
Detecting Energy Bugs in Android Apps Using Static

Analysis

Hao Jiang1, Hongli Yang1, Shengchao Qin2, Zhendong Su3, Jian Zhang4 and Jun Yan4

1Beijing University of Technology 2Teesside University 3University of California, Davis
4Institute of Software Chinese Academy of Sciences

Abstract. Energy bugs in Android apps are defects that can make Android sys-
tems waste much energy as a whole. Energy bugs detection in Android apps
has become an important issue since smartphones usually operate on a limited
amount of battery capacity and the existence of energy bugs may lead to serious
drain in the battery power. This paper focuses on detecting two types of energy
bugs, namely resource leak and layout defect, in Android apps. A resource leak
is a particular type of energy wasting phenomena where an app does not release
its acquired resources such as a sensor and GPS. A layout defect refers to a poor
layout structure causing more energy consumption for measuring and drawing
the layout. In this paper, we present a static analysis technique called SAAD, that
can automatically detect energy bugs in a context-sensitive way. SAAD detect-
s the energy bugs by taking an inter-procedural anaysis of an app. For resource
leak analysis, SAAD decompiles APK file into Dalvik bytecodes files and then
performs resource leak analysis by taking components call relationship analysis,
inter-procedure and intra-procedure analysis. For detecting layout defect, SAAD
firstly employs Lint to perform some traditional app analysis, then filters ener-
gy defects from reported issues. Our experimental result on 64 publicly-available
Android apps shows that SAAD can detect energy bugs effectively. The accura-
cies of detecting resource leak and layout energy defect are 86.67% and 76.27%
respectively.

1 Introduction

With the rapid development of mobile technology, smartphones, especially Android
phones, provide people with convenient services. Android application markets like
Google Play provide abundant apps for users. In order to enrich the user experience,
Android systems are equipped with a wide range of hardware components, such as
Sensors, WIFI, GPS, Camera and so on. Because of rich functionalities and convenient
services, a majority of developers are attracted to develop apps on Android platforms.

Meanwhile, the usage time of a smartphone is constrained by its battery capacity.
Since the existing techniques have not yet allowed the smartphones to be charged any-
where, and at anytime, services and functions will be constrained, and even forced to
close. And as a consequence, the battery energy has great impacts on user experiences.
The battery energy is mostly consumed by apps installed in smartphones, as the service
and some resource intensive hardware components (such as screen, GPS, WIFI, and
CPU) are usually invoked when apps are running [2].

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Teeside University's Research Repository

https://core.ac.uk/display/322321758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Typical energy bugs [1, 3] that may be hidden in smartphone apps can be classified
into either resource leak or layout defect. A resource leak refers to a case that an app
does not release acquired resources such as sensor, GPS, wakelock, memory etc., and
thus may hinder system from entering an idle state, making hardware reside at a con-
tinuous energy consumption situation. A layout defect can be caused by a poor layout
structure (layout is too deep, too many or ineffective widgets, etc.) which leads to high
energy consumption for measuring and drawing of this layout. Both types of bugs can
result in unnecessary energy consumption.

There are some work related with energy bugs detection. However, they focus on
detecting either background programs or foreground ones such as user interfaces. Com-
paratively, we mainly focus on detecting resource leaks and layout defects, which are
more latent to the users.

This paper makes the following contributions:

– We propose a novel approach, called SAAD (Static Application Analysis Detector).
It analyzes not only resource leak at background programs, but also layout defects
at foreground. The generated reports of energy bugs help analyzers and developers
improve their apps.

– SAAD detects resource leak by context sensitive analysis, which combines compo-
nent call analysis, inter-procedural analysis and intra-procedural analysis. It con-
siders the calling context when analyzing the target of a function call. In order
to improve efficiency, It focuses on analyzing effective paths that are involved in
resource applying/releasing operations. In particular, SAAD can detect more than
eighty resources leak by automatically getting those resources API information
from Android official website by Web crawler.

– We have implemented a tool to support SAAD and evaluated it on 64 free-available
Android applications. Our results show that SAAD can detect energy bugs effective-
ly. The accuracies of detecting resource leak and layout energy defect are 86.67%
and 76.27%, respectively.

The rest of the paper is organised as follows. Section 2 introduces background about
the classifications of resource leak and layout defect. Section 3 gives an overview of
our energy bugs detection framework. Section 4 presents analysis approach of resource
leak and layout defect. Section 5 demonstrates experimental results of 64 real practical
Android apps for evaluating our approach SAAD. Section 6 presents related work, while
Section 7 concludes.

2 Background

2.1 Resource Leak Classification

Some typical energy bugs due to resource leak are listed as follows:

– Non sleep bug: An app applies a wakelock object to keep CPU and Screen to re-
side in an active state, and does not release the object in time. It results in that the
CPU and the LCD component cannot enter a dormant state with sustainable energy
consumption. An example of non sleep bug is illustrated in Figure 1. A Wakelock

resource is applied in the try block, then after running a task, this resource is re-
leased using release() method. However, if an exception takes place when the task
runs, the execution of the method runInWakeLock() will throw exceptions and en-
ter the catch block. It means the release operation cannot be completed at the end,
causing a resource leak.

– Sensor leak: Sensors (e.g., pressure sensors, direction sensors) are acquired, while
the sensor object may not be released when the Android system enter its back-
ground state, making sensors stay active.

– Camera leak: The camera resource is occupied during an app’s execution process,
but fails to be released when the app switches into the background, leaving the cam-
era driver stay in active state. In particular, since a camera resource in a smartphone
is usually exclusive, if it is not released, other apps may not be able to access.

– Multimedia leak: A media player object or an audio manager object may be ac-
quired by apps to play video or audio files. However, the corresponding object
resource may not be released when an app enters its background state, and the leak
makes the devices work continuously.

– Memory leak: The running system continues to allocate memory space for apps.
Because of negligence or errors, it fails in releasing the corresponding memory
space when apps are closed.

Fig. 1. An Example of Non Sleep Energy Bug

Resource leaks are not limited to the above cases only. We use Web crawler to
explorer as many resources as possible according to characteristics (such as their oper-
ation names containing key words open/release, start/stop and register/unregister). We
get more than eighty resources API information, and store them in a configuration file
to support energy bugs detection.

2.2 Layout Defect Classification

Unlike resource leaks, layout defects are mainly about bad designs of the layout struc-
ture, which may cause more unnecessary CPU time or memory spaces. Traditionally,
each layout file uses an XML format to define and manage widgets. It is composed of
several View objects and ViewGroup objects, organized in a tree hierarchy. A layout can
be nested and referenced to other sub layout files. Under normal circumstances, each

activity component is associated with a specific layout file. When an activity starts, it
will load its layout file by invoking the setContentView() method. After finishing the
steps of reading, parsing and measuring, the corresponding widgets in a layout are ar-
ranged to a coordinate position and the system begins to render and show them on the
screen. As the number of widgets becomes bigger, or nesting level becomes deeper,
the complexity of the layout file can be high, requiring much resources like CPU and
memory space to be consumed. Compared with resource leak, layout defect may not
increase energy consumption very obviously, and thus are often less concerned by de-
velopers, but it is surely a problem to energy inefficiency. The typical classification of
layout defects are:

– Too many views: in a layout file, the default maximum widget number is 80 by
default. When the number is greater than the default value, the system’s running
fluency can be decreased.

– Too deep layout: the default maximum nesting depth is 10. Similarly, the system
may not run fluently when the depth is more than the default value.

– Compound drawables: it implies that a pair of widgets defined in a layout file can
be replaced by one compound widget, such as a combination of an ImageView and
a TextView can always be replaced by a TextView using a compound drawable.

– Useless leaf: if a widget does not have a child node or does not have a set of back-
ground properties, it is treated as a useless leaf node. A useless leaf node can be
removed in order to reduce the complexity of the layout structure.

– Useless parent: if a widget has only one child node, and it is not a scrollview or a
root node. Without the background properties, a useless parent can be removed so
that the child node moves to its position.

The layout defects are common, and can also raise the complexity of layout struc-
tures, while they are less researched.

3 FRAMEWORK OVERVIEW

An overview of our bug-detection framework is shown in Figure 2. The input of the
framework is an APK file, the outputs comprise a resource leak report and a layout
defect report, and the modules of the dashed box perform energy bugs analysis and
detection, using Apktool [4], SAAF [6], Lint [5], resource leak analysis and layout defect
analysis, and a report generator.

The Apktool is a reverse-engineering tool that decompiles an Apk file to generate a
manifest configuration file, several bytecode files named Dalvik [7] bytecode and layout
files of an app. Generally, the components of an app are defined in its manifest file.

The SAAF is an open sourced static Android analysis framework which makes use
of program slicing and static analysis techniques to uncover any suspicious behav-
iors. In the analysis, SAAF parses Dalvik bytecodes generated by Apktool and encap-
sulates them into data models provided by itself. There are different models such as
the Instruction model, the BasicBlock model, the Method model, the SmaliClass model
and so on. For example, a SmaliClass model encapsulates the current class’s informa-
tion including its name and method list, path and the type of its super class. SAAF also
provides available APIs to retrieve such information.

Fig. 2. The Framework of Energy Bug Detection

Lint is a static analysis tool for Android project source code, which detects poten-
tial bugs in the project and performs corresponding optimizations. The input of Lint
contains two parts, the Android project source files (including java source files, con-
figuration files, layout files and others), and an XML file named lint.xml, that defines
severity levels of problems. Lint will detect performance problems of the code structure.
For any problems detected, Lint gives an analysis report, and developers can fix these
problems before releasing the apps.

The resource leak analysis module and the layout defect analysis module are the
core parts in the framework. The resource leak analysis module judges whether the
resource leak problems exist, and the layout defect analysis module further analyzes
defects related to energy consumption based on the output of the Lint tool. We will
present the two modules in Section 4 in detail.

4 ANALYSIS

4.1 Resource Leak Analysis

This section introduces resource leak analysis module in Fig. 2. It performs compo-
nent call analysis, inter-procedural analysis, intra-procedural analysis and resource leak
detection.

Components Call Analysis Usually, each app is composed of multiple components de-
clared in its Manifest file. Each component can invoke methods such as startActivity()
and startService() to call another component. The components relationship can be
abstracted into a component call graph. In order to build the component call rela-
tionship, we find out an app’s entry point, which is usually an activity targeted with
Android.intent.action.MAIN. Then we search for intent objects, which are data object-
s for recording data that needs to be transmitted. A target component is defined as a
parameter in an intent object.

After building the component call graph, we can extract a set of component call
paths from the graph. Our framework can analyze each path whether there exists a
resource leak or not.

An example component call graph is shown in Fig. 3. Here each node represents a
component, and each arrow stands for the call relationship between the corresponding
components.

Fig. 3. An Example of Component Call Graph

Fig. 4 shows algorithm generateCCGPaths for extracting component call paths.
The input is a list of components cp list. The result result set stores a set of com-
ponent call paths. Lines 3-6 traverse list of components and find out entry component,
which is the first node of each path. Then sub-function ccgTraverse is called to tra-
verse the component call graph.

generateCCPaths(cp list)

1 create a list as path list
2 create a set as result set
3 foreach cp in cp list do
4 if cp is EntryComponent then
5 path list.add(cp)
6 ccgTraverse(cp, path list, result set)
7 return result set

Fig. 4. Generating Component Call Paths Algorithm

The algorithm ccgTraverse in Fig. 5 takes component cp, path list and result set
as parameters. Lines 1-2 extract one path and add it to the result set if cp has been
visited and its calling target component list cp.targetList is empty. Lines 3-7 traverse
cp.targetList. Each target component is added into path list if it is not visited, and
recursively traversed by calling ccgTraverse. Lines 8-9 process pop stack operations,
which delete the last node of current path in order to traverse other target components
of its source component.

ccgTraverse (cp, path list, result set)

1 if cp is visited ^ cp.targetList is Empty then
2 result set.add(path list)
3 foreach target in cp.targetList do
4 if target is not visited then
5 target.visited true
6 path list.add(target)
7 ccgTraverse(target, path list, result set)
8 path list.remove(path list.size� 1)
9 target.visited false

10 return result set

Fig. 5. Traversing Component Call Graph Algorithm

Inter-Procedural Analysis Based on each component call path, we analyze each com-
ponent in its own life cycle, taking into account its inter-procedural information such
as the function call relations, in order to understand the comprehensive behavior and
status of an app. Particularly, we explorer the function call path related with resource
applying and releasing.

a) Resource APIs
Resource APIs are used for deciding whether a function call path is involved in

applying or releasing system resource. Android resource APIs have been published as
webpages at its official website. We use the Web crawler technique to automatically
extract more than eighty resource APIs including bluetooth, wifi, camera, multimedia,
GPS, sensor, memory etc. Each resource API is defined with both apply and release
methods information such as class path, method name, parameter list and return type.

b) Function Abstraction
In order to build function call relationships, we perform function abstraction for

simplifying function analysis. A function abstraction is a semantic abstraction of a func-
tion, which includes the name of a function, the class it belongs to, the parameter list,
the type of its return value and an invoked functions list. It saves an XML format for
further processing. We use function abstractions to construct function call relationship.

c) Effective Path
Before detecting resource leak, our framework filters function call paths obtained

from step b), and only analyzes effective paths where resources are acquired or released.
This preprocessing decreases the number of paths to be analyzed, making the analysis
more efficient. Fig. 6 is an example of a function call graph, in which three paths can
be extracted.

1. onCreate() ! init() ! setContentView()
2. onCreate() ! doCameraOpen() ! open()

Fig. 6. An Example of A Function Call Graph

3. onCreate() ! log()

However, only path 2 contains an instruction for opening a camera. Here the func-
tion open() is an API for opening camera resource. It is invoked to use the camera
device. So this path is an effective path while the others are omitted in analysis. The
following is the definition of effective path.

Definition 1. An effective path is a 4-tuple hcom,path,res,opi. Here com is the cur-
rent component, path is a list of methods. res represents used system resource on this
path and op denotes the operation on corresponding resources. There are two kinds of
resource operations, which is either apply or release.

extractEftPath (cp,m, path list, result set)

1 path list.add(m)
2 if m.hasResource() is not null then
3 create a path as eftPath
4 eftPath.com cp
5 eftPath.path path list
6 eftPath.res m.hasResource()
7 result set.add(eftPath)
8 if m.abList is empty then
9 path list.remove(size� 1)

10 else foreach ab in ablist do
11 nextMethod getMethod(ab)
12 extractEftPath(nextMethod, path list, result set)
13 path list.remove(size� 1)
14 return result set

Fig. 7. Extracting Effective Paths Algorithm

Fig. 7 shows the algorithm extractEftPath, which takes three parameters: the
current method m, a list of methods path list and a set of effective paths result set.

Line 1 adds the current method m into list path list, and line 2 checks if current method
has resource operation. If it has, lines 3-7 create an effective path eftPath, and sets its
corresponding component, path and used resource, and add it to the result set. Other-
wise lines 8-13 recursively traverse the next invoked method of m. Here the function
m.hasResource will check whether method m invokes resource APIs and returns re-
source type and operation in case of invoking. The function getMethod(ab) takes the
function ab as a parameter and returns the corresponding method.

d) Event Response and Callback Functions
Android apps are usually event driven. When an event response function calls a re-

source related API, it will be included in the corresponding effective path. Considering
button events, our framework builds a hash table for mapping button objects into their
monitoring objects. Thus it is easy to find out the event response functions defined in
the monitoring class.

The callback mechanism is popular in Android system. For instance, the Activity
component’s life cycle functions onCreate, onStart etc. are system callback function-
s, which are automatically invoked by the system. A common example is the Thread
class. When a thread object executes the start function, it actually executes the run
function. However, the relation between start and run functions are implicit. This sit-
uation causes some function call paths break in analysis. Our framework firstly tries to
build a map between callback functions and real executed functions, and adds a callback
function to the corresponding function call path.

Intra-Procedural Analysis The aim of the intra-procedural analysis is to analyze a
single function. Based on basic blocks of a function, we build the control flow graph
of the function. Our framework employs SAAF to generate a control flow graph of a
function, and further extract a set of execution paths. The details are omitted here due
to the page limitation.

Resource Leak Detection By combining the above analyses, Fig. 8 provides our al-
gorithm for resource leak checking. The input cpPath set is a set of component call
paths obtained by component analysis. For each effective path eftPath of the compo-
nent cp, lines 4-6 add the resource into apply list if the operation of the current path is
an apply operation. For release operation, lines 7-16 traverse each method method on
effective path and make sure that: (1) its control flow paths method.cfg must call the
next method on the same path before getting to the last method; (2) when traversing the
last method on the path, each of its control flow path must release the corresponding
resource. If both conditions are satisfied, the resource res of current effective path is
added into release list. Lines 17-19 compare apply list and release list, and if they
are matched, return false for no release leak. Otherwise the algorithm returns true for
exiting release leak.

checkResourceLeak (cpPath set)

1 create an apply list and a release list
2 foreach cpPath in cpPath set do
3 foreach cp in cpPath do
4 foreach eftPath in cp.getEftPath() do
5 if eftPath.op is apply then
6 apply list.add(eftPath.res)
7 else if eftPath.op is release then
8 for i = 0; i eftPath.size� 1; i++ do
9 method eftPath.getMethod(i)

10 if i eftPath.size� 2 then
11 next method eftPath.getMethod(i+ 1)
12 if method.cfg do not invoke next method then
13 break
14 else
15 if method.cfg do release then
16 release list.add(eftPath.res)
17 if apply list equals with release list then
18 return false
19 else return true

Fig. 8. Checking Resource Leak Algorithm

4.2 Layout Defect Detection

Fig. 9 shows the process of our layout defect analysis. The input is an APK file that
needs to be decompiled by Apktool, and the output is a defect report. The analysis
module and the filter module are explained as follows.

Analysis Module The analysis module mainly conducts an overall analysis of the lay-
out files, including correctness, security, performance, usability and accessibility anal-
ysis. After receiving the paths of the layout files, that come from the result of decompil-
ing of the APK file, the Control Procedure starts Lint to execute the layout file analysis.
Finally, Lint will output an XML report about the issues for each layout file.

Filter Module Since the output of the analysis module includes different types of
layout issues, which may or may not be energy consumption related layout defects. The
Filter module extracts energy defects from the issues report of Lint. It is composed of
a Defect Table and a Filter Procedure: the former acts as a set of filter rules, which are
identified from layout defect classification in section 2.2, and the latter uses filter rules
to find out layout energy defects.

Fig. 9. Layout Defect Analysis Process

5 EVALUATION

We have implemented the proposed analysis as a prototype tool called SAAD. In order
to evaluate our tool, we have conducted experiments on 64 real APK files, with 28
of them from well-known markets, and the other 36 are open sourced apps. In order to
complete a more comprehensive experiment, we select these apps belonging to different
classifications. In the process of the experiment, we collect the statistics of apps based
on characteristics and scale, some of them are shown in Table 1.

Table 1. Scale Statistics of Apps(part)

APP File Size Component
Number

Layout Number

Agenda Plus 1.91M 3 9
Heart Rate Runtastic 6.75M 24 101
Duomi Radio Station 8.79M 14 25
Drifting Bottle 7.29M 23 49
Constellation Camera 9.04M 42 93

5.1 Result of Resource Leak Detection

With code confirmation, we have detected that 52 of them have resource leaks, 8 of
them are false positives; 4 apps are leak free. The accuracy is thus 86.67%, while the
false positive rate is 13.33%. Among the 52 apps that have resource leaks, three kinds
of leaks can be detected after we review their source code.

– no release operation. The current component in an app does not take initiatives to
release resources. For example, the Drifting Bottle application in Table 1, uses the
SoundPool class without releasing the obtained resources. Table 2 shows the detail-
s of the invoking path. It appears in an activity named HrLoginSelectionActivity,
which is invoked by SplashScreenActivity.

– The path of existing release operation may blocked, e.g., by exception handlings.
– The release operation has not been activated by an event. In this situation, an app

has a release operation, while it releases only when a specific event such as onClick,
onKeyDown and so on occurs. If the user cannot trigger any of these events, the
related resources cannot be released.

Table 2. Report Fragment of Resource Leak

<class name=” HrLoginSelectionActivity”>
<path>

SplashScreenActivity,HrLoginSelectionActivity
</path>
<leak>[Landroid/media/SoundPool;]</leak>

</class>

5.2 Result of Layout Defect Detection

We have detected that 45 apps have layout defects, 14 apps are false positives and 5 apps
are defect free. The accuracy is 76.27% and the false positive rate is 23.73%. To validate
the experimental results, we employ a view hierarchy tool called HierarchyViewer [8]
to visualize the nested structure of layout files when running applications.

There are two types of false positives: UselessParent or UselessLeaf, which are
raised by the static analysis of Lint. Since the widgets of a layout can be loaded only
during an app’s execution, we monitor the behavior of the layout by HierarchyViewer,
and identify all of the 14 false positives. In addition, HierarchyViewer can report the
start time of each widget and its drawing time, which helps to confirm that layout defects
consume system resources and time.

Fig. 10 summarizes 45 apps that have layout defects. The x-axis denotes the number
of layout defects. Through the experimental results, we can see some defects appear
more frequently, including Useless Parent, Inefficient Weight, Compound Drawables
etc. It indicates that some developers may not design the layout structure rigorously,
and thus create some useless widget and useless properties, resulting in a more complex
layout structure and causing unnecessary consumption of CPU resources and memory.

Fig. 10. Summary of Layout Defect

6 RELATED WORK

We present related work in the following three aspects: (1) detecting and testing energy
bugs; (2) estimating energy consumption; (3) optimizing energy.

6.1 Detecting and Testing Energy Bugs

The researches in [22,24,27] are strongly relevant with our work. Guo et al [27] aim to
detect resource leak of Android apps. However, the provided approaches are not context
sensitive. For instance, considering resource leak, if there exists one releasing resource
path, no resource leak report is given, causing false negatives. Wu et al [22, 24] present
Relda2, a light-weight static resource leak detection tool, which takes model checking
technology to detect resource leak. Comparatively, our approach combines function call
analysis with control flow analysis to locate the real paths related to energy bugs.

There are some other work related with detecting and testing energy bugs. Wu et
al. [13] focus on detecting energy-related defects in the UI logic of an Android appli-
cation. The authors identify two patterns of behavior in which location listeners are
leaking. Liu et al. [12, 19] implement a static code analyzer, PerfChecker, to detect i-
dentified performance bug patterns. Moreover, they build a tool called GreenDroid for
automatically analyzing an app’s sensory data utilization at different states and report-
ing actionable information to help developers locate energy inefficiency problems and
identify their root causes [11]. Wan et al. [20] present a technique for detecting display
energy hotspots and prioritizing them for developers. Abhik et al. [25] present an au-
tomated test generation framework, which systematically generates test inputs that are
likely to capture energy hotspots/bugs.

6.2 Estimating Energy Consumption

Energy is a critical resource for smartphones. However, developers usually lack quan-
titative information about the behavior of apps with respect to energy consumption. Lu
et al. [23] propose a lightweight and automatic approach to estimating the method-level
energy consumption for Android apps. Li et al. [15] provide code-level estimates of
energy consumption using program analysis and per-instruction energy modeling. [16]
presents an approach to calculating source line level energy consumption information
by combining hardware-based power measurements with program analysis and statisti-
cal modeling. Mario et al. [21] present a quantitative and qualitative empirical investi-
gation by measuring energy consumption of method calls when executing typical usage
scenarios in 55 mobile apps from different domains. Ferrari et al. [9] present the de-
sign and implementation of a Portable Open Source Energy Monitor (POEM) to enable
developers to test and measure the energy consumption of the basic blocks, the call
graph, and the Android API calls, allowing developers to locate energy leaks with high
accuracy. [26] presents the design, implementation and evaluation of eprof, the first
fine-grained energy profiler for smartphone apps. Eprof also reveals several wakelock
bugs, a family of energy bugs in smartphone apps.

6.3 Optimizing Energy

A smartphone’s display is usually one of its most energy consuming components. There
are several researches focusing on optimization issues. Li et al. [17] develop an ap-
proach for automatically rewriting web applications so that they can generate more en-
ergy efficient web pages. Kim et al. [14] propose a novel static optimization technique
for eliminating drawing commands to produce energy-efficient apps.

Making HTTP requests is one of the most energy consuming activities in Android
apps, Li et al. [18] propose an approach to reducing the energy consumption of HTTP
requests by automatically detecting and then bundling multiple HTTP requests.

7 CONCLUSION AND FUTURE WORK

Due to the limited capacity of the battery power in (Android) smartphones, energy bugs
presenting in Android apps may cause serious battery drain. In this paper, we have
proposed a static analysis approach to detect both resource leak and layout defect in
Android applications. We have implemented our analysis in the SAAD tool and have
used it to analyze 64 real applications. In our experiment, we have found that 52 apps
are resource leakage, and 45 apps layout defects. The corresponding accuracies are
86.67% and 76.27%, with false alarm rates at 13.33% and 23.73% respectively. The
results show that our SAAD tool can effectively analyze energy bugs of Android apps.

For the future work, due to the limitations of static analysis, we will combine dy-
namic analysis with current framework. Moreover, although a number of callback func-
tions and event response functions are available in Android system, our framework
only analyzes some common functions. As future work, we will include more functions
analysis into the framework.

References

1. A. Pathak, Y. C. Hu and M. Zhang. Bootstrapping energy debugging on smartphones: A first
look at energy bugs in mobile devices. HotNets-X Proceeding of The 10th ACM Workshop on
Hot Topics in Networks. 2011.

2. Banerjee A, Chong L K, Chattopadhyay S, et al. Detecting energy bugs and hotspots in mobile
apps. Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014:588-598.

3. Zhang J, Musa A and Le W. A comparison of energy bugs for smartphone platforms. Engi-
neering of Mobile-Enabled Systems (MOBS), IEEE, 2013:25-30.

4. APKTool. https://code.google.com/p/android-apktool/.
5. Lint. http://tools.android.com/tips/lint.
6. Hoffmann J, Ussath M, Holz T, et al. Slicing droids: program slicing for smali code. Auto-

mated Software Engineering (ASE), March 18-22, 2013, Coimbra, Portugal. IEEE, 2013:1844-
1851.

7. Dalvik. https://en.wikipedia.org/wiki/Dalvik.
8. Hierarchy Viewer. http://developer.android.com/tools/help/hierarchy-viewer.html.
9. Ferrari A, Gallucci D, Puccinelli D, et al. Detecting energy leaks in Android app with POEM.

Pervasive Computing and Communication Workshops (PerCom Workshops), IEEE, 2015.
10. Java Path Finder. http://babelfish.arc.nasa.gov/trac/jpf/.
11. Yepang Liu, Chang Xu and S.C. Cheung. Where Has My Battery Gone? Finding Sensor

Related Energy Black Holes in Smartphone Applications. Pervasive Computing and Commu-
nications (PerCom), IEEE, 2013:2-10.

12. Yepang Liu, Chang Xu and S.C. Cheung. Characterizing and Detecting Performance Bugs
for Smartphone Applications. Proceedings of the 36th International Conference on Software
Engineering, 2014:1013-1024.

13. Haowei Wu, Shengqian Yang and Atanas Rountev. Static Detection of Energy Defect Pat-
terns in Android Applications. Proceedings of the 25th International Conference on Compiler
Construction, ACM, 2016:185-195.

14. P. Kim, D. Kroening and M. Kwiatkowska. Static Program Analysis for Identifying Ener-
gy Bugs in Graphics-Intensive Mobile Apps. In Proc. 24th IEEE International Conference on
Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOT-
S 2016), IEEE CS Press.

15. Shuai Hao, Ding Li, William G. J. Halfond and Ramesh Govindan. Estimating Mobile Appli-
cation Energy Consumption using Program Analysis. In Proceedings of the 35th International
Conference on Software Engineering (ICSE), May 2013.

16. D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating Source Line Level Energy
Information for Android Applications. In ISSTA, 2013.

17. Ding Li, Angelica Huyen Tran and William G. J. Halfond. Making Web Applications More
Energy Efficient for OLED Smartphones. In Proceedings of the International Conference on
Software Engineering (ICSE), June 2014.

18. Ding Li, Yingjun Lyu, Jiaping Gui and William G.J. Halfond. Automated Energy Optimiza-
tion of HTTP Requests for Mobile Applications. In Proceedings of the 38th International Con-
ference on Software Engineering (ICSE), May 2016.

19. Yepang Liu, Chang Xu, S.C. Cheung, and Jian Lu. GreenDroid: Automated Diagnosis of En-
ergy Inefficiency for Smartphone Applications. In IEEE Transactions on Software Engineering,
Vol. 40, No. 9, pp.911-940, September 2014.

20. Mian Wan, Yuchen Jin, Ding Li and William G. J. Halfond. Detecting Display Energy
Hotspots in Android Apps. In Proceedings of the 8th IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST), April 2015.

21. Mario Linares Vsquez, Gabriele Bavota, Carlos Bernal-Crdenas, et al. Mining energy-greedy
API usage patterns in Android apps: an empirical study. In 11th Working Conference on Mining
Software Repositories, MSR 2014:2-11.

22. Tianyong Wu, Jierui Liu, Zhenbo Xu, Chaorong Guo, Yanli Zhang, Jun Yan and Jian Zhang.
Light-Weight, Inter-Procedural and Callback-Aware Resource Leak Detection for Android
Apps. IEEE Trans. Software Eng. 42(11): 1054-1076 (2016).

23. Qiong Lu, Tianyong Wu, Jiwei Yan, Jun Yan, Feifei Ma and Fan Zhang. Lightweight
Method-Level Energy Consumption Estimation for Android Applications. TASE 2016: 144-
151.

24. Tianyong Wu, Jierui Liu, Xi Deng, Jun Yan and Jian Zhang. Relda2: an effective static anal-
ysis tool for resource leak detection in Android apps. ASE2016: 762-767.

25. Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay and Abhik Roychoudhury. De-
tecting energy bugs and hotspots in mobile apps. SIGSOFT FSE 2014: 588-598.

26. Abhinav Pathak, Y. Charlie Hu and Ming Zhang: Where is the energy spent inside my ap-
p?: fine grained energy accounting on smartphones with Eprof. Proceedings of the 7th ACM
european conference on Computer Systems, EuroSys 2012: 29-42.

27. Chaorong Guo, Jian Zhang, Jun Yan, Zhiqiang Zhang and Yanli Zhang. Characterizing and
detecting resource leaks in Android applications. IEEE/ACM 28th International Conference on
Automated Software Engineering, ASE2013: 389-398.

