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Abstract—we present concepts which can be used for the 
efficient implementation of Attribute Based Access Control 
(ABAC) in large applications using maybe several data storage 
technologies, including Hadoop, NoSQL and relational database 
systems. The ABAC authorization process takes place in two 
main stages. Firstly a sequence of permissions is derived which 
specifies permitted data to be retrieved for the user’s 
transaction.  Secondly, query modification is used to augment 
the user’s transaction with code which implements the ABAC 
controls. This requires the storage technologies to support a 
high-level language such as SQL or similar. The modified user 
transactions are then optimized and processed using the full 
functionality of the underlying storage systems. We use an 
extended ABAC model (TCM2) which handles negative 
permissions and overrides in a single permissions processing 
mechanism. We illustrate these concepts using a compelling 
electronic health records scenario. 

Keywords-Attribute Based Access Control, Identity and Access 
Management, Enterprise Information Systems, Hadoop, NoSQL 

I.  INTRODUCTION 
In this paper we introduce an extended model of Attribute 

Based Access Control which we call the Tees Confidentiality 
Model version 2 (TCM2) [1] [2]. We particularly focus on its 
use in large applications which may include several storage 
technologies, e.g. relational database, relational data 
warehouse, Hadoop, and NoSQL. An electronic health 
records (EHR) scenario, in which a patient wishes to restrict 
access to sensitive data across all storage systems, is used for 
illustration. 

Firstly, we note that health data about individuals may be 
stored for different purposes in different systems. Medical 
data, appointments, and insurance data may be stored in 
relational databases and relational data warehouses; medical 
monitoring data and archived data may be stored in NoSQL 
or Hadoop systems. An example of a Hadoop health data 
application is described in [3]. 

Any of this data could potentially indicate the existence of 
a condition or event that the patient wishes to restrict access 
to. For example, an appointment at a particular clinic could 
indicate a sensitive or embarrassing medical condition without 
accessing medical records. A patient might require finely-
controlled access to such data, which might have 

consequences if other family members or insurance 
companies were to discover it. Such a situation is described in 
the scenario in section 3 below.  

Additionally, there may be circumstances where restricted 
data must be accessed and communicated due to legal 
requirements, e.g. for communicable diseases, or when data 
about a third party who may be at risk is held. To enable this, 
overriding restrictions for appropriate persons or authorities 
must be provided, across all storage systems.  

This paper offers a technical solution to these issues in the 
form of modifying user transaction code to include Attribute 
Based Access Control (ABAC) parts to implement patient 
consent directives. For such controls to be relatively simply 
generated, data access must be via a high level language, such 
as SQL or similar. Many “SQL on Hadoop” and NoSQL 
systems support such languages, making the use of such 
controls a possibility. The sophisticated optimizations and 
processing of the underlying systems can then come into play 
to access the data the user is authorized to view and use.  

An authorization system is said to implement a particular 
authorization model. To-date, the most widely-used 
authorization model has been Role Based Access Control, or 
RBAC, which is used in operating systems, databases, access 
control systems for specialized applications, and development 
environments. Attribute Based Access Control or ABAC, is 
generally seen as the way forward for authorization model 
research, see e.g. [4]. The central idea of ABAC is that access 
can be determined based on various attribute values presented 
by a subject. Permissions (often called rules) specify 
conditions under which access is granted or denied. A 
comprehensive description of ABAC is given in [5], and 
approaches for combining RBAC and ABAC are outlined in 
[6]. 

This paper is structured as follows. Section 2 describes 
how the techniques presented in this paper could be further 
researched and developed to form the basis of a 
comprehensive ABAC authorization framework for big data 
applications. Section 3 presents a motivating example of a 
healthcare records scenario that includes the specification of 
consent directives and overrides; the value of supporting 
overrides is particularly illustrated. Section 4 gives the TCM2 
permissions to implement the consent directives. Following 
this, a description of TCM2 model is given in section 5. The 
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key definitions for permissions processing are presented in 
section 6, together with the permissions sequences for an 
example user transaction. The SQL implementation of the 
user transaction and TMC2 controls is given in section 7. A 
comparison with other research is offered in section 8, after 
which conclusions and references follow. 

II. TOWARDS ABAC FOR BIG DATA 

A. Models and Languages 
The ABAC model, whether it is TCM2 as described in 

section 5, or an alternative, should work with concepts which 
are understandable by end-users, analysts and developers 
alike. This should apply to the model elements (users, 
protected objects, attributes), and application objects (well-
recognized real-world concepts such as patient, medication, 
insurance claim, etc.). Applications design approaches e.g. 
Entity Relationship analysis, relational database 
normalization, object-oriented modelling, invariably produce 
well-defined concepts. 

The ABAC model must be capable of generating queries 
in the high-level, usually SQL-like language supported by the 
underlying storage systems, which might be relational 
database, NoSQL, Hadoop or other big data systems. Many 
systems support a variant of SQL. In particular there must be 
a mapping from the ABAC Protected Objects to the data 
stored in the underlying systems, which is presented and 
accessed using the SQL variant. 

B. ABAC Permissions design 
Permissions are developed and maintained throughout an 

application’s lifecycle by security architects. Permissions 
specification necessarily follows the development of the 
application model. User stories and Use Case models indicate 
typical users. Class Diagrams or Entity Relationship 
Diagrams indicate Protected Objects. ABAC permissions can 
be developed and tested alongside application functionality. 
Provision should also be made for dynamic authorization, 
where a new permission can be added to a mostly stable base 
permissions base as the need arises (e.g. to grant or deny 
access to a particular employee). 

C. Implementation 
The ABAC permissions must be capable of generating 

queries to stored data in the high-level, usually SQL-like 
languages supported by the underlying storage systems. 
Examples of systems include Apache Hive, Drill, Spark SQL, 
Impala, and IBM Big Data. Similarly NoSQL systems such as 
Vertica, MongoDB, CouchDB and Cassandra, also support 
SQL-like languages for both tabular and JSON 
representations of data 

The storage systems will therefore support an SQL-like 
schema for stored objects which may be in the form of 
relational tables, JSON documents. Each storage model has its 
advantages and disadvantages. Normalized relational tables 
will usually contain exactly the data specified in a user query, 
but might require joins to produce it. JSON documents might 
contain much more data than is requested, some of it denied 
by ABAC permissions. This would require complex filtering 

to produce and make available the permitted data in the 
retrieved documents.  

III. HEALTHCARE SCENARIOS 

A. Summary 
This scenario was suggested by a Consultant Transplant 

Surgeon during the design and development of an Electronic 
Health Records (EHR) system. The “consent directives” 
indicate privacy concerns that have been expressed by patients 
in the past. 
The scenario concerns a fictitious patient, Alice, and her GP, 
Fred. Alice is 50; the major events in Alice’s medical history 
are: 
 

 She had a pregnancy termination when she was 16 
 Was diagnosed diabetic at 25 
 End Stage renal failure when she was 45 
 Renal transplant at 48 
 Acutely psychotic at 49 
 Crush fracture of T12 aged 50 
 
Let us now suppose, not unreasonably, that Alice 

expresses the desire to place the following consent directives 
on the availability of her EHR data about two of these 
conditions: 

 
1. My GP (Fred) can see all my data 
2. Nobody must know about my termination except my 

GP, any Gynaecological Consultant, and the 
Consultant Renal Transplant Surgeon (Bill) who 
operated on me. 

3. My GP, Consultant Renal Transplant Surgeon (Bill) 
and Consultant Orthopaedic Surgeon (Bob) can see 
my psychosis data, but no-one else. 

 
To show the power of our ABAC model, consider the 

following contrived requirement (but still one which an EHR 
authorization system should be capable of handling): 

 
4. I do not wish the members of the hospital team who 

carried out my termination operation to be ever able 
to see my psychosis data, except if they are viewing 
in a psychiatric role. (This directive to be in force 
throughout the careers of those professionals 
concerned). 

 
We must add to these directives that they must be capable 

of being overridden in carefully controlled and audited ways. 
An example of overriding follows.  

B. Transaction Example 
Consider the following transaction which requires access 

to restricted data, and illustrates the need for an override 
capability. The clinician user is a transplant surgeon, querying 
Alice’s medical data. 

Alice has been scheduled for a transplant (one of the major 
events listed). Tests lead the surgeon to suspect a previous 
pregnancy (if the tissue type of the father is similar to the graft 



a very serious rejection may ensue), but the EHR termination 
data is denied to him. Alice refuses to confirm a previous 
pregnancy to the surgeon. 

The transplant surgeon elects to override, to attempt to 
discover information about previous pregnancies. He first 
uses a Level 1 TP Override (described in section 5C) which is 
available to all healthcare professionals. This does not yield 
any data, because a Level 2 deny permission has been placed 
on the termination data. However a message is displayed, just 
for a user in the transplant surgeon role, saying that he can and 
should use a Level 2 TP Override. He does this, and discovers 
the termination data he needs. This allows for a specific form 
of treatment to be planned. 

IV. SCENARIO PERMISSIONS REPRESENTATION 
As an introduction to our TCM2 model we now give 

examples of permissions for the scenario. We call our 
permissions T Permissions, or TPs, to distinguish them from 
RBAC permissions, and other ABAC rule formulations. TPs 
consist of sets of classifier values; an example of a classifier 
value is <UserRole, Psychiatrist>. Classifier values can 
represent information other than attribute values, as is 
explained in section 5 below.  

The permissions below are written using an informal 
notation which represents the data structures used for 
implementing TCM2.  

Firstly, the EHR data for any patient is normally made 
available to 

a) Healthcare professionals (HCPs) such as clinicians, 
doctors, and administrators who have a Legitimate 
Relationship (LR) with the patient. This means that the patient 
is registered with or has been referred to them. 

b) Additionally, all HCPs can exercise a Level 1 TP 
Override facility, to exceptionally access restricted data, when 
they have reason to do so. Naturally, all access and overrides 
will be logged, and subject to audit. 

The following TPs authorize this access: 
 
TP1  Permit_TP (N):   
{<UserRole, HCP>, 
  <LR, yes>,  
  <Op_id, R_A>, 
  <PO_Type, EHR>} 

 
TP2  Permit_TP(L1_Ovr):   
{<UserRole, HCP>, 
  <LR, yes>,  
  <Op_id, R_A>,  
  <PO_Type, EHR>} 
 
TP1 represents the granting of read and append access to 

EHR data for a clinician-user in the role of Healthcare 
Professional (“HCP”), under normal (“N”) processing where 
no override has been used. A Legitimate Relationship (“LR”) 
must exist, meaning that the patient is registered with the 
clinician, or has been referred to the clinician for treatment. 
TP2 permits access for any HCP to any EHR data if the user 
has exercised a Level 1 Override. 

The TPs which implement the consent directives given in 
section 3A, in the order in which they are expressed, are 

 
TP3  Deny_TP(L2):  
{<UserRole, HCP>,   
  <PO_Coll_id,  Alice_TerminationData >, 
  <PO_Type, EHR>} 

 
TP4  Permit_TP (N):  
{<User_id, Fred>,  
  <UserRole, GP>, 
  <Op_id, R_A>, 
  <PO_Coll_id,   Alice_TerminationData >, 
  <PO_Type, EHR>} 
 
TP5  Permit_TP (N):  
{<UserRole, GC>, 
  <Op_id, R_A>, 
  <PO_Coll_id,  Alice_TerminationData >, 
   <PO_Type, EHR>} 
 
TP6  Permit_TP (N): 
{<User_id, <Bill >, 
   <Op_id, R_A>, 
   <PO_Coll_id,  Alice_TerminationData >, 
   <PO_Type, EHR>}  
 
TP7  Deny_TP(L2):  
{<UserRole, HCP>,   
  <PO_Coll_id,  Alice_PsychiatryData >, 
  <PO_Type, EHR>} 
          
TP8  Permit_TP (N):  
{<User_id, Fred>,  
  <UserRole, GP>, 
  <Op_id, R_A>, 
 <PO_Coll_id,   Alice_PsychiatryData >,    
 <PO_Type, EHR>} 
 
TP9  Permit_TP (N): 
 {<User_id, < Bill, Bob> 
   <Op_id, R_A>, 
   <PO_Coll_id,  Alice_PsychiatryData >, 
   <PO_Type, EHR>}  
 
TP10  Permit_TP(N):   
{<User_Coll_id, TermTeam>, 
  <UserRole, Psychiatrist>, 
  <Op_id, R_A>, 
  <PO_Coll_id,   Alice_TerminationData >, 
  <PO_Type, EHR>} 
 
Deny TPs are negative permissions which prevent access. 

These can be very detailed, for specific users and data, TP3 
denies (at Level 2 – see section 5C) any kind of access to 
Alice’s termination data to HCPs. However if authorized by 
another TP, e.g. TP12 below, a transplant surgeon could use 
TP Override at Level 2 to cancel the effect of the deny 
permission TP3. 



We assume that HCPs are never granted a Level 2 
Override, which provides access to very sensitive data denied 
at Level 2. The permissions which generate the message to the 
transplant surgeon upon L1 Override, and which provide the 
L2 Override for the transaction scenario in section 3B, are 

 
TP11  Deny_TP (L1):  
{<UserRole, TransplantSurgeon>, 
  <LR, yes>,  
  <PO_Coll_id,   Alice_TerminationData > 
  <PO_Type, EHR>} 

 
TP12  Permit_TP(L2_Ovr): 
{<UserRole, TransplantSurgeon>, 
  <LR, yes>,  
  <Op_id, R_A>, 
  <PO_Coll_id,   Alice_TerminationData > 
  <PO_Type, EHR>} 
 
The message associated with the TP11 permission could 

only be sent to a Transplant Surgeon who has an established 
LR with the patient. Also the transplant surgeon could only 
access the data upon Level 2 Override if he possesses an LR. 

V. TCM2 OVERVIEW 
In this section we summarize further aspects of the TCM2 

authorization model. More detailed expositions can be found 
in [2] [7]. 

A. Classifiers 
The TCM2 model is based on the RBAC concepts of 

users, operations and protected objects [8]; however these 
concepts now have classifiers, as illustrated in the previous 
section. The simplest form of classifier corresponds to an 
attribute, as used in ABAC [5] [9]. User classifiers can take 
the role of parameters in parameterized RBAC; extended 
classifiers are defined for combinations of user, operation and 
protected object, and collection classifiers can be created to 
facilitate authorizations for collections of objects. Classifier 
values are structured into hierarchies, which can be 
represented as inverted trees, with less-specialized values 
placed nearer the root. Classifier values can be provided by 
several mechanisms (stored database values, generator 
programs, and external applications). A classifier ordering is 
determined by the security architect or analyst, to indicate 
importance for matching (ie deciding the authorization 
outcome). For example if the classifier User_id was deemed 
to be more important than UserRole when deciding 
authorization, then a permission with a User_id value match 
would be preferred to another permission (not containing the 
User_id value) which was matched by a UserRole value.  

The model also includes an override operation which 
allows a user to acquire a more specialized classifier value (if 
he was specifically authorized to use this type of override); 
e.g. a JuniorPsychiatrist might acquire the role (ie classifier 
value) of ConsultantPsychiatrist in an emergency situation. 

B. T Permissions 
Other TPs may be derived using the classifier value 

hierarchies for each classifier present in a TP. Ranges of 
classifier values can also be specified in TPs. 

TCM2 builds the permission, checks that it doesn’t repeat 
or conflict with existing permissions, and then generates an 
explanation of the permission for validation.) 

C. Deny levels 
Deny TPs are specified at increasing levels of power, 

called Deny Levels. A deny level contains deny permissions 
specified at lower deny levels. Therefore data could be denied 
to users who might be able to access it by Level 1 Override (if 
so authorized), whereas more sensitive data might be only 
available to more senior users who were authorized to 
override at Level 2. 

D. TP Sets 
TPs can be defined as having membership in separate, 

independent T Permission Sets, or TP Sets. TP Sets can be 
used separately to determine authorization, or combined.  

Representation of different levels of processing can be 
accomplished with TP Sets, e.g. government regulations 
(TPS1), consumer-specified directives (TPS2), and directives 
specified by proxies for consumers (TPS3). Therefore TPS1 
authorizations can be preferred to TPS2 authorizations, if this 
is what the security architect requires. 

In the examples above, access to health records is provided 
by one TP Set. 

VI. MATCHED PERMISSIONS SEQUENCES 

A. Overview 
A full formal specification of TCM2 has been developed 

using the B Method [10], and extracts from this specification 
are included in this section. Permissions processing depends 
on two main principles: TP Match, and Nearest Match, which 
we describe below.  

B.  TP Match 
Firstly, a T Permission will match (ie qualify to authorize 

a transaction) if all its classifier values are contained in the 
transaction. Additionally, a TP will match if one of its derived 
TPs matches.  

This can be expressed formally using B by the following 
definition: 

 
  TPPermitAccess (tp, acvals) ≙  
              bool (dom (acvals ⋂ ad [tp]) =dom (tp)) 
 
where acvals is the transaction active classifier values 

(classifier values specifying the transaction, example given in 
section 3B), and tp is a T Permission which permits access. 
The set ad[tp] contains the original ancestor classifier values 
as well as the set of all descendant classifier values. That is, 
access is granted if for every classifier in the domain of tp 
there exists at least one classifier value in common between 
the active classifier values acvals and the classifier values of 
tp and all their descendants.  Similarly for TPDenyAccess. 



C. Nearest Matched TP 
The second principle concerns determining which of two 

TPs (taken from a set of Matched TPs) is the stronger or nearer 
match to a transaction. This Nearest Match TP would then 
have a higher priority in determining the authorization 
outcome. 

A TP is a set of classifier values.  There is an ordering 
cfiersq on the classifiers that is set by the security architect 
and is a mapping of the set of integers 1,2,3,4....to the set of 
classifiers. 

 
cfiersq ∈iseq (cfiers) 

 
Given the ordering on the classifiers then for any set of 

classifier values cvs there exists a classifier for that set which 
is the most important classifier i.e. the lowest in the ordering. 

 
CFIERL (cvs) = cfiersq (min (cfiersq- 1[dom (cvs)]) 

 
There also exists an associated ordering number for that 

classifier and an associated value: 
 

               NCFIERL (cvs) = min (cfiersq- 1[dom (cvs)]) 
             VCFIERL (cvs) = cvs [CFIERL (cvs))] 

 
Therefore, given a set of matched TPs tps the (set of) 

nearest match(es) is given by 
 

NearestMatch(tps) ≙{nmtp | nmtp ∈ tps ⋀ 
  tp. (tp ∈ tps ⋀  
   ( 
     NCFIERL(nmtp - tp ⋂nmtp)  >   
     NCFIERL(tp - tp ⋂ nmtp)   
⋁ 
    VCFIERL(nmtp - tp ⋂ nmtp) ↦  
    VCFIERL(tp - tp ⋂ nmtp) ∈ ad) 
    )  
  } 

 
where ad is the ancestor/descendant relationship. 

D. Normal TP Processing Example 
The Initially-Matched set of TPs, and the Nearest Match 

TP sequence (following removal of all Override TPs) are: 
 

Initially-Matched TPs 
TP1 Permit_TP (N) 
TP2 Permit_TP (L1_Ovr) 
TP3  Deny_TP (L2) 
TP7 Deny_TP (L2) 
TP11   Deny_TP (L1) 
TP12 Permit_TP (L2_ovr) 

 
Nearest-Matched TPs (no overrides) 
TP1 Permit_TP (N) 1 
TP3  Deny_TP (L2) 2 
TP7 Deny_TP (L2) 3 
TP11 Deny_TP (L1) 4 

 
The match strength is indicated in ascending order, 

starting with the weakest (i.e. 1).  
Processing the Nearest-Match TP sequence authorizes the 

retrieval of all data except the Termination and Psychosis data. 
The strongest match, TP11, will exactly match the transaction, 
and will deny access to the Termination data for Transplant 
Surgeons; it will generate a message, though, just for 
TransplantSurgeons. TP7 and TP3 deny access to the 
Psychiatric and Termination data for all HCPs. TP1 permits 
access to all data except the Psychiatric and Termination data 
for all HCPs. 

E. Override TP Processing Examples 
Consider the transaction from section 3.B. The same 

initially-matched TPs are returned. However on applying 
Level 1 Override (L1_ovr) the sequence of Nearest-Matched 
TPs shown below is obtained: processing this sequence 
determines that access is again permitted to all data except the 
Termination and Psychosis data. 

If a TP Level 2 Override (L2_Ovr) is used, the indicated 
sequence is obtained: these TPs authorize access to the 
termination and unrestricted data, while still denying access to 
the psychosis data. 

 
Nearest Match TPs (L1_ovr) 
TP1     Permit_TP (N)               1 
TP2     Permit_TP (L1_Ovr)     2 
TP3     Deny_TP (L2)               3 
TP7     Deny_TP (L2)               4 
TP11   Deny_TP (L1)               5 

 
Nearest Match TPs (L2_ovr) 
TP1     Permit_TP (N)                1 
TP2     Permit_TP (L1_Ovr)      2 
TP3     Deny_TP (L2)                3 
TP7     Deny_TP (L2)                4 
TP12   Permit_TP (L2_Ovr)      5 

 

VII. SQL PERMISSIONS IMPLEMENTATION 

A. Overview 
Firstly, we note that there must be a mapping from the 

TCM2 conceptual model (protected objects, classifier value 
hierarchies) to the models implemented by the underlying 
storage systems. This can be straightforward for normalized 
relational models, less so for models not in BCNF. JSON 
documents can provide hierarchical structures if so designed, 
and indexing of documents and other structures can be used to 
retrieve permitted data. 

We now describe the central features of just one approach 
which generates and processes Nearest Match TP Sequences 
to provide access to authorized data. This approach uses SQL, 
and requires all the permissions which potentially apply to be 
presented in one relational table or materialized view. A 
sequence of Nearest Match permissions is derived by a single 
SQL query on this view. From this Nearest Match sequence, 
WHERE clause statements are constructed which are added to 



the user’s transaction, itself programmed using SQL. This is 
an application of the Query Modification technique pioneered 
by Stonebraker [11]. The examples which follow have been 
programmed in Transact SQL for Microsoft SQL Server 
2014.  

The full advantages of database technology for large-scale 
implementations are not addressed in detail here. One 
example would be the use of optimized, stored execution 
plans for known transactions, which would only need re-
building for TCM2 purposes if the Initially-Matched TP set 
for the transaction changed. 

B. The TP Relational Model 
Base tables, not described here, exist to hold data about 

Classifiers, ClassifierValues, and permissions, and have 
appropriate constraints, storage organizations and indexes. 
Whatever the underlying data model, a set of TPs can be 
represented as a single indexed view, which contains the 
columns 

 
TP_id:  TP identifier 
PorD:  indicates whether the permission, if matched, permits or 
            denies access 
L:         indicates which level access is granted or denied 
Ovr:     indicates an override permission (which must have a PorD 
             value of “permit”) 
  
and for each classifier value and classifier that can appear in a TP: 

Classifier id:       Classifier identifier 
Classifier_UserPrec       The security architect- 
                                       defined relative importance (see 
                                       sections 5A and 6C) 
ClassifierValue:          The actual Classifier Value 
PCVH          The position of the ClassifierValue 
                                        in the Classifier Value  
                                        Hierarchy (a higher position 
                                        indicates more specialised value,  
                                        see section 5A) 

 
 
If no ClassifierValue for that classifier exists in the TP, 

then a dummy ClassifierValue and a dummy PCVH value is 
entered in the table. The dummy data is chosen so as not to 
affect the outcome of the ORDER BY clause in the SQL query 
in section 7C. 

C. Determining the Nearest Match Sequence 
The following SQL expression will determine the Nearest 

Match Sequence for the transaction in section 3B: 
 
SELECT * FROM TP 
WHERE  
dbo.fnCvMatch('User_id','John', User_id) > 0 AND 
dbo.fnCvMatch('UserRole','TransplantSurgeon', UserRole) > 0 
AND 
dbo.fnCvMatch('Op_id', 'RA', Op_id) > 0 AND 
dbo.fnCvMatch('PO_Type', 'EHR', PO_Type) > 0  
ORDER BY User_id__PCVH desc,PO_id_PCVH desc,  
UserRole_PCVH  desc, PO_Type_PCVH, 
PO_ClinicianOfCare_PCVH desc, PO_Site_PCVH desc, 
PO_StartDate_PCVH desc, PO_EndDate_PCVH desc 
 

The function fnCvMatch (‘Classifier’,’ tran_tpcv’, tpcv) is 
present for every classifier value in the transaction acvals. It 
does the following: 

 
 Returns 0 if the tran_tpcv is a dummy value, meaning 

the tran_tpcv isn’t part of the tpcv 
ClassifierValueHierqachy being tested. 

 Returns 0 if tran_tpcv is not present in the tpcv 
ClassifierValueHierachy. 

 Returns an integer > 0 if the tran_tpcv is present in the 
tpcv ClassifierValueHierachy. 

 
There are versions of fnCvMatch defined for particular 

data types. Also this function can use a classifier value 
provided by external systems. It can be implemented 
efficiently in several ways, depending on the tables used to 
represent the ClassifierValueHierachy.  

The SELECT FROM WHERE clause directly implements 
the permissions matching described in section 6B. (Note that 
permissions review can be accomplished by modifying this 
part of the query – the ORDER BY clause is not required.) 

The ORDER BY clause contains PCVH data appearing in 
the order of importance of the corresponding classifier defined 
by the security architect. It directly implements the Nearest 
Match definition described in section 6C. 

D. The Health Events Data Model 
These examples are programmed for a single PO (ie 

protected object) table containing health events data for 
patients. This table design is based on a data model for a GP 
system.  Examples of health events, each represented by a 
single row, range from operations, prescriptions, to telephone 
communications. One column enables health events to be 
associated with a diagnoses of a particular condition, allowing 
e.g. a prescription to be associates with the condition of 
asthma.   

We note that this PO table would be suitable for Hadoop 
and NoSQL implementation. Very large volumes of data 
could be quickly loaded into these systems. If a JSON 
document structure is supported there is the potential for 
grouping all data relating to a sensitive condition, facilitating 
the processing of TCM2 classifier collections such as 
<PO_Coll_id,   Alice_TerminationData > from the scenario 
presented in sections 3 and 4. 

E.  Transaction query 
The transaction consists of John the Transplant Surgeon, 

querying Alice’s EHR to discover data about previous 
pregnancies. This data is denied to him by permission TP7 
from section 4, under normal processing. 

 
SELECT * FROM PO 
WHERE  
Patient_id = 2220 /*Alice*/ and [PO_Type] = 'EHR' 
 

F. Query with TMC2 controls 
The previous query has now been augmented with code 

derived from the Nearest Match TP sequence in section 6D. 
When regarded as a database query, this sequence describes 



all the user – operation – protected objects permitted by the 
transaction. When the augmented SQL is combined with the 
transaction SQL, there is very often huge scope for query 
optimization, as is illustrated in the example below. 

 
SELECT * FROM  PO 
WHERE  
Patient_id = 2220 AND PO_Type = 'EHR' 
AND 
(-- TP1 PO part 
 PO_Type = 'EHR') 
AND NOT  
  (-- TP3 PO part 
   PO_Type = 'EHR'   
      AND  
   PO_id IN  
 (SELECT PO_id FROM AliceTerminationData) 
   ) 
 AND NOT  
   (-- TP7  PO part 
     PO_Type = 'EHR' 
       AND  
     PO_id IN  
 (SELECT PO_id FROM AlicePsychiatricData) 
    ) 
 AND NOT  
    (-- TP11 PO part 
      PO_Type = 'EHR' 
        AND  
      PO_id IN  
 (SELECT PO_id FROM AliceTerminationData) 
     ) 
       
Expressed in SQL, rather than the internal data structures 

of the ABAC system, this query is optimized to: 
 
SELECT * FROM  PO 
WHERE  
Patient_id = 2220 AND PO_Type = 'EHR' 
AND PO_id NOT IN  
 (SELECT PO_id FROM AliceTerminationData) 
AND PO_id Not IN  
 (SELECT PO_id FROM AlicePsychiatricData) 

 
Similarly, the Level 2 Override permissions example 

would be optimized to: 
 
SELECT * FROM  PO 
WHERE  
Patient_id = 2220 AND PO_Type = 'EHR' 
AND PO_id NOT IN  
 (SELECT PO_id FROM AlicePsychiatricData) 
 

VIII. RELATED WORK (AUTHORISATION MODELS) 
TCM2 has a number of similarities with our previously 

published TCM work [12] [13], in which role is treated as an 
application concept, and similar overrides are proposed. Also, 
the previous TCM papers have described design and 
processing strategies for permission types, but not for 
dynamic authorization involving individual permissions, as 
has been presented in this chapter.  

In the original TCM, hierarchies of classifier collections 
formed the basis of permissions processing, and permissions 
design. Also inheritance of permissions within classifier 
collection hierarchies was specified using permission types. In 

this chapter, hierarchies of classifier values, with permissions 
inheritance always assumed, replaces classifier collection 
hierarchies. This is a major difference between TCM2 and the 
TCM. Also the TCM has no concept of permission-triggered 
messages. 

Relational database query modification was developed for 
the INGRES database system [11]. The basic idea is that a user 
interaction with the data base is modified to an alternate form 
in which the specification of authorization controls are 
included. This modification takes place in a high level 
interaction language. Hence, the processing of a resulting 
interaction can be accomplished with no further regard for 
protection. The sophistication of the underlying storage 
technology can be brought to bear to support enterprise 
applications. 

Regarding emergency access to data, the Break-Glass 
approach [14] provides emergency accounts giving access to 
normally restricted data. The difficulties of such an approach 
are discussed in [15], which integrates a Break Glass approach 
into access control software; emergency level access is 
supported. These emergency levels are similar to the ‘deny 
levels’ concept in our model. 

Investigations into Attribute Based Access Control, or 
ABAC, have been undertaken to address the inflexibility to 
change of RBAC models, and for use in distributed 
applications [5] [16] [17]. Access decisions are based on 
attributes that the user can be proved to have. In ABAC, 
different parties must reach trust agreements over attribute 
definitions, which can be more straightforward than agreeing 
consistent role definitions. ABAC provides good support for 
context, such as time of day. ABAC has been sometimes 
referred to as Policy Based Access Control or Claims Based 
Access Control. ABAC research, particularly focusing on 
attribute integrity and security, has been referred to as the 
‘grand challenge’, and the future direction of authorization 
model development [4]. Applications in messaging and 
cryptography are described in [18] [19], and consistency and 
fault detection in rule structures is reported in [16]. 

XACML is an extensively developed and implemented 
ABAC approach, for which the underlying model has 
similarities with TCM2. XACML subjects, actions, and 
resources (corresponding to TCM2 users, operations, and 
protected objects) have attributes, on which authorization 
decisions are made. A comprehensive architecture involving 
PDPs, PEPs is defined for this. There is provision for 
extensions to be written into an XACML application, which 
could be used in an implementation of our model. 

There are potential difficulties for permissions review/risk 
exposure for ABAC – potentially large numbers of rules, and 
their processing, must be considered. Huang, et al. [20] 
propose a combination of ABAC and RBAC, in which the 
permissions available to a user are the intersection of 
permissions provided by RBAC active roles and ABAC rules. 
Our model extends the ABAC approach in that classifiers 
(which can represent ABAC attributes) are defined for 
operations and protected objects, in addition to users. Note 
that there is no direct TCM2 equivalent to RBAC permissions, 
which are used in the presentation of ABAC models. 



RBAC models for role administration (ie for assigning 
roles to users) have been extensively researched, eg the 
ARBAC02 model [21]. The ARBAC02 model includes 
models of organization structures for user pools and 
permission pools which are independent from role hierarchies. 
These concepts could in principle be modeled in our model by 
classifiers, which are themselves independent. The 
development of a system for administration is beyond the 
scope of this paper, and is a topic for continuing research. 

Our model can straightforwardly support a central concept 
of usage control [22] [23] [24] in that mutable attributes can 
be modeled as classifiers, and can participate in permission 
types. The ‘Legitimate Relationship’ classifier featured in this 
paper is similar to a mutable attribute, and can determine and 
change access during a session. Also Legitimate Relationship 
shows how we can model a relationship between a user and a 
protected object. 

IX. CONCLUSIONS  
We have summarized an approach to controlling access to 

data held and maybe duplicated and summarized across 
relational database, Hadoop and NoSQL systems. The 
mechanism involves generating additions to user transactions 
expressed in high-level SQL-like languages, to ensure that 
only data satisfying restrictions can be retrieved and used. To 
the best of our knowledge this approach has not appeared 
before in literature connected with big data applications. We 
anticipate that a comprehensive ABAC framework for big 
data applications can be developed based upon the concepts 
presented in this paper.  

Several relational database demonstrators of our TCM2 
model have previously been implemented by ourselves and 
others, and the approaches to complex authorizations and 
override positively evaluated within healthcare information 
system projects, and research and commercial ventures.      
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