
Attribute Based Access Control for Big Data applications by Query Modification

Jim Longstaff
School of Computing
Teesside University

Middlesbrough, England
j.j.longstaff@tees.ac.uk

Joanne Noble
School of Computing
Teesside University

Middlesbrough, England
j.e.noble @tees.ac.uk

Abstract—we present concepts which can be used for the
efficient implementation of Attribute Based Access Control
(ABAC) in large applications using maybe several data storage
technologies, including Hadoop, NoSQL and relational database
systems. The ABAC authorization process takes place in two
main stages. Firstly a sequence of permissions is derived which
specifies permitted data to be retrieved for the user’s
transaction. Secondly, query modification is used to augment
the user’s transaction with code which implements the ABAC
controls. This requires the storage technologies to support a
high-level language such as SQL or similar. The modified user
transactions are then optimized and processed using the full
functionality of the underlying storage systems. We use an
extended ABAC model (TCM2) which handles negative
permissions and overrides in a single permissions processing
mechanism. We illustrate these concepts using a compelling
electronic health records scenario.

Keywords-Attribute Based Access Control, Identity and Access
Management, Enterprise Information Systems, Hadoop, NoSQL

I. INTRODUCTION
In this paper we introduce an extended model of Attribute

Based Access Control which we call the Tees Confidentiality
Model version 2 (TCM2) [1] [2]. We particularly focus on its
use in large applications which may include several storage
technologies, e.g. relational database, relational data
warehouse, Hadoop, and NoSQL. An electronic health
records (EHR) scenario, in which a patient wishes to restrict
access to sensitive data across all storage systems, is used for
illustration.

Firstly, we note that health data about individuals may be
stored for different purposes in different systems. Medical
data, appointments, and insurance data may be stored in
relational databases and relational data warehouses; medical
monitoring data and archived data may be stored in NoSQL
or Hadoop systems. An example of a Hadoop health data
application is described in [3].

Any of this data could potentially indicate the existence of
a condition or event that the patient wishes to restrict access
to. For example, an appointment at a particular clinic could
indicate a sensitive or embarrassing medical condition without
accessing medical records. A patient might require finely-
controlled access to such data, which might have

consequences if other family members or insurance
companies were to discover it. Such a situation is described in
the scenario in section 3 below.

Additionally, there may be circumstances where restricted
data must be accessed and communicated due to legal
requirements, e.g. for communicable diseases, or when data
about a third party who may be at risk is held. To enable this,
overriding restrictions for appropriate persons or authorities
must be provided, across all storage systems.

This paper offers a technical solution to these issues in the
form of modifying user transaction code to include Attribute
Based Access Control (ABAC) parts to implement patient
consent directives. For such controls to be relatively simply
generated, data access must be via a high level language, such
as SQL or similar. Many “SQL on Hadoop” and NoSQL
systems support such languages, making the use of such
controls a possibility. The sophisticated optimizations and
processing of the underlying systems can then come into play
to access the data the user is authorized to view and use.

An authorization system is said to implement a particular
authorization model. To-date, the most widely-used
authorization model has been Role Based Access Control, or
RBAC, which is used in operating systems, databases, access
control systems for specialized applications, and development
environments. Attribute Based Access Control or ABAC, is
generally seen as the way forward for authorization model
research, see e.g. [4]. The central idea of ABAC is that access
can be determined based on various attribute values presented
by a subject. Permissions (often called rules) specify
conditions under which access is granted or denied. A
comprehensive description of ABAC is given in [5], and
approaches for combining RBAC and ABAC are outlined in
[6].

This paper is structured as follows. Section 2 describes
how the techniques presented in this paper could be further
researched and developed to form the basis of a
comprehensive ABAC authorization framework for big data
applications. Section 3 presents a motivating example of a
healthcare records scenario that includes the specification of
consent directives and overrides; the value of supporting
overrides is particularly illustrated. Section 4 gives the TCM2
permissions to implement the consent directives. Following
this, a description of TCM2 model is given in section 5. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322321533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

key definitions for permissions processing are presented in
section 6, together with the permissions sequences for an
example user transaction. The SQL implementation of the
user transaction and TMC2 controls is given in section 7. A
comparison with other research is offered in section 8, after
which conclusions and references follow.

II. TOWARDS ABAC FOR BIG DATA

A. Models and Languages
The ABAC model, whether it is TCM2 as described in

section 5, or an alternative, should work with concepts which
are understandable by end-users, analysts and developers
alike. This should apply to the model elements (users,
protected objects, attributes), and application objects (well-
recognized real-world concepts such as patient, medication,
insurance claim, etc.). Applications design approaches e.g.
Entity Relationship analysis, relational database
normalization, object-oriented modelling, invariably produce
well-defined concepts.

The ABAC model must be capable of generating queries
in the high-level, usually SQL-like language supported by the
underlying storage systems, which might be relational
database, NoSQL, Hadoop or other big data systems. Many
systems support a variant of SQL. In particular there must be
a mapping from the ABAC Protected Objects to the data
stored in the underlying systems, which is presented and
accessed using the SQL variant.

B. ABAC Permissions design
Permissions are developed and maintained throughout an

application’s lifecycle by security architects. Permissions
specification necessarily follows the development of the
application model. User stories and Use Case models indicate
typical users. Class Diagrams or Entity Relationship
Diagrams indicate Protected Objects. ABAC permissions can
be developed and tested alongside application functionality.
Provision should also be made for dynamic authorization,
where a new permission can be added to a mostly stable base
permissions base as the need arises (e.g. to grant or deny
access to a particular employee).

C. Implementation
The ABAC permissions must be capable of generating

queries to stored data in the high-level, usually SQL-like
languages supported by the underlying storage systems.
Examples of systems include Apache Hive, Drill, Spark SQL,
Impala, and IBM Big Data. Similarly NoSQL systems such as
Vertica, MongoDB, CouchDB and Cassandra, also support
SQL-like languages for both tabular and JSON
representations of data

The storage systems will therefore support an SQL-like
schema for stored objects which may be in the form of
relational tables, JSON documents. Each storage model has its
advantages and disadvantages. Normalized relational tables
will usually contain exactly the data specified in a user query,
but might require joins to produce it. JSON documents might
contain much more data than is requested, some of it denied
by ABAC permissions. This would require complex filtering

to produce and make available the permitted data in the
retrieved documents.

III. HEALTHCARE SCENARIOS

A. Summary
This scenario was suggested by a Consultant Transplant

Surgeon during the design and development of an Electronic
Health Records (EHR) system. The “consent directives”
indicate privacy concerns that have been expressed by patients
in the past.
The scenario concerns a fictitious patient, Alice, and her GP,
Fred. Alice is 50; the major events in Alice’s medical history
are:

 She had a pregnancy termination when she was 16
 Was diagnosed diabetic at 25
 End Stage renal failure when she was 45
 Renal transplant at 48
 Acutely psychotic at 49
 Crush fracture of T12 aged 50

Let us now suppose, not unreasonably, that Alice

expresses the desire to place the following consent directives
on the availability of her EHR data about two of these
conditions:

1. My GP (Fred) can see all my data
2. Nobody must know about my termination except my

GP, any Gynaecological Consultant, and the
Consultant Renal Transplant Surgeon (Bill) who
operated on me.

3. My GP, Consultant Renal Transplant Surgeon (Bill)
and Consultant Orthopaedic Surgeon (Bob) can see
my psychosis data, but no-one else.

To show the power of our ABAC model, consider the

following contrived requirement (but still one which an EHR
authorization system should be capable of handling):

4. I do not wish the members of the hospital team who

carried out my termination operation to be ever able
to see my psychosis data, except if they are viewing
in a psychiatric role. (This directive to be in force
throughout the careers of those professionals
concerned).

We must add to these directives that they must be capable

of being overridden in carefully controlled and audited ways.
An example of overriding follows.

B. Transaction Example
Consider the following transaction which requires access

to restricted data, and illustrates the need for an override
capability. The clinician user is a transplant surgeon, querying
Alice’s medical data.

Alice has been scheduled for a transplant (one of the major
events listed). Tests lead the surgeon to suspect a previous
pregnancy (if the tissue type of the father is similar to the graft

a very serious rejection may ensue), but the EHR termination
data is denied to him. Alice refuses to confirm a previous
pregnancy to the surgeon.

The transplant surgeon elects to override, to attempt to
discover information about previous pregnancies. He first
uses a Level 1 TP Override (described in section 5C) which is
available to all healthcare professionals. This does not yield
any data, because a Level 2 deny permission has been placed
on the termination data. However a message is displayed, just
for a user in the transplant surgeon role, saying that he can and
should use a Level 2 TP Override. He does this, and discovers
the termination data he needs. This allows for a specific form
of treatment to be planned.

IV. SCENARIO PERMISSIONS REPRESENTATION
As an introduction to our TCM2 model we now give

examples of permissions for the scenario. We call our
permissions T Permissions, or TPs, to distinguish them from
RBAC permissions, and other ABAC rule formulations. TPs
consist of sets of classifier values; an example of a classifier
value is <UserRole, Psychiatrist>. Classifier values can
represent information other than attribute values, as is
explained in section 5 below.

The permissions below are written using an informal
notation which represents the data structures used for
implementing TCM2.

Firstly, the EHR data for any patient is normally made
available to

a) Healthcare professionals (HCPs) such as clinicians,
doctors, and administrators who have a Legitimate
Relationship (LR) with the patient. This means that the patient
is registered with or has been referred to them.

b) Additionally, all HCPs can exercise a Level 1 TP
Override facility, to exceptionally access restricted data, when
they have reason to do so. Naturally, all access and overrides
will be logged, and subject to audit.

The following TPs authorize this access:

TP1 Permit_TP (N):
{<UserRole, HCP>,
 <LR, yes>,
 <Op_id, R_A>,
 <PO_Type, EHR>}

TP2 Permit_TP(L1_Ovr):
{<UserRole, HCP>,
 <LR, yes>,
 <Op_id, R_A>,
 <PO_Type, EHR>}

TP1 represents the granting of read and append access to

EHR data for a clinician-user in the role of Healthcare
Professional (“HCP”), under normal (“N”) processing where
no override has been used. A Legitimate Relationship (“LR”)
must exist, meaning that the patient is registered with the
clinician, or has been referred to the clinician for treatment.
TP2 permits access for any HCP to any EHR data if the user
has exercised a Level 1 Override.

The TPs which implement the consent directives given in
section 3A, in the order in which they are expressed, are

TP3 Deny_TP(L2):
{<UserRole, HCP>,
 <PO_Coll_id, Alice_TerminationData >,
 <PO_Type, EHR>}

TP4 Permit_TP (N):
{<User_id, Fred>,
 <UserRole, GP>,
 <Op_id, R_A>,
 <PO_Coll_id, Alice_TerminationData >,
 <PO_Type, EHR>}

TP5 Permit_TP (N):
{<UserRole, GC>,
 <Op_id, R_A>,
 <PO_Coll_id, Alice_TerminationData >,
 <PO_Type, EHR>}

TP6 Permit_TP (N):
{<User_id, <Bill >,
 <Op_id, R_A>,
 <PO_Coll_id, Alice_TerminationData >,
 <PO_Type, EHR>}

TP7 Deny_TP(L2):
{<UserRole, HCP>,
 <PO_Coll_id, Alice_PsychiatryData >,
 <PO_Type, EHR>}

TP8 Permit_TP (N):
{<User_id, Fred>,
 <UserRole, GP>,
 <Op_id, R_A>,
 <PO_Coll_id, Alice_PsychiatryData >,
 <PO_Type, EHR>}

TP9 Permit_TP (N):
 {<User_id, < Bill, Bob>
 <Op_id, R_A>,
 <PO_Coll_id, Alice_PsychiatryData >,
 <PO_Type, EHR>}

TP10 Permit_TP(N):
{<User_Coll_id, TermTeam>,
 <UserRole, Psychiatrist>,
 <Op_id, R_A>,
 <PO_Coll_id, Alice_TerminationData >,
 <PO_Type, EHR>}

Deny TPs are negative permissions which prevent access.

These can be very detailed, for specific users and data, TP3
denies (at Level 2 – see section 5C) any kind of access to
Alice’s termination data to HCPs. However if authorized by
another TP, e.g. TP12 below, a transplant surgeon could use
TP Override at Level 2 to cancel the effect of the deny
permission TP3.

We assume that HCPs are never granted a Level 2
Override, which provides access to very sensitive data denied
at Level 2. The permissions which generate the message to the
transplant surgeon upon L1 Override, and which provide the
L2 Override for the transaction scenario in section 3B, are

TP11 Deny_TP (L1):
{<UserRole, TransplantSurgeon>,
 <LR, yes>,
 <PO_Coll_id, Alice_TerminationData >
 <PO_Type, EHR>}

TP12 Permit_TP(L2_Ovr):
{<UserRole, TransplantSurgeon>,
 <LR, yes>,
 <Op_id, R_A>,
 <PO_Coll_id, Alice_TerminationData >
 <PO_Type, EHR>}

The message associated with the TP11 permission could

only be sent to a Transplant Surgeon who has an established
LR with the patient. Also the transplant surgeon could only
access the data upon Level 2 Override if he possesses an LR.

V. TCM2 OVERVIEW
In this section we summarize further aspects of the TCM2

authorization model. More detailed expositions can be found
in [2] [7].

A. Classifiers
The TCM2 model is based on the RBAC concepts of

users, operations and protected objects [8]; however these
concepts now have classifiers, as illustrated in the previous
section. The simplest form of classifier corresponds to an
attribute, as used in ABAC [5] [9]. User classifiers can take
the role of parameters in parameterized RBAC; extended
classifiers are defined for combinations of user, operation and
protected object, and collection classifiers can be created to
facilitate authorizations for collections of objects. Classifier
values are structured into hierarchies, which can be
represented as inverted trees, with less-specialized values
placed nearer the root. Classifier values can be provided by
several mechanisms (stored database values, generator
programs, and external applications). A classifier ordering is
determined by the security architect or analyst, to indicate
importance for matching (ie deciding the authorization
outcome). For example if the classifier User_id was deemed
to be more important than UserRole when deciding
authorization, then a permission with a User_id value match
would be preferred to another permission (not containing the
User_id value) which was matched by a UserRole value.

The model also includes an override operation which
allows a user to acquire a more specialized classifier value (if
he was specifically authorized to use this type of override);
e.g. a JuniorPsychiatrist might acquire the role (ie classifier
value) of ConsultantPsychiatrist in an emergency situation.

B. T Permissions
Other TPs may be derived using the classifier value

hierarchies for each classifier present in a TP. Ranges of
classifier values can also be specified in TPs.

TCM2 builds the permission, checks that it doesn’t repeat
or conflict with existing permissions, and then generates an
explanation of the permission for validation.)

C. Deny levels
Deny TPs are specified at increasing levels of power,

called Deny Levels. A deny level contains deny permissions
specified at lower deny levels. Therefore data could be denied
to users who might be able to access it by Level 1 Override (if
so authorized), whereas more sensitive data might be only
available to more senior users who were authorized to
override at Level 2.

D. TP Sets
TPs can be defined as having membership in separate,

independent T Permission Sets, or TP Sets. TP Sets can be
used separately to determine authorization, or combined.

Representation of different levels of processing can be
accomplished with TP Sets, e.g. government regulations
(TPS1), consumer-specified directives (TPS2), and directives
specified by proxies for consumers (TPS3). Therefore TPS1
authorizations can be preferred to TPS2 authorizations, if this
is what the security architect requires.

In the examples above, access to health records is provided
by one TP Set.

VI. MATCHED PERMISSIONS SEQUENCES

A. Overview
A full formal specification of TCM2 has been developed

using the B Method [10], and extracts from this specification
are included in this section. Permissions processing depends
on two main principles: TP Match, and Nearest Match, which
we describe below.

B. TP Match
Firstly, a T Permission will match (ie qualify to authorize

a transaction) if all its classifier values are contained in the
transaction. Additionally, a TP will match if one of its derived
TPs matches.

This can be expressed formally using B by the following
definition:

 TPPermitAccess (tp, acvals) ≙
 bool (dom (acvals ⋂ ad [tp]) =dom (tp))

where acvals is the transaction active classifier values

(classifier values specifying the transaction, example given in
section 3B), and tp is a T Permission which permits access.
The set ad[tp] contains the original ancestor classifier values
as well as the set of all descendant classifier values. That is,
access is granted if for every classifier in the domain of tp
there exists at least one classifier value in common between
the active classifier values acvals and the classifier values of
tp and all their descendants. Similarly for TPDenyAccess.

C. Nearest Matched TP
The second principle concerns determining which of two

TPs (taken from a set of Matched TPs) is the stronger or nearer
match to a transaction. This Nearest Match TP would then
have a higher priority in determining the authorization
outcome.

A TP is a set of classifier values. There is an ordering
cfiersq on the classifiers that is set by the security architect
and is a mapping of the set of integers 1,2,3,4....to the set of
classifiers.

cfiersq ∈iseq (cfiers)

Given the ordering on the classifiers then for any set of

classifier values cvs there exists a classifier for that set which
is the most important classifier i.e. the lowest in the ordering.

CFIERL (cvs) = cfiersq (min (cfiersq- 1[dom (cvs)])

There also exists an associated ordering number for that

classifier and an associated value:

 NCFIERL (cvs) = min (cfiersq- 1[dom (cvs)])
 VCFIERL (cvs) = cvs [CFIERL (cvs))]

Therefore, given a set of matched TPs tps the (set of)

nearest match(es) is given by

NearestMatch(tps) ≙{nmtp | nmtp ∈ tps ⋀
 tp. (tp ∈ tps ⋀
 (
 NCFIERL(nmtp - tp ⋂nmtp) >
 NCFIERL(tp - tp ⋂ nmtp)
⋁
 VCFIERL(nmtp - tp ⋂ nmtp) ↦
 VCFIERL(tp - tp ⋂ nmtp) ∈ ad)
)
 }

where ad is the ancestor/descendant relationship.

D. Normal TP Processing Example
The Initially-Matched set of TPs, and the Nearest Match

TP sequence (following removal of all Override TPs) are:

Initially-Matched TPs
TP1 Permit_TP (N)
TP2 Permit_TP (L1_Ovr)
TP3 Deny_TP (L2)
TP7 Deny_TP (L2)
TP11 Deny_TP (L1)
TP12 Permit_TP (L2_ovr)

Nearest-Matched TPs (no overrides)
TP1 Permit_TP (N) 1
TP3 Deny_TP (L2) 2
TP7 Deny_TP (L2) 3
TP11 Deny_TP (L1) 4

The match strength is indicated in ascending order,

starting with the weakest (i.e. 1).
Processing the Nearest-Match TP sequence authorizes the

retrieval of all data except the Termination and Psychosis data.
The strongest match, TP11, will exactly match the transaction,
and will deny access to the Termination data for Transplant
Surgeons; it will generate a message, though, just for
TransplantSurgeons. TP7 and TP3 deny access to the
Psychiatric and Termination data for all HCPs. TP1 permits
access to all data except the Psychiatric and Termination data
for all HCPs.

E. Override TP Processing Examples
Consider the transaction from section 3.B. The same

initially-matched TPs are returned. However on applying
Level 1 Override (L1_ovr) the sequence of Nearest-Matched
TPs shown below is obtained: processing this sequence
determines that access is again permitted to all data except the
Termination and Psychosis data.

If a TP Level 2 Override (L2_Ovr) is used, the indicated
sequence is obtained: these TPs authorize access to the
termination and unrestricted data, while still denying access to
the psychosis data.

Nearest Match TPs (L1_ovr)
TP1 Permit_TP (N) 1
TP2 Permit_TP (L1_Ovr) 2
TP3 Deny_TP (L2) 3
TP7 Deny_TP (L2) 4
TP11 Deny_TP (L1) 5

Nearest Match TPs (L2_ovr)
TP1 Permit_TP (N) 1
TP2 Permit_TP (L1_Ovr) 2
TP3 Deny_TP (L2) 3
TP7 Deny_TP (L2) 4
TP12 Permit_TP (L2_Ovr) 5

VII. SQL PERMISSIONS IMPLEMENTATION

A. Overview
Firstly, we note that there must be a mapping from the

TCM2 conceptual model (protected objects, classifier value
hierarchies) to the models implemented by the underlying
storage systems. This can be straightforward for normalized
relational models, less so for models not in BCNF. JSON
documents can provide hierarchical structures if so designed,
and indexing of documents and other structures can be used to
retrieve permitted data.

We now describe the central features of just one approach
which generates and processes Nearest Match TP Sequences
to provide access to authorized data. This approach uses SQL,
and requires all the permissions which potentially apply to be
presented in one relational table or materialized view. A
sequence of Nearest Match permissions is derived by a single
SQL query on this view. From this Nearest Match sequence,
WHERE clause statements are constructed which are added to

the user’s transaction, itself programmed using SQL. This is
an application of the Query Modification technique pioneered
by Stonebraker [11]. The examples which follow have been
programmed in Transact SQL for Microsoft SQL Server
2014.

The full advantages of database technology for large-scale
implementations are not addressed in detail here. One
example would be the use of optimized, stored execution
plans for known transactions, which would only need re-
building for TCM2 purposes if the Initially-Matched TP set
for the transaction changed.

B. The TP Relational Model
Base tables, not described here, exist to hold data about

Classifiers, ClassifierValues, and permissions, and have
appropriate constraints, storage organizations and indexes.
Whatever the underlying data model, a set of TPs can be
represented as a single indexed view, which contains the
columns

TP_id: TP identifier
PorD: indicates whether the permission, if matched, permits or
 denies access
L: indicates which level access is granted or denied
Ovr: indicates an override permission (which must have a PorD
 value of “permit”)

and for each classifier value and classifier that can appear in a TP:

Classifier id: Classifier identifier
Classifier_UserPrec The security architect-
 defined relative importance (see
 sections 5A and 6C)
ClassifierValue: The actual Classifier Value
PCVH The position of the ClassifierValue
 in the Classifier Value
 Hierarchy (a higher position
 indicates more specialised value,
 see section 5A)

If no ClassifierValue for that classifier exists in the TP,

then a dummy ClassifierValue and a dummy PCVH value is
entered in the table. The dummy data is chosen so as not to
affect the outcome of the ORDER BY clause in the SQL query
in section 7C.

C. Determining the Nearest Match Sequence
The following SQL expression will determine the Nearest

Match Sequence for the transaction in section 3B:

SELECT * FROM TP
WHERE
dbo.fnCvMatch('User_id','John', User_id) > 0 AND
dbo.fnCvMatch('UserRole','TransplantSurgeon', UserRole) > 0
AND
dbo.fnCvMatch('Op_id', 'RA', Op_id) > 0 AND
dbo.fnCvMatch('PO_Type', 'EHR', PO_Type) > 0
ORDER BY User_id__PCVH desc,PO_id_PCVH desc,
UserRole_PCVH desc, PO_Type_PCVH,
PO_ClinicianOfCare_PCVH desc, PO_Site_PCVH desc,
PO_StartDate_PCVH desc, PO_EndDate_PCVH desc

The function fnCvMatch (‘Classifier’,’ tran_tpcv’, tpcv) is
present for every classifier value in the transaction acvals. It
does the following:

 Returns 0 if the tran_tpcv is a dummy value, meaning

the tran_tpcv isn’t part of the tpcv
ClassifierValueHierqachy being tested.

 Returns 0 if tran_tpcv is not present in the tpcv
ClassifierValueHierachy.

 Returns an integer > 0 if the tran_tpcv is present in the
tpcv ClassifierValueHierachy.

There are versions of fnCvMatch defined for particular

data types. Also this function can use a classifier value
provided by external systems. It can be implemented
efficiently in several ways, depending on the tables used to
represent the ClassifierValueHierachy.

The SELECT FROM WHERE clause directly implements
the permissions matching described in section 6B. (Note that
permissions review can be accomplished by modifying this
part of the query – the ORDER BY clause is not required.)

The ORDER BY clause contains PCVH data appearing in
the order of importance of the corresponding classifier defined
by the security architect. It directly implements the Nearest
Match definition described in section 6C.

D. The Health Events Data Model
These examples are programmed for a single PO (ie

protected object) table containing health events data for
patients. This table design is based on a data model for a GP
system. Examples of health events, each represented by a
single row, range from operations, prescriptions, to telephone
communications. One column enables health events to be
associated with a diagnoses of a particular condition, allowing
e.g. a prescription to be associates with the condition of
asthma.

We note that this PO table would be suitable for Hadoop
and NoSQL implementation. Very large volumes of data
could be quickly loaded into these systems. If a JSON
document structure is supported there is the potential for
grouping all data relating to a sensitive condition, facilitating
the processing of TCM2 classifier collections such as
<PO_Coll_id, Alice_TerminationData > from the scenario
presented in sections 3 and 4.

E. Transaction query
The transaction consists of John the Transplant Surgeon,

querying Alice’s EHR to discover data about previous
pregnancies. This data is denied to him by permission TP7
from section 4, under normal processing.

SELECT * FROM PO
WHERE
Patient_id = 2220 /*Alice*/ and [PO_Type] = 'EHR'

F. Query with TMC2 controls
The previous query has now been augmented with code

derived from the Nearest Match TP sequence in section 6D.
When regarded as a database query, this sequence describes

all the user – operation – protected objects permitted by the
transaction. When the augmented SQL is combined with the
transaction SQL, there is very often huge scope for query
optimization, as is illustrated in the example below.

SELECT * FROM PO
WHERE
Patient_id = 2220 AND PO_Type = 'EHR'
AND
(-- TP1 PO part
 PO_Type = 'EHR')
AND NOT
 (-- TP3 PO part
 PO_Type = 'EHR'
 AND
 PO_id IN
 (SELECT PO_id FROM AliceTerminationData)
)
 AND NOT
 (-- TP7 PO part
 PO_Type = 'EHR'
 AND
 PO_id IN
 (SELECT PO_id FROM AlicePsychiatricData)
)
 AND NOT
 (-- TP11 PO part
 PO_Type = 'EHR'
 AND
 PO_id IN
 (SELECT PO_id FROM AliceTerminationData)
)

Expressed in SQL, rather than the internal data structures

of the ABAC system, this query is optimized to:

SELECT * FROM PO
WHERE
Patient_id = 2220 AND PO_Type = 'EHR'
AND PO_id NOT IN
 (SELECT PO_id FROM AliceTerminationData)
AND PO_id Not IN
 (SELECT PO_id FROM AlicePsychiatricData)

Similarly, the Level 2 Override permissions example

would be optimized to:

SELECT * FROM PO
WHERE
Patient_id = 2220 AND PO_Type = 'EHR'
AND PO_id NOT IN
 (SELECT PO_id FROM AlicePsychiatricData)

VIII. RELATED WORK (AUTHORISATION MODELS)
TCM2 has a number of similarities with our previously

published TCM work [12] [13], in which role is treated as an
application concept, and similar overrides are proposed. Also,
the previous TCM papers have described design and
processing strategies for permission types, but not for
dynamic authorization involving individual permissions, as
has been presented in this chapter.

In the original TCM, hierarchies of classifier collections
formed the basis of permissions processing, and permissions
design. Also inheritance of permissions within classifier
collection hierarchies was specified using permission types. In

this chapter, hierarchies of classifier values, with permissions
inheritance always assumed, replaces classifier collection
hierarchies. This is a major difference between TCM2 and the
TCM. Also the TCM has no concept of permission-triggered
messages.

Relational database query modification was developed for
the INGRES database system [11]. The basic idea is that a user
interaction with the data base is modified to an alternate form
in which the specification of authorization controls are
included. This modification takes place in a high level
interaction language. Hence, the processing of a resulting
interaction can be accomplished with no further regard for
protection. The sophistication of the underlying storage
technology can be brought to bear to support enterprise
applications.

Regarding emergency access to data, the Break-Glass
approach [14] provides emergency accounts giving access to
normally restricted data. The difficulties of such an approach
are discussed in [15], which integrates a Break Glass approach
into access control software; emergency level access is
supported. These emergency levels are similar to the ‘deny
levels’ concept in our model.

Investigations into Attribute Based Access Control, or
ABAC, have been undertaken to address the inflexibility to
change of RBAC models, and for use in distributed
applications [5] [16] [17]. Access decisions are based on
attributes that the user can be proved to have. In ABAC,
different parties must reach trust agreements over attribute
definitions, which can be more straightforward than agreeing
consistent role definitions. ABAC provides good support for
context, such as time of day. ABAC has been sometimes
referred to as Policy Based Access Control or Claims Based
Access Control. ABAC research, particularly focusing on
attribute integrity and security, has been referred to as the
‘grand challenge’, and the future direction of authorization
model development [4]. Applications in messaging and
cryptography are described in [18] [19], and consistency and
fault detection in rule structures is reported in [16].

XACML is an extensively developed and implemented
ABAC approach, for which the underlying model has
similarities with TCM2. XACML subjects, actions, and
resources (corresponding to TCM2 users, operations, and
protected objects) have attributes, on which authorization
decisions are made. A comprehensive architecture involving
PDPs, PEPs is defined for this. There is provision for
extensions to be written into an XACML application, which
could be used in an implementation of our model.

There are potential difficulties for permissions review/risk
exposure for ABAC – potentially large numbers of rules, and
their processing, must be considered. Huang, et al. [20]
propose a combination of ABAC and RBAC, in which the
permissions available to a user are the intersection of
permissions provided by RBAC active roles and ABAC rules.
Our model extends the ABAC approach in that classifiers
(which can represent ABAC attributes) are defined for
operations and protected objects, in addition to users. Note
that there is no direct TCM2 equivalent to RBAC permissions,
which are used in the presentation of ABAC models.

RBAC models for role administration (ie for assigning
roles to users) have been extensively researched, eg the
ARBAC02 model [21]. The ARBAC02 model includes
models of organization structures for user pools and
permission pools which are independent from role hierarchies.
These concepts could in principle be modeled in our model by
classifiers, which are themselves independent. The
development of a system for administration is beyond the
scope of this paper, and is a topic for continuing research.

Our model can straightforwardly support a central concept
of usage control [22] [23] [24] in that mutable attributes can
be modeled as classifiers, and can participate in permission
types. The ‘Legitimate Relationship’ classifier featured in this
paper is similar to a mutable attribute, and can determine and
change access during a session. Also Legitimate Relationship
shows how we can model a relationship between a user and a
protected object.

IX. CONCLUSIONS
We have summarized an approach to controlling access to

data held and maybe duplicated and summarized across
relational database, Hadoop and NoSQL systems. The
mechanism involves generating additions to user transactions
expressed in high-level SQL-like languages, to ensure that
only data satisfying restrictions can be retrieved and used. To
the best of our knowledge this approach has not appeared
before in literature connected with big data applications. We
anticipate that a comprehensive ABAC framework for big
data applications can be developed based upon the concepts
presented in this paper.

Several relational database demonstrators of our TCM2
model have previously been implemented by ourselves and
others, and the approaches to complex authorizations and
override positively evaluated within healthcare information
system projects, and research and commercial ventures.

ACKNOWLEDGMENT
The authors wish to thank Tony Howitt, Professor Mike

Lockyer, Professor Michael Thick and Steve Dunne for advice
and contributions. This work was supported in part by grants
and contracts from the England National Programme for IT
(part of the England National Health Service), particularly as
part of the ERDIP and HRI Programmes (2000-2006).

REFERENCES

[1] J. Longstaff, "Extending Attribute Based Access Control to Facilitate
Trust in eHealth and Other Applications," in Cyber Security and
Privacy, Springer. http://link.springer.com/book/10.1007/978-3-642-
41205-9 , 2013, pp. 127-137.

[2] J. Longstaff and A. Howitt, "TCM2: Supporting dynamic
authorization and overrides in Attribute Based Access Control," in
Case Studies in Secure Computing: Achievements and Trends, B.
Issac and N. Israr, Eds., Auerbach Publications, Taylor and Francis.
ISBN 9781482207064, 2014.

[3] D. A. Teich and J. Vaughan, "SQL, Hadoop Make a Powerful Data
Pair," TechTarget, Newton, MA, 2015.

[4] R. Sandhu, "The Authorization Leap from Rights to Attributes:
Maturation or Chaos?," in SACMAT’12, June 20–22, 2012, Newark,
New Jersey., 2012.

[5] Hu, Vincent C, "Guide to Attribute Based Access Control (ABAC)
Definition and Considerations (Draft)," NIST, 2014.

[6] E. J. Coyne and T. R. Weil, "ABAC and RBAC: Scalable, Flexible,
and Auditable Acces Management," IEEE IT Professional 1520-
9202/13, June 2013.

[7] A. Howitt, "Formal Specification of the Tees Confidentiality Model,"
PhD thesis, Teesside University, 2008.

[8] ANSI, "Role Based Access Control, ANSI INCITS 359-2012," ANSI,
2012.

[9] D. R. Kuhn, E. J. Coyne and T. R. Weil, "Adding Attributes to Role-
Based Access Control," Computer, vol. 43 no. 6, IEEE., 2010.

[10] "B-Method," Available from www.methode-b.com, 2013.
[11] M. Stonebraker and E. Wong, "Access Control in a Relational

Database management System by Query Modification," in ACM 74
Annual Conference, 1974.

[12] J. J. Longstaff, M. A. Lockyer and A. Howitt, "Functionality and
implementation issues for complex authorization models," Special
issue (on Role Based Access Control) of the IEE Proceedings,
Software, Vol 153, No 1. ISSN 1462-5970, 2006.

[13] J. J. Longstaff, M. A. Lockyer and J. Nicholas, "The Tees
Confidentiality Model an authorization model for identities and roles,"
in Eighth ACM Symposium on Access Control Models and
Technologies, 2003.

[14] BREAK-GLASS (SPC), "Break-glass:An approach to granting
emergency access to healthcare systems," BreakWhite paper, joint
NEMA/COCIR/JIRA Security and Privacy Committee, 2004.

[15] A. D. Brucker and H. Petritsch, "Extending Access Control Models
with Break-glass," in ACM Symposium on Access Control Models and
Technologies, 2009.

[16] D. R. Kuhn, "Vulnerability Hierarchies in Access Control
Configurations," in 4th Symposium on Configuration Analytics and
Automation, 2011.

[17] M. Blaze, J. Feigenbaum and J. Ioannidis, "The KeyNote Trust
Management System Version 2," IETF RFC 2704,
http://www1.cs.columbia.edu/~angelos/Papers/rfc2704.txt, 1999.

[18] J. e. a. Li, "Attribute-based Signature and its Applications," in
ASIACCS’10, 2010.

[19] S. e. a. Yu, "Attribute Based Data Sharing with Attribute Revocation,"
in ASIACCS’10, 2010.

[20] J. Huang, D. M. Nicol, R. Bobba and J. H. Huh, "A Framework
Integrating Attribute-based Policies into Role-Based Access Control,"
in SACMAT'12, 2012.

[21] S. Oh, R. Sandhu and X. and Zhang, "An Effective Role
Administration Model Using Organization Structure," ACM
Transactions on Information and System Security, 9, 2., 2006.

[22] J. Park and R. Sandhu, "The UCONABC Usage Control Model," ACM
Transactions on Information and System Security, 7,1., 2004.

[23] X. Zhang, F. Parisi-Presicce, R. Sandhu and J. Park, "Formal Model
and Policy Specification of Usage Control," ACM Transactions on
Information and System Security, 8, 4., 2005.

[24] H. Janicke, A. Cau and H. Zedan, "A note on the formalization of
UCON," in ACM Symposium on Access Control Models and
Technologies., 2007.

