
Learning Types for Binaries

Zhiwu Xu1, Cheng Wen1, and Shengchao Qin2

1 College of Computer Science and Software Engineering, Shenzhen University, China
2 School of Computing, Teesside University, UK

xuzhiwu@szu.edu.cn, 2150230509@email.szu.edu.cn, shengchao.qin@gmail.com

Abstract. Type inference for Binary codes is a challenging problem due
partly to the fact that much type-related information has been lost dur-
ing the compilation from high-level source code. Most of the existing
research on binary code type inference tend to resort to program anal-
ysis techniques, which can be too conservative to infer types with high
accuracy or too heavy-weight to be viable in practice. In this paper, we
propose a new approach to learning types for recovered variables from
their related representative instructions. Our idea is motivated by “duck
typing”, where the type of a variable is determined by its features and
properties. Our approach first learns a classifier from existing binaries
with debug information and then uses this classifier to predict types for
new, unseen binaries. We have implemented our approach in a tool called
BITY and used it to conduct some experiments on a well-known bench-
mark coreutils (v8.4). The results show that our tool is more precise
than the commercial tool Hey-Rays, both in terms of correct types and
compatible types.

1 Introduction

Binary code type inference aims to infer a high-level typed variables from exe-
cutables, which is required for, or significantly benefits, many applications such
as decompilation, binary code rewriting, vulnerability detection and analysis,
binary code reuse, protocol reverse engineering, virtual machine introspection,
game hacking, hooking, malware analysis, and so on. However, unlike high-level
source codes, binary code type inference is challenging because, during compila-
tion, much program information is lost, particularly, the variables that store the
data, and their types, which constrain how the data are stored, manipulated,
and interpreted.

A significant amount of research has been carried out on binary code type
inference, such as REWORD [1], TIE [2] , SmartDec [3], SecondWrite [4], Re-
typd [5] and Hex-Rays [6]. Most of them resort to program analysis techniques,
which are often too conservative to infer types with high accuracy. For example,
for a memory byte (i.e., a variable) that is only used to store 0 and 1, most exist-
ing tools, such as SmartDec and Hex-Rays, recover the type char or byte t (i.e.,
a type for bytes), which is clearly either incorrect or too conservative. Moreover,
some of them are too heavy-weight to use in practice, for example, in the sense
that they may generate too many constraints to solve for large-scale programs.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322321757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we propose a new approach to learning types for binaries. Our
idea is motivated by “duck typing”, where the type of a variable is determined
by its features and properties. Our approach first learns a classifier from ex-
isting binaries with debug information and then uses this classifier to predict
types for new, unseen binaries. In detail, we first recover variables from binary
codes using Value-Set Analysis (VSA) [7], then extract the related representative
instructions of the variables as well as some other useful information as their fea-
tures. Based on binaries with debug information collected from programs that
are used in teaching materials and from commonly used algorithms and real-
world programs, we learn a classifier using Support Vector Machine (SVM) [8,
9]. Using this classifier, we then predict the most possible types for recovered
variables.

We implement our approach as a prototype called BITY in Python. Using
BITY, we conduct some experiments on a benchmark coreutils (v8.4). Compared
with the commercial tool Hey-Rays, our tool is more precise, both in terms
of correct types and compatible types. We also perform BITY on binaries of
different sizes. The results show that our tool is scalable and suitable in practice.

Our main contributions are summarised as follows. We have proposed a new
approach to learning types for binaries, and implemented it in a tool BITY,
which is scalable and suitable in practice. Through experiments we have also
demonstrated that our approach can predict types with high accuracy and has
reasonable performance.

The rest of the paper is constructed as follows. Sec 2 illustrates some motivat-
ing examples. Sec 3 presents our approach to learning types for binaries, followed
by the implementation in Sec 4 and experimental results in Sec 5. Related work
is given in Sec 6 and Sec 7 concludes.

2 Motivation

In this section, we illustrate some examples that are not easy to recover the
precise types by existing methods and explain our motivation.

Listing 1.1. C Source Code

int main ()
{

bool decode = f a l s e ;
int opt = getopt ;
switch (opt) {

case ’ d ’ :
decode = true ;
break ;

default :
break ;

}
i f (decode) do decode ;

}

Listing 1.2. Pseudo ASM Code

mov byte ptr [ebp−1] , 0
cmp dword ptr [ebp−8] , 64h
j z short loc 40101B
jmp short loc 40101F

loc 40101B :
mov byte ptr [ebp−1] , 1

loc 40101F :
movzx eax , byte ptr [ebp−1]
t e s t eax , eax
j z short l o c 401035
c a l l do decode

loc 401035 :
re tn

Fig. 1. Snippet Code from base64.c

The first example, shown in Figure 1, comes from an encode and decode
program base64.c of C runtime Library. The program uses a variable decode

with type bool to record users’ options. Nevertheless, after compiling, the variable
decode is simply represented as a byte in stack (i.e., [ebp-1]) and the type bool
is lost. Due to the over-conservative program analysis they adopt, most existing
tools, such as SmartDec and Hex-Rays, recover for the variable [ebp-1] the type
char or byte t, which is clearly either incorrect or conservative.

To make matters worse, programs with fewer instructions are more difficult
to recover types correctly. Let us consider three simple assignments for three
variables with different types, shown in Figure 2. SmartDec recovers the same
type int32 t for all these three variables, while Hex-Rays infers the type Dword*
for i and f and the type Qword* for d. Again, most of these results are either
incorrect or conservative, even not a definite type in program languages.

Listing 1.3. C Source Code

func1 (int∗ i){
∗ i = 10 ;

}
func2 (f loat ∗ f){

∗ f = 1 0 . 0 ;
}
func3 (double∗ d){

∗d = 10 . 0 ;
}

Listing 1.4. Pseudo ASM Code

mov [i] , 0Ah

movss xmm0, ds :XX
movss [f] , xmm0

movsd xmm0, ds :XX
movsd [d] , xmm0

Fig. 2. Assignments of different types

One may note that the variables of different types are compiled with different
instructions, that is, mov, movss and movsd. Hence, a simple solution is to
enhance the program analysis techniques with three new rules to infer these three
different types corresponding to these three different instructions. However, it is
pity that mov (movsd resp.) is not only used for int (double resp.). Even if it
works, there are too many instructions and types to figure out the reasonable
rules. For example, there are more than 30 kinds of mov instructions in the x86
instruction set and the source operand and the destination operand may have
different meanings.

Generally, the set of the related instructions of a variable reflects how the
variable is stored, manipulated, and interpreted. So our solution is to take the
related instruction set as a feature of a variable, and then to learn for the variable
the most possible type from the feature. This is motivated by “duck typing”,
where the type of a variable is determined by its features and properties instead
of being explicitly defined. Let us consider base64.c again. The related instruction
set of [ebp-1] is {mov , 0; mov , 1; movzx eax, }, which is most likely to be a
feature of bool, where denotes the concerning variable. Accordingly, we recover
bool as the type of [ebp-1]. Similarly to the variables of the second example. Note
that movsd may be a feature of double, but not all of them belong to double.

3 Approach

In this section, we present our approach to learning the most possible type for
a recovered variable.

Fig. 3. Approach

%% C Code
char ∗memchr (char ∗buf , int chr , int cnt) {

while (cnt && ∗buf++ != chr) cnt−−;
return (cnt ? −−buf : NULL) ;

}
%% ASM Code Snippet
sub 401000 proc near
.
l o c 401009 :
07 cmp dword ptr [ebp+10h] , 0
08 j z short loc 40103A
09 mov eax , [ebp+8]
10 movsx ecx , byte ptr [eax]
11 mov [ebp−44h] , ecx
12 mov edx , [ebp+0Ch]
13 mov [ebp−48h] , edx
14 mov eax , [ebp+8]
15 add eax , 1
16 mov [ebp+8] , eax
17 mov ecx , [ebp−44h]
18 cmp ecx , [ebp−48h]
19 j z short loc 40103A
20 mov eax , [ebp+10h]
21 sub eax , 1
22 mov [ebp+10h] , eax
23 jmp short l o c 401009
loc 40103A :
24 cmp dword ptr [ebp+10h] , 0
25 j z short l o c 401051
26 mov eax , [ebp+8]
27 sub eax , 1
28 mov [ebp+8] , eax
29 mov ecx , [ebp+8]
30 mov [ebp−44h] , ecx
31 jmp short l o c 401058
loc 401051 :
32 mov dword ptr [ebp−44h] , 0
l oc 401058 :
.
sub 401000 endp

Fig. 4. Snippet Code of memchr

As mentioned in Section 2, we try to learn the most possible type for a vari-
able from its related instruction set. Our approach first learns a classifier from
existing binaries with debug information and then uses this classifier to predict
types for new, unseen binaries. Figure 3 shows the main idea of our approach.
In detail, our approach consists of the following steps: (1) target variable recov-
ery; (2) related instruction extraction; (3) feature selection and representation;
(4) classifier training; (5) type predicting. In the following, we describe each of
them, using another program memchr from C runtime Library as an illustrative
example, which is shown in Figure 4.

3.1 Target Variable Recovery

During compilation, variables of the source program and their type information
are not included in the resulting binary. So the first step is to identify the target
variables in binaries. Indeed, variables are abstractions of memory blocks, which
are accessed by data registers or specifying absolute address directly or indirectly
through address expressions of the form “[base+index×scale+offset]” in binaries,
where base and index are registers, and scale and offset are integer constants.
Take the variables in stack frame for example. Parameters3 are always accessed
by the form “[ebp+offset]”, while local variables are by “[ebp−offset]”, where ebp
is the stack base pointer register. We recover the possible variables in binaries
using Value-Set Analysis (VSA) [7], which is widely used in many binary analysis
platforms. Note that, due to compiler optimization, a stack location may be used
to represent multiple different local variables in the same function, which is not
considered here.

Considering the illustrated example memchr in Figure 4, the variables we
recovered in stack frame are listed in Table 1. There are three parameters, which
conform to the declarations in the C code. Due to the low-level instructions, there
are two more local variables, which are used respectively to store the values of
*buf and chr temporarily.

Table 1. Target Variables in memchr

Variable Offset Variable Offset Variable Offset

Parameter1 [ebp+8] Parameter2 [ebp+0Ch] Parameter3 [ebp+10h]
LocalVar1 [ebp-48h] LocalVar2 [ebp-44h]

3.2 Related Instruction Extraction

Next, we want to extract the related instructions for the recovered target vari-
ables, which reflect how the variables are used and will be used as a feature to
learn the types.

3 In FASTCALL convention, the first two parameters are passed in ECX and EDX.

The instructions using a variable directly are extracted for the variable. How-
ever, an instruction of a variable in high-level codes may be compiled into several
instructions in low-level codes, some of which may not use the corresponding
variable directly. For example, the statement if (decode) in base64 is complied
into two instructions in ASM codes (see Figure 1), one of which uses the corre-
sponding variable directly (i.e., “movzx eax, byte ptr [ebp-1]”), while the other
does not (i.e., “test eax, eax”). Clearly, the second one is more representative for
bool. On the other hand, the data registers like eax, ebx, ecx and edx are usually
used as an intermediary to store data temporarily and they may store different
data (i.e., have different types) in different time. Therefore, we make use of use-
defined chains on the data registers to extract the indirect usage instructions:
if a data register is defined by a variable, then all the uses of the register are
considered as the uses of the variable as well. Consequently, the instruction “test
eax, eax” belongs to the variable [ebp-1] in base64, since it is a use of eax, which
is defined by [epb-1].

Let us consider the target variable [epb+8] in the memchr example. The
instructions related with [epb+8] are shown in Figure 5. There are 10 instructions
in total, 6 of which use [epb+8] directly and 4 are collected due to the use-defined
chain (denoted by “use of ” followed by a data register).

09 mov eax , [ebp+8] // def of eax by epb+8
10 movsx ecx , byte ptr [eax] //use of eax
14 mov eax , [ebp+8] // def of eax by epb+8
15 add eax , 1 //use of eax
16 mov [ebp+8] , eax
26 mov eax , [ebp+8] // def of eax by epb+8
27 sub eax , 1 //use of eax
28 mov [ebp+8] , eax
29 mov ecx , [ebp+8] // def of ecx by epb+8
30 mov [ebp−44h] , ecx //use of ecx

Fig. 5. Related Instructions of [ebp+8] in memchr

3.3 Feature Selection and Representation

In this paper, we focus on the x86 instruction set on Intel platforms. The others
are similar.

According to the official document of the x86 instruction set [10], different
instructions have different usages. So we perform some pre-processing on these
instructions based on their usages. Firstly, we note that not all the instructions
are interesting for type inference. For example, pop and push are usually used by
the stack, rather than variables. Secondly, as different operands may have differ-
ent meanings, we differentiate between two operands in a dyadic instruction, for
example, the operands of mov respectively represent the source and the desti-
nation, which are clearly not the same. Thirdly, some instructions need further
processing, since using them in different circumstances may have different mean-
ings. For instance, using mov with registers of different sizes offers us different
meaningful information. Table 2 lists the typical usage patterns of mov we use,
where denotes a variable, regn denotes a register with size n, imm denotes an

immediate number which is neither 0 nor 1, and addr denotes a memory address
(i.e., another variable).

Table 2. Usage Patterns of mov

mov , reg32 mov reg32, mov , reg16 mov reg16, mov , reg8 mov reg8,

mov , addr mov addr, mov , 0 mov , 1 mov , imm

Moreover, not all the instructions are widely used or representative. For that
we do a statistical analysis on our dataset, which consists of real-world programs
and source codes from some course books, using the well-known scheme Term
FrequencyInverse Document Frequency (TF-IDF) weighting [11]. Based on the
result, we select the N most frequently used and representative instructions as
the feature indicators. Theoretically, the more instructions, the better. While in
practice, we found 100 instructions are enough.

In addition, we also take into account some other useful information as fea-
tures, namely, the memory size and being an argument of a function.

Finally, we represent the selected features of variables using a vector space
model [12], which is an algebraic model for representing any objects as vectors
of identifiers. We only concern that how many times an interesting instruction
are performed on a variable, leaving the order out of consideration. So a rep-
resentation of a variable is a vector consisting of the frequency of each selected
instruction and the extra useful information. Formally, a variable is represented
as the following vector v:

v = [f1 : t1, f2 : t2, . . . , fn : tn]

where fi is a feature term, ti is the value of feature fi, and n is the number of
features. For example, Table 3 shows the vector of the variable [ebp+8] in the
illustrated example memchr, where only the nonzero features are listed. Note
that “mov eax, ” and “mov ecx, ” are merged together, since both eax and
ecx are registers of 32 bits. To be more precise, one can also take into account
the IDF that have been computed for each selected instruction or some other
correlation functions.

3.4 Classifier Training and Type Predicting

For now, we only consider the base types without type quantifiers, that is, the
set L of labels we are learning in this paper are

L = {bool, char, short, f loat, int, pointer, long long int, double, long double}

The reason is that (1) the other types, such as structs, can be composed from
the base types; (2) too many levels may make against the classifier.

We use supervised learning to train our classifier, so a labeled dataset is
needed. For that, we compile a dataset of C programs with debugging and then
extract type information from the compiled binaries. Generally, our training
problem can be expressed as :

Table 3. Represetation of epb+8

Before Proceeding After Proceeding

Feature Value Feature Value

size 32 size32 1

mov eax, 3 mov reg32, 4

movsx ecx, [] 1 movsx reg32, [] 1

add , imm 1 add , imm 1

mov ,eax 2 mov , reg32 2

sub , imm 1 sub , imm 1

mov ecx, 1 Merged to mov reg32,

mov [ebp-44h], 1 mov addr, 1

Given a labeled dataset D = {(v1, l1), (v2, l2), . . . , (vm, lm)}, the goal is
to learn a classifier C such that C(vi) = li for all i = 1, 2, . . . ,m, where
vi is the feature vector of a variable, li ∈ L is the corresponding type, m
is the number of variables.

We use Support Vector Machine (SVM) [8, 9] to learn the classifier. Clearly,
our training problem is a multi-class one. By using the “one-against-one” ap-
proach [13], we first reduce the multi-class problem into a binary classifier learn-
ing one: for every two different types, a classifier is trained from the labeled
dataset. Some size information of variables may be unknown, so for simplicity,
we do not distinguish between types of different sizes. That is to say, assume
there are k types, we will train k × (k − 1)/2 binary classifiers.

As mentioned in Section 3.3, a variable is represented as a vector, namely,
is regarded as a point in the feature vector space. SVM tries to construct an n-
dimensional hyperplanes that optimally separates the variables into categories,
which is achieved by a linear or nonlinear separating surface in the input vector
space of the labeled dataset. Its main idea is to transform the original input set
to a high-dimensional feature space by using a kernel function, and then achieve
optimum classification in this new feature space.

After the binary classifiers are trained, we then can use them to predict the
most possible type for each variable that have been recovered from new or unseen
binaries. This proceeds as follows: we use each binary classifier to vote a type for
a variable, and then select the one that gets the most votes as the most possible
type. Let us consider the variable [epb+8] in the illustrative example again.
Note that its feature instructions contain “mov reg32, ; movsx reg32, []” (to
read from an address), “mov reg32, ; add ,imm” (to increase the address), and
“mov reg32, ; sub ,imm” (to decrease the address), which are the typical usages
of pointer. Most classifiers involved pointers will vote for the type pointer for
[epb+8], and thus the most possible type we learn is pointer. Another example
is the variable decode in the program base64 presented in Section 2. According
to its feature instructions (i.e., “mov , 0; mov , 1; movzx reg32, ; test , ”),
most of the classifiers will vote for the type bool.

3.5 Type Lattice

Finally, we present the lattice of our types we are learning, which gives the
hierarchy of types and will be used to measure the precision of our approach as
TIE does [2] (see Section 5).

Fig. 6. Type Lattice

The lattice is given in Figure 6, where > and ⊥ respectively denote that a
variable can or cannot be any type and there is a “pointer” to the lattice itself
for the type pointer, that is, the lattice is level-by-level. In other words, our
approach handles pointer level-by-level, which proceeds as follows:

1. once a variable v is predicted to have type pointer by the classifier, our
approach first tries to recover another variable that the pointer variable
points to;

2. if such an indirect variable v′ exists, the approach then extracts related
features for this newly recovered variable v′ and continues to learn a (next-
level) type t for it;

3. finally, the type for v is a pointer to t if v′ exists, otherwise a pointer (to
any type).

This enables us to predict pointer more precise (see Section 5) and to handle
multi-level pointers considered in [4]. Theoretically, our approach can handle a
pointer with any levels (and thus may not terminate). While in practice, we
found only 3 levels are enough.

Let us go on with [epb+8] in the illustrative example. In Section 3.4, we have
learnt that the most possible type for [epb+8] is pointer. So our approach carries
on to recover an indirect variable, which is “byte ptr [eax]”, and then to extract
its feature vector [size8: 1; movsx reg32, : 1; mov addr, : 1], which covers the
data move with sign extension. There are two types with 8 bits, namely, bool
and char. Compared with bool, it is more like to have type char according to the
known binaries. Thus the final type for [epb+8] is pointer to char.

4 Implementation

We have implemented our approach as a prototype called BITY in 3k lines
of Python codes. We use IDA Pro [6] as a front end to disassemble binaries,
since it supports a variety of executable formats for different processors and
operating systems, and use LIBSVM [14], a Library for Support Vector Machines,
to implement our classifiers. Moreover, as mentioned before, we select 100 most
frequently used and representative instructions as features and consider 3 levels
for pointer types.

For a high precision, we consider a training dataset that should contain dif-
ferent possible usages of different types. For that, we collect binaries with debug
information obtained from programs that are used in teaching materials and
from commonly used algorithms and real-world programs. Programs of the first
kind always cover all the types and their possible usages, in particular, they
demonstrate how types and their corresponding operations are used for begin-
ners. While programs of the second kind reflect how (often) different types or
usages are used in practice, which help us to select the most possible type. In
detail, our training dataset consists of the binaries obtained from the following
programs:

– Source codes of the C programming language (K&R)
– Source codes of basic algorithms in C programming language [15];
– Source codes of commonly used algorithms [16];
– C Runtime Library;
– Some C programs from github.

Any other valuable data will be added into our data set in the future.

5 Experiments

In this section, we present the experiments.

5.1 Results on Benchmark coreutils

To evaluate our approach, we perform our tool BITY on programs from coreutils
(v8.4), a benchmark used by several existing work [1, 2, 17]. We first compile the
test programs into (stripped) binaries, and then use BITY to predict types for
the recovered variables. To measure the accuracy of our approach, we compare
the types that BITY predicts with the type information extracted from the
binaries that are obtained by compiling the test programs with debug support.
We also compare our tool BITY against Hex-Rays decompiler-v2.2.0.154, a plug-
in of the commercial tool IDA Pro [6]. All the experiments are run on a machine
with 3.30GHz i5-4590 and 8GB RAM.

4 Hex-Rays makes use of debug information, so we perform both our tool and Hex-
Rays on stripped binaries.

Fig. 7. Type Lattice for Hex-Rays and BITY

To measure between types, we borrow the notation distance from TIE [2].
For that, we extend our type lattice with the types recovered by Hex-Rays,
which is shown in Figure 7, where our tool consider only the types in bold, while
Hex-Rays considers all the types except > and ⊥. We say that two types are
compatible if one of them is a subtype of the other one following the top-level
lattice. Given two types t1, t2, the distance between them, denoted as |t1 − t2|,
is defined as follows: (1) at most one of them is a pointer : the distance |t1 − t2|
is the number of hierarchies between them in the top-level lattice if they are
compatible, otherwise the maximum hierarchies’ height (i.e., 4); (2) both of
them are pointer, namely, pointer to t′1 and t′2 respectively: the distance |t1− t2|
is the half5 of the maximum hierarchies height (i.e., 2) multiplied by 0, 0.5 and
1, according to whether t′1 and t′2 are the same, compatible or incompatible
respectively. For example, |int − dword| = 1 and | ∗ int − ∗dword| = 1, while
|int− ∗dword| = 4.

The selected results of our tool BITY and Hex-Rays on the benchmark core-
utils are given in Table 4, where Vars denotes the number of recovered vari-
ables in stack, Corr denotes the number of variables, whose types are recovered
correctly, Comp denotes the number of variables, whose types are recovered
compatibly, Fail denotes the number of variables, whose types are recovered
incorrectly, and Dist denotes the average distance of each program.

The results show that our tool predicts correct types for 58.15% (1356) vari-
ables and compatible types for 31.22% (728) variables (most are due to the lack
of the type quantifier signed and unsigned), in total proper types for 89.37%
(2084) variables; while Hex-Rays recovers correct types for 54.80% (1278) vari-
ables and compatible types for 25.26% (589) variables (most are due to the
consideration of the conservative types), in total proper types for 80.06% (1876)
variables. This indicates that our tool is (11.63%) more precise than Hex-Rays,
both in terms of correct types and compatible types.

5 Theoretically, we can use the radio of the number of common levels among the
number of maximum levels between t1 and t2 [4]. Since we consider 3 levels in
practice, we use the half here.

Table 4. Selected Results of BITY and Hex-Rays on coreutils (v8.4)

Program Vars
BITY Hex-Rays

Corr Comp Fail Dist Corr Comp Fail Dist

base64 41 20 19 2 0.66 29 7 5 0.80
basename 22 17 4 1 0.55 12 4 6 1.32

cat 50 29 19 2 0.60 18 19 13 1.52
chcon 55 39 8 8 0.73 32 7 16 1.36
chgrp 31 21 4 6 0.90 17 4 10 1.42
chmod 42 19 20 3 0.71 20 13 19 1.23
chown 42 19 4 3 0.94 5 6 5 1.65
chroot 23 12 9 2 0.74 18 4 10 0.39
cksum 14 7 6 1 0.71 7 6 1 0.79
comm 20 10 4 6 1.40 11 1 8 1.65
copy 135 69 48 18 0.92 53 42 40 1.60
cp 78 46 26 6 0.78 45 23 10 0.94

csplit 66 27 32 7 1.02 26 25 15 1.38
cut 47 32 14 1 0.47 31 15 1 0.64
date 30 18 8 4 0.77 15 8 7 1.37
dd 128 81 35 12 0.72 78 30 20 0.88
df 92 51 32 9 0.89 45 25 22 1.27

dircolors 55 31 23 1 0.62 26 23 6 0.98
du 68 27 28 13 1.19 26 15 27 1.90

echo 11 8 3 0 0.55 5 6 0 0.82
expand 25 16 8 1 0.48 16 9 0 0.48

expr 85 29 39 17 1.36 28 35 22 1.47
factor 30 20 9 1 0.43 22 4 4 0.73
fmt 62 40 15 7 0.71 40 7 15 1.12
fold 25 17 8 0 0.36 20 5 0 0.28

getlimits 20 17 3 0 0.15 17 2 1 0.30
groups 9 5 4 0 0.44 5 4 0 0.55
head 111 63 41 7 0.65 52 42 17 1.14

id 20 13 5 2 0.65 12 5 3 0.90
join 106 48 52 6 0.79 54 24 28 1.33
kill 27 18 6 3 0.70 15 9 3 0.89
ln 29 23 3 3 0.62 21 5 3 0.76
ls 352 189 105 58 1.04 186 73 93 1.32

mkdir 22 15 4 3 0.91 10 5 7 1.55
mkfifo 10 7 2 1 1.11 7 0 3 1.78

mktemp 35 23 9 3 0.60 16 15 4 1.09
mv 35 20 8 7 1.14 15 8 12 1.74
nice 16 15 1 0 0.13 15 1 0 0.13
nl 18 11 4 3 1.06 12 3 3 0.94

nohup 22 20 1 1 0.27 19 1 2 0.41
od 120 88 23 9 0.53 86 25 9 0.58

operand2sig 13 11 0 2 0.62 9 2 2 0.77
paste 35 26 7 2 0.54 24 9 2 0.71

pathchk 19 15 3 1 0.37 14 4 1 0.53
pinky 62 34 22 6 0.74 44 9 9 0.71

Total 2332 1356 728 248 - 1278 589 465 -

Avg - - - - 0.72 - - - 1.02

pointers 1021 443 398 180 - 391 222 408 -

Moreover, we found 43.8% (1021 among 2332) of the recovered variables are
pointer ones. For these pointer types of the variables, our tool can recover 43.39%
(443) correct types and 38.98% (398) compatible types, in total 82.37% (841)
proper types; while Hex-Rays recovers 38.30% (391) correct types and 21.74%
(222) compatible types, in total 60.03% (613) proper types. Consequently, our
tool is also (37.21%) more precise than Hex-Rays in terms of pointer types.

Concerning the failures, most of them are due to pointer : 72.58% (180 among
248) for our tool and 87.74% (408 among 465) for Hex-Rays. We perform manual
analysis on some failure cases. There are two main reasons: (1) there are too
few representative instructions to predict the right types for some variables,
especially for pointer variables; (2) some variables are of composed types such
as struct and array, which are not considered by our tool yet.

Finally, let us consider the distance. For most programs, our tool predict
types with a shorter distance than Hex-Rays. While in several other cases (e.g.,
chroot and pinky), Hex-Rays recovers types better. One main reason is that
Hex-Rays can reconstruct some pointer to struct such as FILE*, FTSENT* and
FTS*. On average, our tool predicts more precise types.

5.2 Performance

To evaluate the scalability of our tool, we conduct experiments on binaries of
different sizes. Table 5 shows the experimental results, where ALOC denotes
the lines of the assemble codes, Vars denotes the number of recovered variables
in stack, ProT denotes the preprocessing time excluding the disassembling time
by IDA Pro and PreT denotes the predicting time. The results show that (1)
the preprocessing time accounts for a great proportion and is linear on LOC and
variable numbers; (2) the predicting time does not cost too much and is linear on
variable numbers; (3) our tool predicts types for binaries of sizes ranging from
7KB to 1341.44MB in just a few seconds, which indicates our tool is scalable
and viable in practice.

Table 5. Results on Different Sizes of Binaries

Program Size ALOC Vars ProT PreT

strcat 7 KB 508 8 0.187 0.011
Notepad++ 7.3.3 Installer.exe 2.80 MB 12032 113 0.807 0.229
SmartPPTSetup 1.11.0.7.exe 4.76 MB 128381 166 1.156 0.365

DoroPDFWriter 2.0.9.exe 16.30 MB 25910 71 0.692 0.068
QuickTime 51.1052.0.0.exe 18.30 MB 61240 247 2.132 0.607

Firefox Portable.exe 110.79 MB 12068 113 0.906 0.254
VMware workstation v12.0.exe 282.00 MB 39857 352 3.739 0.911

opencv-2.4.9.exe 348.00 MB 61636 287 4.130 0.722
VSX6 pro TBYB.exe 1341.44 MB 129803 450 4.762 1.921

6 Related Work

There have been many works about type inference on binaries. In this section
we briefly discuss a number of more recent related work. Interested readers can
refer to [18] for more details.

TIE [2] is a static tool for inferring primitive types for variables in a binary,
where the inferred type is limited to integer and pointer type. Moreover, the
output of TIE is the upper bound or the lower bound rather than the specific
type, which may not be accurate enough for it to be useful for a binary engineer.
PointerScope [19] uses type inference on binary execution to detect the pointer
misuses induced by an exploit. Aiming for scalability, SecondWrite [4] combines
a best-effort VSA variant for points-to analysis with a unification-based type
inference engine. But accurate types depend on high-quality points-to data. The
work of Robbins et al. [17] reduces the type recovery to a rational-tree constraint
problem and solve it using an SMT solver. Yan and McCamant [20] propose a
graph-based algorithm to determine whether each integer variable is declared
as signed or unsigned. Retypd [5] is a novel static type-inference algorithm for
machine code that supports recursive types, polymorphism, and subtyping. Hex-
Rays [6] is a popular commercial tool for binary code analysis and its exact
algorithm is proprietary. However, these tools resort to static program analysis
approaches, which are either too conservative to infer types with high accuracy
or too heavy-weight for practical use.

REWARDS [1] and Howard [21] both take a dynamic approach, generating
type constraints from execution traces, to detect data structures. ARTISTE [22]
is another tool to detect data structures using a dynamic approach. ARTISTE
generates hybrid signatures that minimize false positives during scanning by
combining points-to relationships, value invariants, and cycle invariants. While
MemPick [23] is a tool that detects and classifies high-level data structures such
as singly- or doubly-linked lists, many types of trees (e.g., AVL, red-black trees,
B-trees), and graphs. But as dynamic analysis-based approaches, they cannot
achieve full coverage of variables defined in a program.

Some tools focus on recovering object oriented features from C++ binaries [3,
24–26]. Most of them adopt program analysis, while the work of Katz et al. [26]
uses object tracelets to capture potential runtime behaviors of objects and use
the behaviors to generate a ranking of their most likely types. Similar to Katz
et. al.’s work, we use the instructions set, leaving the order out of consideration,
to capture potential behaviours of variables. Thus our solution is simper.

In addition, Raychev et al. [27] present a new approach for predicting pro-
gram properties, including types, from big code based on conditional random
fields. Their approach leverages program structures to create dependencies and
constraints used for probabilistic reasoning. Their approach works well at high-
level source code since lots of program structures are easy to discover. While for
stripped binaries, less program structures can be recovered.

7 Conclusion

Recovering type information from binaries is valuable for binary analysis. In
this paper, we have proposed a new approach to predicting the most possible
types for recovered variables. Different with existing work, our approach bases
on classifiers, without resorting to program analysis like constraint solving tech-
niques. To demonstrate the viability of the approach, we have implemented our
approach in a prototype tool and carried out some interesting experiments. The
results show that our tool is more precise than the commercial tool Hey-Rays.

As for future work, we may consider the binary classifiers of different types
of the same size to improve the approach or try other classifiers. We can perform
a points-to analysis to improve our analysis on multi-level pointers. We can take
type quantifiers (e.g., signed) or the composite types (e.g., struct) into account.
We can also conduct more experiments on more real world programs to compare
BITY with other tools.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful com-
ments. This work was partially supported by the National Natural Science Foun-
dation of China under Grants No. 61502308 and 61373033, Science and Technol-
ogy Foundation of Shenzhen City under Grant No. JCYJ20170302153712968.

References

1. Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering of
data structures from binary execution. In Network and Distributed System Security
Symposium, 2010.

2. Jong Hyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled re-
verse engineering of types in binary programs. In Network and Distributed System
Security Symposium, 2011.

3. Alexander Fokin, Egor Derevenetc, Alexander Chernov, and Katerina Troshina.
Smartdec: Approaching c++ decompilation. In Reverse Engineering, pages 347–
356, 2011.

4. Khaled Elwazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and Rajeev
Barua. Scalable variable and data type detection in a binary rewriter. In ACM
Sigplan Conference on Programming Language Design and Implementation, pages
51–60, 2013.

5. Matt Noonan, Alexey Loginov, and David Cok. Polymorphic type inference for
machine code. In ACM Sigplan Conference on Programming Language Design and
Implementation, pages 27–41, 2016.

6. The IDA Pro and Hex-Rays. http://www.hex-rays.com/idapro/.
7. Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86 binary

executables. University of Wisconsin-Madison Department of Computer Sciences,
2012.

8. Christopher J. C Burges. A tutorial on support vector machines for pattern recog-
nition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

9. A. J. Smola and B. Schlkopf. On a kernel-based method for pattern recognition,
regression, approximation, and operator inversion. Algorithmica, 22(1):211–231,
1998.

10. IntelCorporation. Intel 64 and IA-32 Architectures Software Developer Manuals.
, December, 2016.

11. Josipa Crnic. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.
12. G. Salton. A vector space model for automatic indexing. Communications of the

Acm, 18(11):613–620, 1975.
13. Seokho Kang, Sungzoon Cho, and Pilsung Kang. Constructing a multi-class clas-

sifier using one-against-one approach with different binary classifiers. Neurocom-
puting, 149(PB):677–682, 2015.

14. LIBSVM. http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
15. 178 algorithm C language source code. http://www.codeforge.com/article/220463.
16. Xu Shiliang. Commonly Used Algorithm Assembly (C Language Description). Ts-

inghua University Press, 2004. In Chinese.
17. Ed Robbins, Jacob M Howe, and Andy King. Theory propagation and rational-

trees. In Symposium on Principles and Practice of Declarative Programming, pages
193–204, 2013.

18. Juan Caballero and Zhiqiang Lin. Type inference on executables. Acm Computing
Surveys, 48(4):65, 2016.

19. Mingwei Zhang, Aravind Prakash, Xiaolei Li, Zhenkai Liang, and Heng Yin. Iden-
tifying and analyzing pointer misuses for sophisticated memory-corruption exploit
diagnosis. Proceedings of the Western Pharmacology Society, 47(47):46–49, 2013.

20. Yan Qiuchen and McCamant Stephen. Conservative signed/unsigned type infer-
ence for binaries using minimum cut. Technical Report. University of Minnesota,
2014.

21. Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic excavator
for reverse engineering data structures. In Network and Distributed System Security
Symposium, 2011.

22. Khaled Elwazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and Rajeev
Barua. Artiste: Automatic generation of hybrid data structure signatures from
binary code executions. Technical Report TRIMDEA-SW-2012-001. IMDEA Soft-
ware Institute, 2012.

23. Istvan Haller, Asia Slowinska, and Herbert Bos. Mempick: High-level data structure
detection in c/c++ binaries. In Reverse Engineering, pages 32–41, 2013.

24. Wesley Jin, Cory Cohen, Jeffrey Gennari, Charles Hines, Sagar Chaki, Arie
Gurfinkel, Jeffrey Havrilla, and Priya Narasimhan. Recovering c++ objects from
binaries using inter-procedural data-flow analysis. In ACM Sigplan on Program
Protection and Reverse Engineering Workshop, page 1, 2014.

25. Kyungjin Yoo and Rajeev Barua. Recovery of object oriented features from c++
binaries. In Asia-Pacific Software Engineering Conference, pages 231–238, 2014.

26. Omer Katz, Ran El-Yaniv, and Eran Yahav. Estimating types in binaries using
predictive modeling. In ACM Sigplan-Sigact Symposium on Principles of Program-
ming Languages, pages 313–326, 2016.

27. Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program prop-
erties from “big code”. In The ACM Sigplan-Sigact Symposium on Principles of
Programming Languages, pages 111–124, 2015.

