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Abstract: The success of biopharmaceuticals as highly effective clinical drugs has 

recently led industrial biotechnology towards their large-scale production. The 

ovary cells of the Chinese hamster (CHO cells) are one of the most common 

production cell line. However, they are very inefficient in producing desired 

compounds. This limitation can be tackled by culture bioengineering, but 

identifying the optimal interventions is usually expensive and time-consuming. In 

this study, we combined machine learning techniques with metabolic modelling 

to estimate lactate production in CHO cell cultures. We trained our poly-omics 

method using gene expression data from varying conditions and associated 

reaction rates in metabolic pathways, reconstructed in silico. The poly-omics 

reconstruction is performed by generating a set of condition-specific metabolic 

models, specifically optimised for lactate export estimation. To validate our 

approach, we compared predicted lactate production with experimentally 

measured yields in a cross-validation setting. Importantly, we observe that 

integration of metabolic predictions significantly improves the predictive ability 

of our machine learning pipeline when compared to the same pipeline based on 

gene expression alone. Our results suggest that, compared to transcriptomic-only 

studies, combining metabolic modelling with data-driven methods vastly 

improves the automatisation of cultures design, by accurately identifying optimal 

growth conditions for producing target therapeutic compounds. 

Keywords: CHO cell; Biopharmaceutical; Metabolic modelling; Machine learning; 

Flux balance analysis.   

 

1. Introduction 

Chinese hamster ovary (CHO) cells are widely regarded as one of the most reliable 

cell types for industrial-scale mammalian protein production. As compared to 

bacterial cell lines such as those of Escherichia coli, CHO cultured cells are less 
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productive, much fragile and grow slowly. In turn, this means that the 

manufacturing methods that facilitate protein production using CHO cell lines are 

much more expensive and time-consuming. However, heavy interest is put in 

optimising CHO cell lines as they are required to produce mammalian 

recombinant proteins. 

Recent advances in this context have focused on unraveling the complex 

biological machinery controlling desirable characteristics of protein synthesis and 

secretion [1]. While gene expression profiling has proved helpful in past studies, 

there have been recent efforts to combine genetic data with knowledge of 

metabolic pathways through the reconstruction of genome-scale metabolic models 

(GSMMs). GSMMs attempt to describe cellular metabolism in silico through gene 

annotation and stoichiometry associated with reactions and metabolites, as well as 

with constraints such as upper or lower bounding of metabolic flux rates. Flux 

balance analysis (FBA) allows to predict the configuration of metabolic reaction 

fluxes within GSMMs under general growth conditions [2]. Condition-specific 

GSMMs can be built using a variety of methods and extended FBA pipelines. The 

idea is to use omic-data available in each condition, and a set of rules to constrain 

the flux rates of the general-purpose GSMM [20,21]. 

Metabolic models have recently been reconstructed for CHO-K1, CHO-S, and 

CHO-DG44 cell lines, along with a general consensus model [3].  These models 

were useful in quantifying the protein synthesis capacity of these cell lines and 

revealed that bioprocessing treatments such as histone deacetylase inhibitors' lead 

to an inefficiency in increasing product yield. FBA can thus reveal the impact of 

various media and culture conditions on growth and yield of cultured cells, aiding 

CHO cells bioengineering [3-6]. Moreover, computational estimation of metabolic 

fluxes can be an asset when experimental data is not available [7]. 

However, the precision of GSMMs strongly depends on available pathway and 

biochemical knowledge. Especially when dealing with the complexity of 

mammalian cells, more advanced computational techniques may be necessary for 

an effective application to real problems within the bio-processing industry. In 

particular, machine learning coupled with computational modelling of CHO cells 

has the potential to effectively elucidate optimal bioengineering steps towards 

improved production of therapeutic metabolites and proteins [8]. 

Here we present a new approach integrating machine learning and metabolic 

modelling for the computational prediction of protein production in CHO cells. We 

propose to integrate experimental data on the gene level with data generated in 

silico via a GSMM of CHO cells metabolism within an integrated data-driven 

framework (Figure 1). We evaluated this approach by a computational validation, 

estimating the average prediction error in general settings. Importantly, we 

observe that metabolic predictions coupled with gene expression data can 

significantly improve estimations of lactate production based solely on gene 

expression. 
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 Figure 1. Workflow of the proposed approach for the prediction of metabolite and protein prediction in 

CHO cells. Steps (i)-(iv) are presented in the Methods section of this work. They serve the final goal of 

optimising culture bioengineering, depicted in step (v). Integrating transcriptomics data, machine learning 

methods and metabolic modelling improves the predictive ability of transcriptomic-only methods. 

2. Materials and Methods  

2.1 Publicly available gene expression data  

As a first data source, a large-scale gene expression dataset from two different 

CHO cell lines was used [9]. This dataset contains 295 microarray profiles with 

expression values for 3592 genes from 121 CHO cell cultures of varying conditions 

in terms of including cell density, growth rate, viability, lactate and ammonium 

accumulation and cell productivity. We extracted the 127 profiles with available 

quantification of lactate accumulation. 

2.2 Genome scale reconstruction of CHO metabolism  

We used a recently developed GSMM of CHO cell metabolism, previously 

used to accurately predict growth phenotypes [3]. This model is the largest 

reconstruction of CHO metabolism to date, with 1766 genes and 6663 reactions, 

aggregating community knowledge from various sources.  Being a consensus 

model, it provides general mechanistic relationships that can be refined depending 

on the particular task or cell line of interest. 

2.3 Building condition-specific poly-omics models of CHO cells 

To create condition and cell line-specific poly-omics models the genome-scale 

model of CHO cell metabolism was combined with the gene expression data from 

CHO cell cultures in varying conditions. In this step, data accessible via the BIGG 

(i) Transcriptional profiles from a 
range of culture conditions

(ii) Condition-specific poly-omic models of 
metabolism and its genetic regulation

(iv) Machine learning to predict metabolite/protein 
production in untested conditions

(iii) Computational metabolic 
analysis for model fine-tuning

(v) Optimisation of  
bioengineering of cultured cells
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repository was employed to match gene identifiers [10]. A model for each 

condition was created by computing gene set effective expressions Θ for each 

reaction, following previous investigations [11,12]. The effective expression at 

reaction level is thereby determined by gene expressions θ(g) and by gene-protein-

reaction rules, properly converted to min/max rules depending on the type of gene 

set. In particular, we define Θ(g) = θ(g) for single genes, Θ(g1 ∧ g2) = min{θ(g1), 

θ(g2)} for enzymatic complexes and Θ(g1 ∨ g2) = max{θ(g1), θ(g2)} for isozymes. 

Lower bounds and upper bounds for each reaction were obtained by applying the 

following multiplicative coefficient to its native bounds:  

ϕ(Θ) = [1 + γ|log(Θ)|]sgn(Θ-1), (1) 

where γ is a parameter controlling the impact of gene expression on reaction 

bounds. 

2.4 Extraction of metabolic features 

 After a model for each condition was created, flux distributions were 

computed using FBA by maximising the biomass for producing cell lines included 

in the CHO model [3]. To perform FBA we employed the COBRA toolbox and a 

multi-level linear program structure [13,24]. All simulations were carried out in 

Matlab R2014b with the Gurobi solver. 

2.5 Feature processing and selection 

Principle Component Analysis (PCA) is a very effective statistical tool that uses 

an orthogonal transformation to reduce a set of variables to a smaller set of linearly 

uncorrelated variables, known as the principle components [14]. Here PCA was 

used to process metabolic flux features in order to extract informative metabolic 

features. 

Moreover, elastic net was applied to select relevant features, both at a gene 

expression and metabolic level [15]. Given an α in the interval ]0, 1] and a non-

negative λ, elastic net solves the following optimisation problem: 

𝑚𝑖𝑛𝛽0,𝛽 (
1

2𝑁
∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)2𝑁
𝑖=1 + 𝜆𝑃𝛼(𝛽)). (2) 

In this formula, x represents the gene expression and metabolic flux rates variables, 

y corresponds to measured metabolite yield and N is the total number of training 

conditions. Pα(β) is a regularisation term depending on a vector of linear 

coefficients β and on parameter α. Non-null entries of β resulting from this 

minimisation correspond to relevant features selected by elastic net. 

2.6 Training generalised linear models to predict metabolite/protein production 

Generalised linear models (GLM) were trained to predict lactate yield starting 

from poly-omics information [16]. A GLM gives an estimate of metabolite 

production yipred calculated as follows: 
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𝑦𝑖
𝑝𝑟𝑒𝑑 = 𝛽0 + 𝑥𝑖

𝑇𝛽. (3) 

 GLM accuracy was assessed by nested cross-validation, consisting of two 

cross-validation loops which together evaluate a selected model based on training 

data [17]. The nested loop selects the values of α and λ of elastic net on 5 training 

and test folds. The outer loop is used for model evaluation and is ran over 10 folds. 

GLM accuracy for each test fold was evaluated by computing the root-mean-

square error (RMSE) defined by the following formula:  

RMSE =√
∑ (𝑦

𝑖
𝑝𝑟𝑒𝑑

−𝑦𝑖)
2

𝑛
𝑖=1

𝑛
, (4) 

where n is the number of test conditions in the fold. 

3. Results 

3.1. Metabolic model optimisation 

We validated our proposed approach on the prediction of lactate production, 

resorting to experimental data from the study of Clarke et al. [9]. We selected the 

conditions with both microarray and measured lactate production, obtaining 127 

conditions. In order to optimise metabolic flux information, we performed a 

sensitivity analysis on the gene expression mapping parameter γ in Equation (1). 

Specifically, we studied the Pearson correlation r between measured lactate 

accumulation in culture media and simulated lactate export rates for varying 

values of γ across several orders of magnitude. The maximum correlation 

coefficient obtained was r = 0.36 (p-value = 2.6·10-5). The relationships between 

these two quantities can be visualised in Figure 2a. We thus employed condition-

specific models with the optimal γ to generate fluxes for the following analysis. 

 

(a) (b) 

 Figure 2. Validation results of the proposed approach on lactate production prediction: (a) comparison 

between simulated lactate export through condition-specific GSMMs and measured lactate production; this 

step enables GSMMs optimisation for the target metabolite in the following step; (b) RMSE distribution plots 

for lactate production predictions as a function of employed data sources. Two outliers for the green box lie 

outside of the current scale. 
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3.2 Predictions of lactate production 

 To accurately predict lactate production in CHO cells, we employed elastic net 

and GLMs as described in the Methods section. We estimated the generalised 

prediction error by means of a 10-fold cross-validation, repeatedly swapping 

conditions used in training and in tests [17]. We calculated the RMSE of predicted 

lactate yield across the test conditions in each fold, which quantifies the average 

difference between predicted and experimentally measured lactate yield. We 

repeated this procedure under three data sources scenarios, where gene 

expression, metabolic fluxes and their combination was evaluated separately. The 

results are shown in Figure 2b and summarised in Table 1. Interestingly, although 

flux rates alone lead to poor predictions, if combined with gene expression they 

achieve the minor average and median RMSE across the 10 folds. In the latter case, 

associated RMSE distribution is significantly different to that obtained from gene 

expression alone on the basis of a one-tailed Wilcoxon rank sum test at a 5% 

threshold (p-value = 0.027) [18]. 

 

 Gene expression Flux rates 
Gene expression and 

flux rates 

Mean RMSE 0.19 1.08 0.14 

Median RMSE 0.17 0.26 0.13 

RMSE standard  

deviation 
0.06 2.41 0.05 

 

Table 1. Comparison of 10-fold cross-validation RMSE statistics for the prediction of lactate production from 

different data sources. Combining gene expression and metabolic flux data leads to best values for all 

statistical measures. These results correspond to those shown in Figure 2b. 

 

4. Discussion 

The growing demand for natural products in global healthcare requires 

advanced automation of CHO cell culture design for biotechnological industry to 

reach commercial-scale production levels. Notably, recent advances in metabolic 

modelling and in data-driven prediction algorithms have not been yet exploited in 

combination for this purpose. In this study, we started to explore this research line: 

the overall goal of the work was to develop a poly-omics approach capable of 

predicting metabolite/protein production in CHO cells. The approach comprises a 

GLM trained on gene expression data originating from cultures in varying 

conditions and on metabolic flux rates obtained in silico from FBA on a GSMM of 

CHO metabolism. The accuracy of our approach was evaluated in comparison to 

GLMs employing only a single type of data. This allowed us to show that 
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combining gene expression and metabolic fluxes improves accuracy compared to 

just using gene expression or metabolic fluxes separately.  

Generation of condition-specific metabolic information can in principle be 

achieved through various types of computational analysis. In this study, we used 

FBA as this is the most widely used technique to capture flux configurations in a 

growth steady state [2]. In principle, different techniques could potentially extract 

even more useful information, further improving final data-driven predictions. For 

instance, in a preliminary evaluation we tested also a modified version of 

parsimonious enzyme usage FBA minimising the norm-2 of reaction fluxes [22,23]. 

However, we observed that normal FBA achieved best results (data not shown). 

The main limitation of this work is represented by a scarce availability of large-

scale public data on CHO cells and by the prototypical state of present GSMMs. 

Proposed strategies for model refining are expected to lead to further prediction 

improvements [19].  With more comprehensive datasets, both in terms of number 

of samples and in terms of metabolic gene coverage, we expect our pipeline to 

vastly improve its predictive ability. Moreover, although our validation focussed 

on lactate production, the proposed methodological framework can be 

straightforwardly implemented around any target metabolite or protein.  

Despite the above-mentioned limitations, our results show that metabolism-

based machine learning methods can significantly improve the predictive power of 

common transcriptomic-only methods. This is due to the introduction of metabolic 

features coupled with transcriptomic features. The present study therefore 

represents a preliminary assessment that we plan to extend in future 

investigations. 
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