptic markers, the pulvinar as a ‘hub’ region has widespread 2 

connectivity across the cortex (13) and a systematic evaluation of the many regions 3 

connected to it was beyond the scope of this study. Molecular changes in ‘preserved’ 4 

regions as a result of neuropathological changes elsewhere may be particularly 5 

relevant to the aetiopathology of Lewy body diseases, considering the relatively 6 

selective topography of α-synuclein deposition (52). Therefore, relative preservation 7 

of brain structures may have important implications for the clinical phenotype of DLB 8 

and studies focusing only on regions with severe α-synuclein deposition may miss 9 

pathological alterations relevant to the clinical phenotype of Lewy body disease. 10 

In summary, we have identified changes on the molecular level in the pulvinar, a 11 

region with relatively low levels of Lewy body pathology, but that is thought to have 12 

an important influence upon the cognitive phenotype of DLB (13). One may 13 

speculate that the reported synaptic and astroglial changes are a downstream effect 14 

of neurodegenerative changes elsewhere and suggest that the absence of a 15 

significant local pathological burden should not be assumed to indicate functional 16 

preservation.   17 
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