
Symbolic Pattern Matching in Clojure
S.C.Lynch

Teesside University
Middlesbrough
UK, TS1 3BA

(+44) 1642 218121
s.c.lynch@tees.ac.uk

ABSTRACT
This paper presents a symbolic pattern matcher developed for
Clojure. The matcher provides new types of function definition,
new conditional forms and new iterative structures. We argue that
pattern matching and unification differ in significant ways that
give them different semantics, both useful, and show that matcher
capability is enhanced by allowing patterns to be dynamically
created or embedded in data structures like rules and state-
changing operators. We evaluate the matcher by experimentation,
demonstrating that it can be used to simplify the specification of
inference mechanisms as well as other types of code.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – control structures, patterns.

General Terms
Design, Experimentation, Languages.

Keywords
Clojure, Pattern Matching, Rules, Inference.

1. BACKGROUND
We can consider four different types of matching:

 regular expression matching
 structural matching
 matching against types
 symbolic pattern matching

Regular expression matching operates at the level of strings and
characters within strings and is a facility provided by most
modern programming languages. Structural matching, offered by
many languages (including Prolog, Haskell and Clojure), allow
variables to be bound to data based on structural correspondence.
In Clojure for example the variables X, Y and Z would be bound
to 1, 2 and 3 respectively by the let expression:

 (let [[[X Y] Z] [[1 2] 3]] …)

Structural matching is a feature of many of the more recent
functional languages. Matching against types is also offered by
some languages (Scala for example) where matching specifies
type information and only succeeds if types correspond.

Symbolic pattern matching operates at the level of symbols and
the (nested) structures within which they are contained. A
distinction we make here is that symbolic matching permits literal
values to be specified in patterns as well as variables. This allows
patterns to specialise on data according to both its shape and its

contents. The following patterns, for example, each bind variables
X and Y but match against tuples describing different relations:

 (on X Y) ;; X is on top of Y

 (next-to X Y) ;; X is next to Y

 (holds X Y) ;; X is holding Y

Despite its long history, few programming languages provide
symbolic pattern matching. In the early years of Artificial
Intelligence, many systems, built in various dialects of Lisp, often
used some form of symbolic matching. Typically this was built on
an ad hoc “as needed” basis and, eventhough matchers would
often deliver similar features and symbolic matching provided the
core functionality for some systems, no standard emerged.

Examples of early systems based on symbolic pattern matching
include SIR and STUDENT, perhaps culminating with Eliza and
SHRDLU [1]; SIR used a small set of simple patterns to extract
numeric and equality relations from simple English statements,
STUDENT used patterns specifying conditional matching to
process algebraic problems described textually (e.g. “If Joe has 4
times as many oranges as Mary…. How many oranges does Joe
have”). Eliza (1966) engaged in dialogue, behaving as a non-
directive psychotherapist but, while it produced some interesting
conversation, did no semantic analysis. SHRDLU (1971) used
patterns to parse English statements identifying commands to
move blocks around in a simple world. Its capabilities exceeded
those of many systems at that time but it targeted a very small
micro-world of discourse and problem solving. Post Eliza and
SHRDLU, the A.I. community considered that achieving more
sophisticated results would not be accomplished by systems based
exclusively on pattern matching and subsequently discussion of
symbolic pattern matching, either as a basis for A.I. or as a topic
in its own right, largely disappeared from academic literature.

Many modern languages provide regular expression matching and
there is an increasing trend to provide capabilities associated with
destructuring and variable assignment. Scheme and Racket
provide macro-extensible matching but, outside the Lisp world,
symbolic pattern matching is less common. POP-11 (a little dated
now) is a notable exception, providing rich matching capabilities
including match-iterators as well as destructuring [5] and more
recently Scala has provided matching capability that facilitates
some symbol matching [7].

Despite the lack of standardised Symbolic pattern matchers in
modern programming languages they are often implicitly present
in some software systems (e.g. expert systems and PDDL planning
systems [4, 9]). We argue that a well featured symbolic pattern
matcher provides many opportunities to simplify code; that
appropriate matcher facilities allow inference engines and other
systems to be constructed more concisely and with elegant code.
We demonstrate this by example in the evaluation section of this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322321497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

paper. The following sections outline different approaches to
matching and present the key capabilities of the pattern matcher
we have developed for Clojure.

2. INTRODUCTION
Broadly we aim to provide matching capabilities to simplify
program code, to allow the definition of new types of functions
which specialise on the structure of their arguments and can
repeatedly apply patterns over larger data sets. We choose Clojure
for this due to the nature of our applications (A.I. inference tools)
which benefit from its semantics and its ability to integrate with
Java. Clojure provides regular expression matching and some
structural matching, there are Clojure libraries which provide
tailored matching capabilities for specialised application areas
(core.logic and core.unify [2]) and a partially specified matcher
offering conditionals and function definition (matchure [10]). The
matcher presented here is in part motivated and informed by these
and other works but intentionally takes a different approach
thereby offering alternative facilities. These, we suggest, can form
the basis of a generalised symbolic matcher for Clojure.

2.1 Matching vs. Unification
While the difference between regular expression matching and
symbolic matching is clear (regular expressions match at the level
of strings and characters, symbolic matchers operate at the level of
symbols and structures) the difference between matching and
unification is more nuanced. Online forums suggest the difference
between pattern matching and unification is only that unification
is necessary/occurs if variables are allowed on both sides of a
match expression. Here we accept there is some progression from
simple pattern matching through to full unification but we
consider the term “unification” to imply logical substitution.
Specifically that a successful outcome of unification may leave
variables unresolved in the sense that one or more variables may
have more than one possible value or even an infinite set of
possible values. For a wider discussion of unification see [3, 8].

We consider any process which simply associates one variable
with one value to be matching. If variables are only permitted on
only one side of a matching expression we term this “uni-
directional” if variables are allowed on both sides we consider this
“bi-directional”.

We also consider examples where matching is uni-directional but
still requires some level of unification (so unification does not
fundamentally require variables on both sides of an expression).
One example occurs when there are multiple patterns, with shared
variables, which all need to be consistently satisfied.

A key aspect of any matching/unification algorithm is its policy
for binding matched variables. The rest of this section explores
some of the options. We assume that a function f takes two
arguments and performs some matching or unification process on
those arguments. f handles variables (denoted using a “?” prefix)
and produces a mapping of variables to values if it succeeds.

An example of f using uni-directional matching:

f([a ?x c], [a b c]) → {?x ↳ b}

Bi-directional matching:

f([a ?x c], [a b ?y]) → {?x ↳ b, ?y → c}

The semantics of uni-directional matching are clear even when
variables are bound more than once:

f([a ?x ?x], [a b b]) → {?x ↳ b}

f([a ?x ?x], [a b c]) → fail

However the semantics of bi-directional matching can become
closer to some form of unification:

f([a ?x c], [a ?y ?y]) → {?x ↳ c, ?y ↳ c}

In this example there are two partial mappings
(i) {?x ↳ ?y, ?y ↳ ?x} (ii) {?y ↳ c} which could unify in the
following ways depending on the matching/unification algorithm:

(i) {?x ↳ ?y, ?y ↳ ?x} {?y ↳ c}
 → {?x ↳ ?y, ?y ↳ c} → {?x ↳ c, ?y ↳ c}

or:

(ii) {?x ↳ ?y, ?y ↳ ?x} {?y ↳ c}
 → {?x ↳ c, ?y ↳ ?x} {?y ↳ c}

 → {?x ↳ c, ?y ↳ c}

Further considerations are necessary where values cannot be fully
resolved during a single application of a pattern, this can occur for
different reasons. For example, if variables can bind to 1 or more
values (implied by the use of “??”):

f([a ??x], [??x a]) → {?x ↳ a...a}

Other variables may be unresolved or undefined:

f([a ?x c], [a [?p ?q] c])

→ {?x ↳ [?p ?q], ?p ↳ #\, ?q ↳ #\}

where #\ represents an undefined binding.

We could allow undefined bindings to propagate through to later
expressions which would either successfully become unified or
result in failure. The expectation in this case is that a fully
developed (logic based) unification mechanism would be
employed which would handle backtracking as necessary. This
approach has its uses but can also present some limitations.

Consider a rule application mechanism which accepts rules of the
form:

[Rule 5 (hairy ?x) => (mammal ?x)]

The rule application uses patterns in two stages (i) to deconstruct
a rule and (ii) to work with its antecedent-consequent parts. In the
first stage matching could be specified as follows:

f([Rule ?id ?antecedent => ?consequent],

 [Rule 5 (hairy ?x) => (mammal ?x)])

→ {?id ↳ 5, ?antecedent ↳ (hairy ?x),

 ?consequent ↳ (mammal ?x), ?x ↳ #\}

We then expect the ?x variable to be bound as part of the second
stage. It is reasonable to expect that the rule application
mechanism and the rules themselves are developed by different
people and it is obvious practice to avoid any coupling between
these specifications. However, when using the approach above, a
small change in one of the patterns can have unwanted results
because the same variable, ?x, is used on both sides:

f([Rule ?x ?antecedent => ?consequent],

 [Rule 5 (hairy ?x) => (mammal ?x)])

→ {?x ↳ 5, ?antecedent ↳ (hairy 5),

 ?consequent ↳ (mammal 5)}

This results in incorrect variable bindings for the second (rule
application) phase. The situation could be avoided by requiring
additional syntax for matching expressions, but adding syntactic
notations has an impact on the usability of representations which
is better avoided. In addition, while some of the matching forms
(described below) use literally specified patterns and data, others
allow patterns/data to be dynamically produced, e.g.

f(make-pattern1(),make-pattern2())

The matcher could insist that all dynamically created patterns use
some kind of name generator (gensym) for any dynamically
created patterns but this approach has other drawbacks (it is
harder to prime patterns with variables which are intended for
sharing across pattern generators for example). Both cases above
can be dealt with appropriately using a uni-directional approach
(i.e.: assuming match variables are only used on one side of a
match expression).

Even with uni-directional matching there may be a requirement
for some level of unification, notably when multiple patterns, with
shared variables, are to be consistently applied across data sets – a
scenario which may also generate multiple possible matches.
Consider matching a set of patterns {p0, p1 ... pn} over data
{d0, d1 ... dm} where all variables need consistent values, for
example:

f({ [?x ?y], [?y ?z] },

 { [a b], [q r], [c d], [m n], [p q] }

→ {?x ↳ a, ?y ↳ b, ?z ↳ c},

 {?x ↳ p, ?y ↳ q, ?z ↳ r}

In this case there are two valid mappings of matcher variables.
While the function f may simply return these mappings we
consider two other behaviors which may be preferred from a more
fully developed matcher:

 to use any one of the matches found;
 to use each of the matches – either as arguments to some

specified function or in some block of code which is called
repeatedly for each valid match.

2.2 Design Principles
With the considerations outlined above, we aim to develop a
matcher that provides the following:

• clean, unambiguous semantics which allow integration and
nesting of different matcher forms (macros and functions)
while consistently preserving their semantics and furthermore
allows matcher forms to integrate and nest with other Clojure
forms without disrupting the semantics of either;

• high-level matcher forms which abstract out the details of the
matching processes themselves;

• pattern forms (unencumbered by unnecessary syntax) which
allow matching to occur over nested lists, vectors and maps;

• a suitable mix of forms which take literally specified patterns
(patterns specified in program text) and others which allow
patterns to be dynamically specified (so patterns may be read,
constructed or extracted from data at run-time);

• the ability to specify pattern groups with shared variables
which implicitly require some type of unification (and by
implication may require backtracking – see mfind* and mfor*;

• a namespace which (i) will extend (shadow) into lexically
nested matcher forms and unwind out of these forms and
(ii) may be captured in a data structure – to allow the state of
successful matching to be saved and reinstated or provided
(e.g. as an argument) to other functions and subsystems.

A key distinction between this matcher and those acknowledged
earlier is that other matchers tend to operate only with static
patterns and use normal (native) variable bindings. While this can
provide some opportunity to improve performance it restricts the
ability to store patterns as data or dynamically create them. The
matcher presented below allows dynamic construction of patterns,
an approach which significantly effects the matcher utility (as we
demonstrate in the evaluation section).

3. MATCHER MACROS AND FUNCTIONS
This section describes key functions and macros developed to
provide a symbolic pattern matcher for Clojure which addresses
the issues discussed above. The matcher takes symbolic data
structures and matches them against structured patterns. Patterns
operate at the level of symbols and structures; they may contain
literals and match variables. Match variables are prefixed with a
"?" (or "??" – see later), symbols without a "?" prefix are literals
so the pattern (?x ?y end) will match with any three element
structure which contains 'end as its third element (binding match
variables x and y to the first and second elements of the data). The
pattern ((a b) {n ?x m ?y}) matches a nested structure binding the
variables x and y to values for n and m held in a two-element map,
nested within the data.

The most primitive form of matcher expression provided for
general use is mlet (matcher-let), it is structured as follows:

(mlet [pattern datum] ...body...)

mlet operates as follows: if the pattern matches the datum, binding
(zero or more) matcher variables as part of the matching process
then mlet evaluates its body in the context of these bindings. If the
pattern and datum do not match, mlet returns nil.

In the following example, the pattern (?x ?y ?z) matches the
datum (cat dog bat) binding match variables "x", "y", "z" to 'cat,
'dog, 'bat respectively. The expression (? y) in the body of mlet
retrieves the value of the match variable "y" from (pseudo)
matcher name space.

(mlet ['(?x ?y ?z) '(cat dog bat)]

 (? y))

→ dog

mout (matcher-out) is a convenience form to build structured
output from a mixture of literals and bound match variables:

(mlet ['(?x ?y ?z) '(cat dog bat)]

 (mout '(a ?x (a ?y) and a ?z)))

→ (a cat (a dog) and a bat)

mlet returns nil if matches fail:

(mlet ['(?x ?y ?z) '(cat dog bat frog)]

 (mout '(a ?x a ?y and a ?z)))

→ nil

Unbound matcher variables also have nil values as does the
anonymous match variable "?_" which will always match with a
piece of data but does not retain the data it matches against:

(mlet ['(?_ ?x) '(cat dog)]

 (list (? _) (? x) (? y)))

→ (nil dog nil)

Matcher variables are immutable so, once bound, a match variable
cannot be implicitly re-bound and whilst the pattern (?x dog ?x)
matches (cat dog cat) it will not match (cat dog bat) because this
would result in an inconsistent/ambiguous binding for "?x". This
approach also holds true with nested matcher forms, so given the
data (dog bat) the following expression will return (cat dog bat)
but with data (rat bat) it will return 'inner-match-failed:

(defn foo [data]

 (mlet ['(?x ?y) '(cat dog)]

 (or (mlet ['(?y ?z) data]

 (mout '(?x ?y ?z)))

 'inner-match-failed)

))

(foo '(dog bat)) → (cat dog bat)

(foo '(rat bat)) → inner-match-failed

In addition to single element match directives (prefixed with "?")
the matcher supports multiple match directives which match
against zero or more elements of data (these are prefixed with
"??"). Multiple directives may also be used in matcher-out
expressions, in which case their value is appended into the
resulting structure:

(mlet ['(??pre x ??post)

 '(mango melon x apple pear berry)]

 (mout '(pre= ?pre post= ??post)))

→ (pre= (mango melon)

 post= apple pear berry)

All patterns may be structured, containing sequences,
subsequences (and maps within sequences within maps within
sequences, etc.), so it is possible to use patterns to extract data
from nested data structures. The pattern used in the following
example extracts the value from a quantification slot nested
within an actor slot (which is also nested in the enclosing data
structure)…

(mlet ['(??_ (actor ??_ [quant ?q] ??_) ??_)

 semantics]

 (? q))

mlet has its uses but other forms (constructed on top of mlet)
provide greater functionality. These other forms can be grouped
into three families (i) switching and specialisation (ii) searching
and selection (iii) iteration and collection.

3.1 Switching and Specialisation
mcond is the most general of the switching/specialisation forms, it
can be used to specify a series of pattern based rules as follows:

(mcond [exp]

 ((?x plus ?y) (+ (? x) (? y)))

 ((?x minus ?y) (- (? x) (? y)))

)

The mcond form will attempt to match the data it is given (the
value of exp in the example above) to the first pattern in its
sequence of rules (?x plus ?y) then its second (?x minus ?y) until
it finds a rule which matches; it then evaluates the body of that
rule and returns the result. As with other matcher forms, mcond
returns nil if it fails to find a match. The mcond form above will
return 9 if exp has a value of (5 plus 4) or 1 if exp has a value of
(5 minus 4). Note that mcond (and other forms) can optionally use
additional symbols to make their rule-based structure more
explicit, we recommend using “:=>” for example:

(mcond [exp]

 ((?x plus ?y) :=> (+ (? x) (? y)))

 ((?x minus ?y) :=> (- (? x) (? y)))

)

defmatch is similar in structure to mcond, wrapping an implicit
mcond form with a function definition:

(defmatch math1 []

 ((?x plus ?y) :=> (+ (? x) (? y)))

 ((?x minus ?y) :=> (- (? x) (? y)))

)

(math1 '(4 plus 5)) → 9

(math1 '(4 minus 5)) → -1

(math1 '(4 times 5)) → nil

defmatch forms can take explicit arguments in addition to their
implicit matched-data argument. The example below illustrates
this and additionally uses an anonymous match variable to handle
default cases:

(defmatch math2 [x]

 ((add ?y) :=> (+ x (? y)))

 ((subt ?y) :=> (- x (? y)))

 (?_ :=> x)

)

(math2 '(add 7) 12) → 19

(math2 '(subt 7) 12) → 5

(math2 '(times 7) 12) → 12

Due to the way patterns may be specified at the symbol level,
defmatch forms can be used to specialise on keywords and thereby
resemble some kind of dispatch, e.g.

(defmatch calcd [x y]

 (:add :=> (+ x y))

 (:subt :=> (- x y))

 (:mult :=> (* x y))

)

(calcd :add 5 4) → 9

(calcd :mult 5 4) → 20

3.2 Searching and Selection
The searching and selection mechanisms apply patterns across
collections of data, returning the first match found. These matcher
forms are called mfind (which matches one pattern across a
collection of data) and mfind* (which consistently matches a

group of patterns across a collection of data). This is illustrated
using the following data:

(def food

 '([isa cherry fruit] [isa cabbage veg]

 [isa chilli veg] [isa apple fruit]

 [isa radish veg] [isa leek veg]

 [color leek green] [color chilli red]

 [color apple green] [color cherry red]

 [color cabbage green] [color radish red]

))

Note that in this example we use vectors in our data, this is
perhaps idiomatic but we sometimes prefer wrapping tuples as
vectors (rather than as lists) and the matcher deals with either
vectors or lists (or maps).

mfind takes one pattern, mfind* takes multiple patterns:

(mfind ['[isa ?f veg] food] (? f))

→ cabbage

 (mfind* ['([isa ?f veg] [color ?f red])

 food]

 (? f))

→ chilli

3.3 Iteration and Collection
The matcher supports two forms to provide iteration and
collection, these are called mfor and mfor*. They iterate over sets
of data using one pattern (mfor) or multiple patterns (mfor*). The
following examples use the food data presented above:

(mfor ['[isa ?f veg] food] (? f))

→ (cabbage chilli radish leek)

(mfor* ['([isa ?f veg] [color ?f red]) food]

 (? f))

→ (chilli radish)

3.4 Matcher Name Space
A pseudo matcher name space is maintained. This is not a Clojure
name space but is a map (called mvars) which associates named
matcher variables with their values. mvars is a lexically bound
Clojure symbol accessible within the body of all matcher
expressions.

with-mvars provides a simple way to inject variables into the
matcher name space or shadow existing values, for example:

(with-mvars {'a (+ 2 3), 'b (- 3 4)}

 (println mvars)

 (with-mvars {'b 'bb, 'd 'xx, 'e 'yy}

 (println " " mvars)

 (mlet ['(?a ?b ?d ?c) '(5 bb xx spam)]

 (println " " mvars))

 (println " " mvars))

 (println mvars))

output:

{b -1, a 5}

 {e yy, d xx, b bb, a 5}

 {c spam, :pat (?a ?b ?d ?c),

 :it (5 bb xx spam),

 e yy, d xx, b bb, a 5}

 {e yy, d xx, b bb, a 5}

{b -1, a 5}

nil

Note that the matcher adds the last datum that was match (called
:it) and the last pattern :it matched against into the name space.

While direct reference to mvars is generally unnecessary, it is
useful for writing new macros and it allows the results of
successful matching operations to be saved for later processing or
passed to other functions (in cases where the lexical scoping of
matcher variables is found restrictive).

3.5 Implementation Notes
There are few basic building blocks to the matcher. The first is the
core matches function which, in the context of any existing
matcher variable bindings, performs the essential pattern matching
process and builds a map of bindings for new matcher variables,
e.g.

(matches '(a ?x ?y) '(a b c))

→ {y c, x b, :pat (a ?x ?y), :it (a b c)}

(with-mvars {'p 'ppp, 'q 'qqq}

 (matches '(a ?x ?y) '(a b c)))

→ {y c, x b, :pat (a ?x ?y),

 :it (a b c), p ppp, q qqq}

Other building blocks (with-mvars and mlet) use "let" forms to set
up new lexical closures to shadow matcher name space when
matching is successful which, in effect, provides lexical scope for
matcher variables.

mcond (a macro) is specified as a series of mlet expressions and
defmatch (also a macro) is specified in terms of mcond. mfor,
mfor*, mfind and mfind* are also all specified as macros. mfor
uses a function which recurses through an mlet form and mfor* is
specified in terms of mfor. mfind (like mfor) uses its own function
to recurse through its own mlet form and mfind* recurses through
mlet.

In this way the expansion of nested matcher forms (defined as
macros) produces a cascade of nested let forms where the pseudo
matcher name space (mvars) is populated with match variables
created by successful matches.

4. EVALUATION
We have evaluated the matcher from three different perspectives:

(i) an objective examination to assess whether matcher
functions and macros operate as intended; whether they are
semantically consistent when nested/interleaved with other
matcher expressions and Clojure forms;

(ii) from the subjective view of Clojure programmers are the
semantics of matcher forms appropriate and do their names
(mfind, mfor, etc.) mnemonically suggest their semantics?

(iii) is the matcher useful? Does it simplify the construction and
readability of Clojure code? Specifically (since this is the
nature of much of our work) we are interested in simplifying
the construction of inference engines – typically based on
the application of rules and state changing operations.

The first approach to evaluation (above) is not described here, the
matcher was constructed using a strict test driven development
approach. The matcher presented here satisfies all tests.

User acceptance evaluation has been conducted using the matcher
as a basis for student assessments and projects and also as a build
tool for developing larger subsystems. Feedback from these user
groups has influenced (i) the choice of names for matcher forms
(macros and functions), (ii) the syntactic conventions used to
specify macros and patterns and (iii) cases where the matcher
semantics needed to be more clearly specified. Detailed analysis
of this process is not discussed here, instead we focus on the third
style of evaluation which considers the utility of the matcher as a
tool for code construction.

4.1 Searching Sets of Tuples
For the first example we consider searching for objects in a set of
tuples which describe the state of a micro-world. To put this in
context: we receive object descriptions (and other forms) from
language processing subsystem so, for example, the noun-phrase
"red fruit" would produce:

(obj

 (quantifier all)

 (desc ((color red) (isa fruit))))

The phrase "a large red fruit" would produce:

(obj

 (quantifier any)

 (desc

 ((size large) (color red) (isa fruit))))

We store state information in the following form:

(def food

 '#{[isa chilli veg] [isa cherry fruit]

 [isa radish veg] [isa apple fruit]

 [isa leek veg] [isa kiwi fruit]

 [color chilli red] [color cherry red]

 [color radish red] [color apple green]

 [color leek green] [color kiwi green]

 [on chilli table] [on cherry table]

 [on leek table]

 })

Our aim is to write code which, using the type of object
descriptions from the language processing subsystem, can retrieve
the relevant object names. Given the matcher facilities described
in preceding sections we can use mfor to find the names of objects
for a single type of fact/tuple. For example, the following form
returns the names of all cubes:

(mfor ['(isa ?obj veg) food]

 (? obj))

→ (chilli leek radish)

It is possible to dynamically construct a suitable pattern for an
mfor expression from the type of [relation value] pairs provided
by the language processing subsystem. A match function provides
a convenient way to extract the components of a [relation value]
pair which can then be used in the mfor expression:

(defmatch find-all [tuples]

 ([?reln ?val]

 (mfor ['(?reln ?obj ?val) tuples]

 (? obj)

)))

(find-all '(isa veg) food)

→ (chilli leek radish)

If the results of multiple find-all expressions are converted to sets
multiple (relation value) pairs can be handled using set operators.
So to find red vegetable from the food data:

(find-all '(isa veg) food)

→ (chilli leek radish)

(find-all '(color red) food)

→ (chilli radish cherry)

(intersection

 (set '(chilli leek radish))

 (set '(chilli radish cherry)))

→ #{radish chilli}

This processing can be captured in a function as follows:

(defn query

 [reduction pairs tuples]

 (reduce reduction

 (map #(set (find-all % tuples)) pairs))

)

(query intersection

 '((isa veg)(color red)) food)

→ #{radish chilli}

The query function may also be used with union to return "or"
combinations:

(query union

 '((isa veg)(color red)) food)

→ #{cherry radish chilli leek}

To satisfy our initial aim we therefore need the following:

(defmatch find-all [tuples]

 ([?reln ?val]

 (mfor ['(?reln ?obj ?val) tuples]

 (? obj)

)))

(defn query

 [reduction pairs tuples]

 (reduce reduction

 (map #(set (find-all % tuples)) pairs))

)

4.2 Application of Rules
The second example considers a rule-based, fact deduction or
forward chaining mechanism. Facts are held as tuples and rules
have antecedents and consequents. Some introductory texts for
Artificial Intelligence provide example rules like:

IF (has fido hair) THEN (isa fido mammal)

While these serve to illustrate their discussion of rule-based
inference, rules like this are of limited use because they are
specific to object names ("fido" in this case) and take only a single
antecedent and consequent. For practical purposes we need to
extend this rule syntax – to allow rules to be flexible about the
length of their antecedents/consequents and the objects they
describe. Specifying rules in terms of match variables and writing
a flexible rule application mechanism addresses this. For example:

(rule 15 (parent ?a ?b) (parent ?b ?c)

 => (grandparent ?a ?c))

can match against tuples like:

(def family

 '((parent Sarah Tom) (parent Steve Joe)

 (parent Sally Sam) (parent Ellen Sarah)

 (parent Emma Bill)(parent Rob Sally)))

A suitable rule application mechanism needs to split the rule into
its constituent parts, search for all consistent sets of antecedents,
ripple any antecedent variable bindings through to consequents
and collect evaluated consequents for each rule every time it fires.
In practice these requirements can be satisfied by using a match
function to pull a rule apart, mfor* to satisfy all possible
antecedent combinations and mout to bind variables into
consequents. This can be specified as follows:

(defmatch apply-rule [facts]

 ((rule ?n ??antecedents => ??consequents)

 :=> (mfor* [(? antecedents) facts]

 (mout (? consequents)))))

(apply-rule

 '(rule 15 (parent ?a ?b) (parent ?b ?c)

 => (grandparent ?a ?c))

 family)

→ ((grandparent Ellen Tom)

 (grandparent Rob Sam))

Notice that while the pattern for defmatch is literally specified, the
patterns for mfor* and mout must, necessarily, be generated
dynamically. Furthermore these dynamically generated patterns
are embedded in the rule structure pulled apart by defmatch's
literal pattern.

To investigate this rule deduction example further we use a richer
set of facts and rules where the consequences of some rules trigger
the antecedents of others (we choose a "toy" example to illustrate
this).

(def facts

 '((mineral pebble) (small pebble)

 (mineral boulder) (large boulder)

 (small daisy) (light daisy)

 (on boulder daisy)

))

(def rules1

 '((rule 0

 (dangerous ?x)(fragile ?y)(on ?x ?y)

 => (broken ?y))

 (rule 1 (heavy ?x) => (dangerous ?x))

 (rule 2 (large ?x) => (heavy ?x))

 (rule 3 (small ?x)(light ?x)

 => (portable ?x)(fragile ?x))

))

Given these definitions it is possible to develop a function to
apply all rules once:

(defn apply-all [rules facts]

 (reduce concat

 (map #(apply-rule % facts) rules)

))

(apply-all rules facts)

→ ((hard pebble) (hard boulder)

 (fragile daisy) (portable daisy))

For simplicity in combining the output of rules we use sets which
necessitates modifying the apply-all function to:

(defn apply-all [rules facts]

 (set (reduce concat

 (map #(apply-rule % facts) rules)

)))

A forward chaining/fact deduction function which continues to
operate while it is generating new facts can then be defined:

(defn fwd-chain [rules facts]

 (let [new-facts (apply-all rules facts)]

 (if (subset? new-facts facts)

 facts

 (recur rules (union facts new-facts))

)))

(fwd-chain rules (set facts))

→ #{(light daisy) (mineral boulder)

 (hard boulder) (fragile daisy)

 (small daisy) (heavy boulder)

 (broken daisy) (small pebble)

 (mineral pebble) (hard pebble)

 (portable daisy) (on boulder daisy)

 (large boulder)}

As with the previous example, the matcher performs most of the
processing (in this case using a defmatch construct and mfor* in
apply-rule) while other functions collate results, etc.

(defmatch apply-rule [facts]

 ((rule ?n ??antecedents => ??consequents)

 :=> (mfor* [(? antecedents) facts]

 (mout (? consequents)))))

(defn apply-all [rules facts]

 (reduce concat

 (map #(apply-rule % facts) rules)

))

(defn fwd-chain [rules facts]

 (let [new-facts (apply-all rules facts)]

 (if (subset? new-facts facts)

 facts

 (recur rules (union facts new-facts))

)))

4.3 Application of Operators
In this example we consider how to apply the kind of state
changing operators that are used in some planning systems.
Broadly we adapt a representation borrowed from PDDL [4, 9] for
use with a STRIPS [6] style solver. The operators are specified in
terms of their preconditions and their effects. As with the earlier
examples, we use tuples to capture state information. The
following tuples, for example, describe a simple state in which
some (animated) agent (R) is at a table, holding nothing and a
book is on the table.

#{(at R table) (on book table)

 (holds R nil) (path table bench)

 (manipulable book) (agent R) }

In order to generalise an operator (so it can be used with different
agents, objects and in various locations) it is necessary to specify
it using variables, in this case matcher variables. An operator
which describes a "pickup" activity for an agent and which can be

used to produce a new state (new tuples) can be described as
follows:

 {:pre ((agent ?agent)

 (manipulable ?obj)

 (at ?agent ?place)

 (on ?obj ?place)

 (holds ?agent nil)

)

 :add ((holds ?agent ?obj))

 :del ((on ?obj ?place)

 (holds ?agent nil))

 }

The operator is a map with three components (i) a set of
preconditions which must be satisfied in order for the operator to
be used (ii) a set of tuples to add to an existing state when
producing a new state and (iii) a set of tuples to delete from an
existing state.

To apply this kind of operator specification we extract patterns
from the operator then use mfind*

(defn apply-op

 [state {:keys [pre add del]}]

 (mfind* [pre state]

 (union (mout add)

 (difference state (mout del))

)))

 (apply-op state1 ('pickup ops))

 → #{(agent R) (holds R book)

 (manipulable book)

 (path table bench) (at R table)}

As with the previous examples, the patterns used by mfind* are
provided dynamically when apply-op is called. Furthermore, in
this example, the patterns themselves define the semantics of the
operators.

Collections of operators are conveniently held in a map and
ordered sequences of operator applications can be formed by
chaining apply-op calls, e.g.

(def ops

 '{pickup {:pre ((agent ?agent)

 (manipulable ?obj)

 (at ?agent ?place)

 (on ?obj ?place)

 (holds ?agent nil)

)

 :add ((holds ?agent ?obj))

 :del ((on ?obj ?place)

 (holds ?agent nil))

 }

 drop {:pre ((at ?agent ?place)

 (holds ?agent ?obj))

 :add ((holds ?agent nil)

 (on ?obj ?place))

 :del ((holds ?agent ?obj))

 }

 move {:pre ((agent ?agent)

 (at ?agent ?p1)

 (path ?p1 ?p2)

)

 :add ((at ?agent ?p2))

 :del ((at ?agent ?p1))

 }})

(-> state1 (apply-op ('pickup ops))

 (apply-op ('move ops))

 (apply-op ('drop ops)))

→ #{(agent R) (manipulable book)

 (on book bench) (holds R nil)

 (at R bench) (path table bench)}

We can further develop this example so apply-op (or some similar
function) works with a search process or a STRIPS-style planner
to generate sequences of moves in order to reach a goal state.

5. SUMMARY & CONCLUSION
This paper has argued that pattern matching can be used to
simplify some programming tasks, facilitating the production of
concise, well-formed code with precise semantics. We have
presented a symbolic pattern matcher (now available under
"clojure resources" at www.agent-domain.org) which binds
immutable match variables and provides matcher
functions/macros to support pattern-based conditional statements,
function definitions and iterative/mapping forms. The matcher has
some forms which take literal patterns but, importantly, has others
which allow their patterns to be retrieved from data structures or
to be constructed at run-time. This provides increased flexibility
in pattern production and use; allowing some types of rules and
state-change operators to have their semantics described in terms
of patterns. These in turn facilitate the construction of inference
engines which apply these structures. In the evaluation section we
have presented three sample problems (searching tuples, applying
rules and using operators) and demonstrated how the matcher can
be employed to solve these problems.

6. REFERENCES
[1] Barr, A., Feigenbaum, E.A., The Handbook of Artificial

Intelligence, (1981) vol 1, II F

[2] Fogus, M., Houser, C., Joy of Clojure (2nd ed.) ch. 16, (2014)

[3] Franz, B. and Snyder. W., "Unification Theory." Handbook
of automated reasoning 1 (2001): 445-532.

[4] Ghallab, M., Knoblock, C., Wilkins, D., Barrett, A.,
Christianson, D., Friedman, M., ... & Weld, D. (1998).
PDDL-the planning domain definition language.

[5] Jones, T., “Artificial Intelligence: a systems approach” Jones
& Bartlett, ISBN 978-0-7637-7337-3 (2009)

[6] Lekavý, M., Návrat, P. Expressivity of STRIPS-Like and
HTN-Like Planning, Agent and Multi-Agent Systems:
Technologies and Applications (2007), LNCS 4496, 121-130

[7] Odersky, M.: The Scala Language Specification (2008)

[8] Oliart, A., and Snyder, W., "Fast Algorithms for Uniform
Semi-Unification," Journal of Symbolic Computation 37
(2004) 455-484.

[9] De Weerdt, M., T. Mors, A.T., Witteveen, C., Multi-agent
planning: An introduction to planning and coordination In:
Handouts of the European Agent Summer (2005), pp. 1-32

[10] Younger, B., "Matchure", (2013)
https://clojars.org/brendanyounger/matchure

http://www.agent-domain.org/
https://clojars.org/brendanyounger/matchure

