
Team Behavior in Interactive Dynamic Influence Diagrams
with Applications to Ad Hoc Teams

Muthu Chandrasekaran
Dept. of Computer Science

University of Georgia
Athens, GA 30602, USA

mku@uga.edu

Prashant Doshi
Dept. of Computer Science

University of Georgia
Athens, GA 30602, USA
pdoshi@cs.uga.edu

Yifeng Zeng
School of Computing
Teesside University

Tees Valley, TS1 3BA, UK
y.zeng@tees.ac.uk

ABSTRACT
Planning for Ad Hoc teamwork among autonomous agents has been
recognized as a challenging problem as it involves agents trying to
collaborate without any prior coordination or communication pro-
tocol. Although this problem pertains to teamwork, the real chal-
lenge lies in building a single agent with such capabilities, not an
entire team, which is why we investigate this in the context of in-
dividual decision making frameworks. However, individual deci-
sion making in multiagent settings faces the task of having to rea-
son about other agents’ actions who themselves could be reasoning
about others. An approximation that enables the application of this
approach is to bound the infinite nesting from below by introduc-
ing level 0 models. A consequence of the finitely nested modeling
is that we may not obtain optimal team solutions in cooperative
settings. We address this limitation by including models at level
0 whose solution involves learning. We demonstrate that the in-
tegrated learning with planning facilitates optimal team behavior
and thus facilitating ad hoc teamwork. We investigate our novel
approach within the framework of interactive dynamic influence
diagrams and evaluate its performance.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents, Mul-
tiagent systems

General Terms
Algorithms, Experimentation

Keywords
multiagent systems, ad hoc teamwork, sequential decision making
and planning, reinforcement learning

1. INTRODUCTION
Autonomous agents often find themselves in situations where

they must collaborate with one another to collectively achieve cer-
tain tasks in partially observable environments. Sometimes col-
laboration is expected without prior coordination with teammates.
Such scenarios are identified as ad hoc settings. Planning in ad hoc
settings is recognized to be a challenging problem in multiagent
systems research [30, 31].

Appears in: Proceedings of the 13th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2014),
Lomuscio, Scerri, Bazzan, Huhns (eds.), May, 5–9, 2014, Paris,
France.
Copyright c⃝ 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Several attempts have been made to address ad hoc coordina-
tion in multiagent systems [2, 6, 32]. Since some knowledge about
the teammates is hidden from a centralized planner, the approaches
of Decentralized Partially Observable Markov Decision Processes
(Dec-POMDPs) [7, 28] –which generally assume common initial
beliefs for all agents –may not be appropriate. Most of other ex-
isting approaches rely on substantial pre-coordination and/or make
several assumptions therein to simplify the problem domain in or-
der to achieve ad hoc teamwork. For example, the Online Planning
for Ad Hoc Agent Teams (OPAT) algorithm – a state-of-the-art on-
line planning algorithm for ad hoc agent teams – assumes that all
agents can fully observe both the environment states and the joint
actions at each step. Additionally, their agents don’t plan for their
teammates to observe and interpret their own actions. Arbrecht et
al. on the other hand, provide a framework – the Harsanyi-Bellman
Ad Hoc Coordination (HBA) algorithm – where they make assump-
tions about the behavior types of the opponents thereby simplifying
the problem [3]. In this paper however, we make no such assump-
tions and present a generalized framework for achieving teamwork.

Interactive Partially Observable Markov Decision Processes (I-
POMDPs) [14, 17] and their graphical counterparts, Interactive Dy-
namic Influence Diagrams (I-DIDs) [15, 34], have been recognized
by researchers to be complex but more general frameworks for ad
hoc settings [3]. The approach used in these frameworks allows for
agents to plan individually at their own level in the context of other
agents acting and observing in a partially observable environment.
Such frameworks particularly provide a solution to a fundamental
challenge in ad hoc teamwork –building a single autonomous agent
(as opposed to planning for the entire team) with the ability to co-
ordinate in ad hoc settings [33].

However, individual decision making is confronted with having
to reason about how the other agents behave, who in turn could
be reasoning about others’ behaviors, and so on ad infinitum. A
common initial belief about the state circumvents this problem, but
its conceptualization is itself problematic [16] and neither does it
solve the problem nor does it apply to ad hoc settings. Motivated
by approaches in game theory and interactive epistemology [1, 4,
20], we may bound this heirarchy from below as in finitely-nested
I-POMDPs by assuming the presence of level 0 models that do not
involve reasoning about others. This leads to an approximation of
the optimal decision making motivated by considerations of com-
putability.

A direct consequence of the finitely nested modeling is that we
may not obtain optimal team solutions in cooperative settings in
general. In this paper, we address the limitation and induce optimal
team behavior by enhancing the reasoning ability of lower level
agents thereby making I-POMDPs, as well as I-DIDs, theoretically
perfectly suited for ad hoc settings. Notice that I-DIDs demonstrate

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322321427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a computational advantage over I-POMDPs as they allow us to ex-
ploit the embedded structure in the problem [15, 34]. In this paper,
we investigate ad hoc teamwork within the framework of I-DIDs.

We augment the I-DID framework by additionally attributing a
new type of level 0 model. This type distinguishes itself by utiliz-
ing reinforcement learning (RL) either online or in simulation to
discover an optimal policy. As the setting is partially observable,
few RL approaches apply. A promising one is Perkins’ Monte-
Carlo Exploring Starts for POMDPs (MCESP) [25], which is an
action-value based RL algorithm for POMDPs. This type of mod-
els mainly differs from the previous type in its frame, which in
addition to the augmented capabilities and preferences, contains a
fixed seed policy for agent j, the learning rate, and a candidate i’s
policy. Together with the belief, the frame is sufficient to learn a
– possibly locally optimal – policy online or offline in a simulated
environment.

The contributions of this research are two-fold; First, we show
the plausibility of true team behavior to emerge when the reason-
ing ability of lower level agents is enhanced via learning. Conse-
quently, we are able to achieve globally optimal teammate solutions
when our agents are modeled in finitely-nested augmented I-DIDs
while traditional I-DIDs fail. Second, we demonstrate the applica-
bility of augmented I-DIDs to ad hoc settings; show its robustness,
and effectiveness for different types of teammates. In this regard,
we experiment with multiple well-known cooperative problem do-
mains and generate ad hoc team behavior for all of them. We also
perform a baseline comparison of augmented I-DIDs with our im-
plementation of a generalized version of OPAT – to account for the
partial observability – in simulation.

2. BACKGROUND: INTERACTIVE DIDS
We sketch I-DIDs below and refer readers to [34] for more de-

tails.

2.1 Representation
A traditional DID models sequential decision making for a single

agent by linking a set of chance, decision and utility nodes over
multiple time steps. To consider multiagent interactions, I-DIDs
introduce a new type of node called the model node (hexagonal
node, Mj,l−1, in Fig. 1(a)) that represents how another agent j
acts as subject agent i reasons about its own decisions at level l.
The model node contains a set of j’s candidate models at level l 1
ascribed by i. A link from the chance node, S, to the model node,
Mj,l−1, represents agent i’s beliefs over j’s models. Specifically,
it is a probability distribution in the conditional probability table
(CPT) of the chance node, Mod[Mj] (in Fig. 1(b)). An individual
model of j, mj,l−1 = 〉bj,l−1, θ̂j | , where bj,l−1 is the level l
1 belief, and θ̂j is the agent’s frame encompassing the decision,
observation and utility nodes. Each model, mj,l−1, could be either
a level l 1 I-DID or a DID at level 0. Solutions to the model are
the predicted behavior of j and are encoded into the chance node,
Aj , through a dashed link, called a policy link. Connecting Aj with
other nodes in the I-DID structures how agent j’s actions influence
i’s decision-making process.

Expansion of an I-DID involves the update of the model node
over time as indicated by the model update link - a dotted link
from M t

j,l−1 to M t+1
j,l−1 in Fig. 1(a). As agent j acts and receives

observations over time, its models should be updated. For each
model mt

j,l−1 at time t, its optimal solutions may include all ac-
tions and agent j may receive any of the possible observations.
Consequently, the set of the updated models at t + 1 contains up
to { t

j,l−1 Aj Ωj models. Here, { t
j,l−1 is the number of

(a)

(b)

Figure 1: (a) A generic two time-slice level l I-DID for agent i.
The dotted model update link represents the update of j’s models and
the distribution over the models over time; (b) Implementation of the
model update link using standard dependency links and chance nodes;
e.g., two models, mt,1

j,l−1 and mt,2
j,l−1, are updated into four mod-

els (shown in bold) at time t+ 1.

models at time t, and Aj and Ωj the largest spaces of actions
and observations respectively among all the models. The CPT
of Mod[M t+1

j,l−1] specifies the function, τ(btj,l−1, a
t
j , o

t+1
j , bt+1

j,l−1)

which is 1 if the belief btj,l−1 in the model mt
j,l−1 using the ac-

tion at
j and observation ot+1

j updates to bt+1
j,l−1 in a model mt+1

j,l−1;
otherwise, it is 0. We may implement the model update link using
standard dependency links and chance nodes, as shown in Fig. 1(b),
and transform an I-DID into a traditional DID.

2.2 Solution
A level l I-DID of agent i expanded over T time steps is solved

in a bottom-up manner. To solve agent i’s level l I-DID, all lower
level l 1 models of agent j must be solved. Solution to a level
l 1 model, mj,l−1, is j’s policy that is a mapping from j’s obser-
vations in Oj to the optimal decision in Aj given its belief, bj,l−1.
Subsequently, we may enter j’s optimal decisions into the chance
node, Aj , at each time step and expand j’s models in Mod[Mj]
corresponding to each pair of j’s optimal action and observation.
We perform this process for each of level l 1 models of j at each
time step, and obtain the fully expanded level l model. We outline
the algorithm for exactly solving I-DIDs in Fig. 2.

The computational complexity of solving I-DIDs is mainly due
to the exponential growth of lower l-1 j’s models over time. Al-
though the space of possible models is very large, not all mod-
els need to be considered in the model node. Models that are
behaviorally equivalent (BE) [26] – whose behavioral predictions
for the other agent are identical – could be pruned and a single
representative model considered. This is because the solution of
the subject agent’s I-DID is affected by the behavior of the other
agent only; thus we need not distinguish between BE models. Let
PruneBehavioralEq ({ j,l−1) be the procedure that prunes BE
models from { j,l−1 returning the representative models (line 6).

Note that lines 4-5 (in Fig. 2) solve level l-1 I-DIDs or DIDs and

then supply the policies to level l I-DID. Due to the bounded ratio-
nality of level l-1 agents, the solutions lead to a suboptimal policy
of agent j, which certainly compromises agent i’s performance in
the interactions particularly in a team setting. We will show in the
coming sections that solving I-DIDs using RL to get the policy of j
at level l-1 may generate the expected team behavior among agents
i and j.

I-DID EXACT(level l ≥ 1 I-DID or level 0 DID, horizon T)
Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

Populate Mt+1
j,l−1

3. For each mt
j inMt

j,l−1 do
4. Recursively call algorithm with the l− 1 I-DID

(or DID) that represents mt
j and horizon, T − t

5. Map the decision node of the solved I-DID (or DID),
OPT (mt

j), to the corresponding chance node Aj

6. Mt
j,l−1← PruneBehavioralEq(Mt

j,l−1)
7. For each mt

j inMt
j,l−1 do

8. For each aj in OPT (mt
j) do

9. For each oj in Oj (part of mt
j) do

10. Update j’s belief, bt+1
j ← SE(btj , aj , oj)

11. mt+1
j ← New I-DID (or DID) with bt+1

j

12. Mt+1
j,l−1

∪← {mt+1
j }

13. Add the model node, Mt+1
j,l−1, and the model update link

14. Add the chance, decision, and utility nodes for
t+ 1 time slice and the dependency links between them

15. Establish the CPTs for each chance node and utility node
Solution Phase
16. If l ≥ 1 then
17. Represent the model nodes, policy links and the model

update links as in Fig. 1 to obtain the DID
18. Apply the standard look-ahead and backup method

to solve the expanded DID

Figure 2: Algorithm for exactly solving a level l ≥ 1 I-DID or level 0
DID expanded over T time steps.

3. TEAMWORK IN INTERACTIVE DIDS
Ad hoc teamwork involves multiple agents working collabora-

tively in order to optimize the team reward. Each ad hoc agent in
the team behaves according to a policy, which maps the agent’s ob-
servation history or beliefs to the action(s) it should perform. We
begin by showing that the finitely-nested hierarchy in I-DID does
not facilitate ad hoc teamwork. However, augmenting the tradi-
tional model space with models whose solution is obtained via RL
provides a way for team behavior to emerge.

3.1 Implausibility of Teamwork
Fig. 3 shows an ad hoc team setting of the two-agent grid meeting

problem [8]. Each ad hoc agent, i or j, moves in the grid and
collects rewards as the number indicated in the occupied cell. If
they move to different cells, the agents get their own individual
reward. However, if they move to the same cell allowing them to
hold a meeting, they will be rewarded with the twice of the sum
of their individual rewards. This is the type of ad hoc teamwork
expected in practice. Initial positions of the two agents are shown
colored and we focus on their immediate actions.

If each agent deliberates at its own level, agent i modeled at level
0 will choose to move left while a level 0 agent j chooses to move
down. Each agent would obtain a reward of 15 with the whole
team getting 30. Agent i modeled at level 1 and modeling j at

level 0 thinks that j will move down, and its own best response to
predicted j’s behavior is to move left. Analogously, a level 1 agent
j would choose to move down. A level 2 agent i will predict that
a level 1 j moves down as mentioned previously, due to which it
decides to move left. Analogously, a level 2 agent j continues to
decide to move down. We may apply this reasoning inductively
to conclude that level l agents i and j would move left and down,
respectively, thereby earning a joint reward of 30. However, the
optimal team behavior in this setting is for i to move right and j to
move up thereby obtaining a team reward of 40.

Figure 3: Agents i and j

in the grid meeting problem
with the numbers being their
individual rewards.

Clearly, these finite hierarchical
systems preclude the agents’ opti-
mal teamwork due to the bounded
reasoning of the lowest level (level
0) agents. Observation 1 states this
more formally:

Observation There exist coopera-
tive multiagent settings in which in-
tentional agents each of which is
modeled using the finitely-nested I-
DID may not choose the jointly opti-
mal behavior of working together as
a team.

PROOF. Observe that an offline specification of level 0 mod-
els in cooperative settings is necessarily incomplete. This is be-
cause the true benefit of cooperative actions often hinges on others
performing supporting actions, which by themselves may not be
highly rewarding to the agent. Therefore, despite solving the level
0 models optimally, the agent may not engage in optimal teammate
behavior. One such cooperative setting was shown in Fig. 3.

In general, this observation holds for cooperative settings where
the self-maximizing level 0 models result in predictions that are not
consistent with optimal team behavior for the modeled agent. Of
course, settings may also exist where the level 0 model’s solutions
coincide ad hoc with the policy of a teammate thereby leading to
joint teamwork. Nevertheless, the significance of this observation is
that we may not rely on finitely-nested I-DIDs to generate optimal
teammate policies.

We observe that team behavior is challenging in the context we
study above because of the bounded rationality imposed by assum-
ing a level 0. The boundedness precludes modeling others at the
same level as one’s own – as an equal teammate. However, at the
same time, this imposition is, (a) motivated by reasons of com-
putability, which allow us to operationalize such a paradigm; and
(b) allows us to avoid some self-contradicting, and therefore im-
possible beliefs, which exist when infinite belief hierarchies are
considered [9, 11]. Consequently, answering this question is of
significance because it may provide us with a way of generating
optimal team behavior in finitely-nested frameworks, which so far
have been utilized for noncooperative settings, and provides a prin-
cipled way to solving ad hoc teamwork problem.

3.2 Augmented Level 0 Models that Learn
We present a principled way to induce tam behavior by enhanc-

ing the reasoning ability of lower level agents. While it is difficult
to a priori discern the benefit of moving up for agent j in Fig. 3,
it could be experienced by the agent. Specifically, it may explore
moving in different directions including moving up and learn about
its benefit from the ensuing, possibly indirect, team reward.

If we place agents in a cooperative problem domain or its simu-
lation, an agent may come to experience the benefit of performing

team actions. Subsequently, we may expect an agent to learn poli-
cies that are consistent with optimal teammate behavior because the
corresponding actions provide large reinforcements. For example,
given that agent i moves right in Fig. 3, j may choose to move up
in its explorations, and thereby receive a large reinforcing reward.
This observation motivates formulating level 0 models that utilize
RL in order to generate the predicted policy for the modeled agent.

Because the level 0 models generate policies for the modeled
agent only, we focus on the modeled agent’s learning problem.
However, the rewards in the setting usually depend on actions of all
agents due to which the other agent must be simulated as well. The
other agent’s actions are a part of the environment and its presence
hidden, thereby making the problem one of single-agent learning.

We augment the level 0 model space, denoting it as M ′
j,0, by ad-

ditionally attributing a new type of level 0 model to the other agent
j: m′j,0 = 〉bj,0, θ̂

′
j | , where bj,0 is j’s belief and θ̂′j,0 is the frame

of the learning model. The frame, θ̂′j,0, consists of the learning rate,
α, a seed policy, π′j , of planning horizon, T , which includes a fair
amount of exploration, and the chance and utility nodes of the DID
along with a candidate policy of agent i, which could be an arbi-
trary policy from i’s policy space, Πi, as agent i’s actual behavior
is not known. This permits a proper simulation of the environment.

This type of model, m′j,0, differs from a traditional DID based
level 0 model in the aspect that m′j,0 does not describe the offline
planning process of how agent j optimizes its decisions, but allows
j to learn an optimal policy, πj , with the learning rate, either online
or in a simulated setting. Different models of agent j differ not
only in their learning rates and seed policies, but also in the i’s
candidate policy that is used. Therefore, in principle, while the
learning rate and seed policies may be held fixed, j’s model space
could be as large as i’s policy space. Consequently, our augmented
model space becomes larger.

3.3 Learning Algorithm:Generalized MCESP
Learning has been applied to solve decision-making problems

in both single- and multi-agent settings. Both model based [13,
23] and model free [19, 21] learning approaches exist for solving
POMDPs. Banerjee et al. [5] utilized a distributed RL approach
solving finite horizon Dec-POMDPs. Recently, Ng et al. [22] in-
corporated model learning in the context of I-POMDPs where ad-
versarial agents learn the transition and observation probabilities
by augmenting the interactive states with the learning parameters.

Because the setting in which the learning takes place is partially
observable, RL approaches that compute a table of values for state-
action pairs do not apply. We adapt Perkins’ Monte Carlo Explor-
ing Starts for POMDPs (MCESP) [25], which has been shown to
learn good policies in less iterations. MCESP maintains a Q table
indexed by observation, oj , and action, aj , that gives the value of
following a policy, πj , except when observation, oj , is obtained at
which point action, aj , is performed. An agent’s policy in MCESP
maps a single observation to actions over T time horizons. We
generalize MCESP so that observation histories of length up to T ,
denoted as �o, are mapped to actions. A table entry, Qπj

�o,a, is updated
over every simulated trajectory of agent j, τ = } ±, a0

j , r0j , o1j , a1
j ,

r1j , ×××, oT−1
j , aT−1

j , rT−1
j , oTj 〈 , where rj is the team reward

received. Specifically, the Q
πj

�o,a value is updated as:
Q

πj

�o,a ∈ (1 α)Q
πj

�o,a + αRpost−�o(τ) (1)

where α is the learning rate and Rpost−�o(τ) is the sum of re-
wards of a portion of the observation-action sequence, τ , following
the first occurrence of �o in τ , say at t′: Rpost−�o(τ)=

∑T−1
t=t′ γ

trt,
where γ M[0, 1) is the discount factor. Alternate policies are con-
sidered by perturbing the action for randomly selected observation

histories.
Level 0 agent j learns its policy while agent i’s actions are hid-

den in the environment. In other words, agent j needs to reason
with unknown behavior of i while it learns level 0 policy using the
generalized MCESP algorithm. Agent j considers the entire policy
space of agent i, Πi, and a fixed policy of i, πi(MΠi), results in
one learned j’s policy, πj .

We show the algorithm for solving level 0 models using the gen-
eralized MCESP in Fig. 5. The algorithm takes as input agent j’s
model whose solution is needed and the policy of i, which becomes
a part of the environment. We repeatedly obtain a trajectory, τ , of
length T either by running the agent online or simulating the envi-
ronment by sampling the states, actions and observations from the
appropriate CPTs (lines 5-10). The trajectory is used in evaluating
the value of the current policy, πj , of agent j (line 11). Initially, we
utilize the seed policy contained in agent j’s model. If another ac-
tion, a′, for the observation sequence, �o, is optimal, we update πj

to conditionally use this action, otherwise the policy remains un-
changed (lines 12-13). This is followed by generating a perturbed
policy in the neighborhood of the previous one (line 14), and the
evaluation cycle is repeated. If the perturbation is discarded several
times, we may terminate the iterations and return the current policy.

As the space of i’s policy becomes very large particularly for
a large planning horizon, it is intractable for j to learn a policy
for all i’s policies. In addition, considering that few of i’s poli-
cies are actually collaborative, we formulated a principled way that
allows us to reduce the full space to those policies of i, denoted
as Π̂i, that could be collaborative. We elaborate this method with
the help of the 3x3 Grid domain as shown in Fig. 4. For this, we
pick a random initial policy of i. We use the corresponding i’s
policy in the frame of a new model of j, and create a new model
for j. When we perform this step from second time onwards, we
set the initial policy that MCESP uses as the previous πj . MCESP
then checks for neighbors of πj , which would improve on the joint
utility of (πj ,πj)1. If successful, the improved neighboring pol-
icy, say π′j , is returned. This ensures that (πj ,π′j) is greater than
(πj ,πj). If πj cannot be improved upon by MCESP – because πj

is already the best response to πj (as i’s policy) – we will do a ran-
dom restart while picking the initial policy of i. One reason for this
is because the pair represents the global optimality. This way, we
exploit MCESP’s approach as well.

3.4 Augmented I-DID Solutions
Solving augmented I-DIDs is similar to solving the traditional

I-DIDs except for the fact that the candidate models of the agent at
level 0 may be learning models. We show the revised algorithm in
Fig. 6. When the level 0 model is a learning model, the algorithm
invokes the method LEVEL 0 RL shown in Fig. 5. Otherwise, it
follows the same procedure as shown in Fig. 2 to recursively solve
the lower level models.

While we may reduce the space of i’s policies to a subset, Π̂i in a
principled fashion, and therefore j’s learning models, we may fur-
ther reduce agent j’s policy space by keeping top-K policies of j,
K>0, in terms of their expected utilities (line 11). Given the same
belief, the team behavior(s) is guaranteed to generate the largest
utility in a cooperative problem. Subsequently, the resulting top-
K policies shall include j’s optimal collaborative policies. Hence
this filtering of j’s policy space may not compromise the quality
of I-DID solutions at level 1. Ideally, top-K policies shall contain
all K optimal team policies of j. As the number of optimal poli-

1This denotes the joint policy where agent i’s policy, πi, is set to πj and
agent j’s policy, πj , is the only candidate model in agent i’s I-DID. We can
then compute the joint expected utility given the agents’ policy trees.

(a) πi= Random Initial Policy (b) πj=Level 0 RL (m′j,0, πi) (c) π′j=Level 0 RL (m′j,0, πj)

Figure 4: We illustrate the principled way to generate collaborative policies for lower level agent j in the 3x3 Grid domain. We start with (a) a
random initial policy of agent i in the frame of agent j’s model; (b) execute MCESP to generate a collaborative policy for agent j; and (c) check
whether the neighboring policy of j, π′j , has a better joint utility.

LEVEL 0 RL (agent j’s model, m′j,0, agent i’s policy, πi, T)

1. Sample the initial state s from bj,0 in j’s model
2. Set current policy of j denoted as πj using the seed

policy in j’s model
3. Set τ ← {∗} – empty observation
4. Repeat
5. For t = 0 to T − 1 do
6. Obtain i’s action from πi and j’s action, atj ,

from current policy of j using observation history
7. Obtain the next state, s′, either by performing

the actions or sampling
8. Obtain team reward, rtj , using state and joint actions
9. Obtain j’s observation, ot+1

j , using next
state and joint actions

10. Generate trajectory, τ ← τ ∪ {atj , rtj , ot+1
j }

11. Update Q
πj

�o,a
according to Eq. 1

12. If max
a′ Q

πj

�o,a′ > Q
πj

�o,a

13. πj(�o) ← a′
14. Perturb an action, a, in πj for some �o
15. Until termination condition is met
16. Return πj and Q

πj

�o,a

Figure 5: Algorithm for learning agent j’s policies when modeled at
level 0.

cies is unknown, we normally use a sufficiently large K value. The
proposition below formalizes this observation.

Proposition Top-K policies of level 0 models of agent j given
same initial beliefs, K>0, guarantee inclusion of j’s optimal team
policy resulting in the optimal team behavior of agent i at level 1.

Agent j’s policy space will be additionally reduced because be-
haviorally equivalent models – models whether they are learning or
not with identical policies – will be clustered in line 6 of Fig. 2. In
summary, we take several steps to reduce the increase in j’s model
space. Using a subset of i’s policies preempts growing j’s policy
space at level 0 while the top-K technique removes possibly non-
collaborative policies.

4. EXPERIMENTAL RESULTS
From our experiments, we show that I-DIDs augmented with

level 0 models that learn, facilitate optimal team behavior which
was previously implausible. Consequently, we also show the appli-
cability of augmented I-DIDs to ad hoc teamwork. We empirically
evaluate the performance in three well-known cooperative prob-
lem domains involving two agents, i and j: 3 ∗ 3 grid meeting
(Grid) [8], box-pushing (BP) [27], and multiple access broadcast
channel (MABC) [18] problems.

AUGMENTED I-DID (level l ≥ 1 I-DID or level 0 DID, T)
Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

Populate Mt+1
j,l−1

3. For each mt
j in Mt

j,l−1 do
4. If l > 1 then
5. Recursively call algorithm with the l − 1 I-DID

that represents mt
j and the horizon, T − t

6. else
7. If the level 0 model is a learning model then
8. Solve using LEVEL 0 RL in Fig. 5

with horizon, T − t
9. else
10. Recursively call algorithm with level 0 DID

and the horizon, T − t
11. Select top-K j′s policies based on expected

utility values given the same belief
12. The remaining steps of the expansion phase are the same

as in Fig. 2.
Solution Phase
13. This is similar to the solution phase in Fig. 2.

Figure 6: Algorithm for solving a level l ≥ 1 I-DID or level 0 DID
expanded over T time steps with M ′

j,0 containing level 0 models that
learn.

Table 1: Domain Dimension and Experimental Settings

Domain T |M0
j | |Π̂i| Dimension

Grid
3 100 32

|Sj |=9, |Si|=81, |Ω|=3, |A|=54 200 64
BP 3 100 32 |S|=50, |Ω|=5, |A|=4

MABC

3 100 32
|Sj |=2, |Si|=4, |Ω|=2, |A|=24 100 64

5 200 64

We summarize the domain statistics and parameter settings of
the AUGMENTED I-DID in Table 1. Note that { 0

j is the number
of initial models of agent j at level 0 and Π̂i is the subset of i’s
policies that were generated using a principled approach which al-
lowed us to reduce the full space of agent i’s policies to those that
are possibly collaborative.

4.1 Plausibility of Teamwork
Experimental Settings. We implemented the algorithm AUG. I-
DID as shown in Fig. 6 including an implementation of the gener-
alized MCESP for performing level 0 RL. We demonstrate the per-
formance of the augmented framework for generating team behav-
ior in light of the consequences of bounded rationality in I-DIDs.

Table 2: Performance comparison between the trad. I-DID, aug. I-
DID, and DP-JESP in terms of the expected utility

Aug. I-DID Trad I-DID
Domain K Uniform Diverse Uniform

Grid 32 41.875 41.93

(T=3) 16 40.95 41.93 25.70
8 40.95 41.93

Dec-POMDP(DP-JESP): 43.10

Grid 64 28.76 32.61

(T=4) 32 28.76 32.61 21.55
16 27.85 32.61

Dec-POMDP(DP-JESP): *

BP 32 73.45 76.51

(T=3) 16 73.45 76.51 4.75
8 71.36 76.51

Dec-POMDP(DP-JESP): 85.18

MABC 32 2.12 2.30

(T=3) 16 2.12 2.30 1.79
8 2.12 2.30

Dec-POMDP(DP-JESP): 2.99

MABC 64 3.13 3.17

(T=4) 32 3.13 3.17 2.80
16 3.13 3.17

Dec-POMDP(DP-JESP): 3.89

MABC 64 4.08 4.16

(T=5) 32 3.99 4.16 3.29
16 3.99 4.16

Dec-POMDP(DP-JESP): 4.79

We compare the expected utility values of agent i’s policies with
those obtained from a Dec-POMDP formulation of the same prob-
lem domains. Note that the Dec-POMDP framework is designed
for exclusively solving the class of problems that constitute a coop-
erative multiagent setting. For different beliefs over the models, the
augmented I-DID solution approaches optimal team behavior in all
problem domains while outperforming traditional I-DID solutions.
Comparison with DP-JESP. We used an exact algorithm (DP-
JESP) – a recognized technique for solving Dec-POMDP – to com-
pute the optimal team policy of Dec-POMDP formulations of the
problem domains [29] while solving the traditional I-DID using the
exact DMU method [34]. For both the traditional I-DID (Trad. I-
DID) and augmented I-DID (Aug. I-DID) frameworks, we utilized
{ 0

j models of level 0 agent j that differ either in initial beliefs
or in the frame itself. In the running of the I-DID, all level 0 j’s
traditional models, mj,0, are evenly weighted by level 1 agent i
and solved as DIDs. To run the augmented I-DID, we maintained
the top K of { 0

j - K (in Table. 2) traditional models, mj,0, and
as many learning models, m′j,0, as i’s policies in Π̂i each with the
same belief over the state space as i’s. We then employed two ways
to weight both the non-learned policies (from mj,0) and learned
policies (from m′j,0) in agent i’s level 1 belief: (a) Uniform: all
policies are evenly weighted; (b) Diverse: policies with larger ex-
pected utility are assigned proportionally larger weights.
Performance Evaluation. In Table 2, we evaluate the performance
in terms of the expected utility values of level 1 i’s policies obtained
from solving three cooperative problem domains. We observe that
the augmented I-DID framework significantly outperforms the tra-
ditional I-DID where level 0 agent j does not learn. The augmented
I-DID solutions approach DP-JESP that generates the globally op-
timal team behavior. In cooperative games, the globally optimal
solution is the pareto optimal nash equilibrium. We observe that
larger the weights on the learned policies, the better the quality of
i’s policies. This restates the importance of the augmented level
0 j’s models that learn. The small gap from the optimal value is
mainly due to the beliefs over different models of j. We further

looked into the results (see Fig. 8), and found that the augmented
I-DID generates the optimal team behavior if i’s belief converges
to the true model of j (as is done in Dec-POMDP). This is con-
sistent with our observations of the effect of weighting policies.
Varying K does not make a visible impact on the performance as
the K values are probably large enough to cover a large fraction of
collaborative policies of agent j including the optimal team one.

M
o
d
el

 S
p
ac

es

Horizon

Grid (T=3)

M
o
d
el

 S
p
ac

es

Horizon

BP (T=3)

M
o
d
el

 S
p
ac

es

Horizon

MABC (T=4)

M
o
d
el

 S
p
ac

es

Horizon

MABC (T=5)

Figure 7: Top-K method reduces the added solution complexity of
the augmented I-DID. The complexity is dominated by the number of
models in each time step.

In Fig. 7, we show the reduction of model space that occurs due
to smaller values of K, which facilitates solutions of the augmented
I-DID. Fig. 7 shows the augmented level 0 models increases the
model space compared to the traditional I-DID (red bar). However,
the growth in the number of models has been effectively prevented
using the previous model clustering method (DMU) and the pro-
posed top-K technique.

4.2 Applications to Ad Hoc Teams
Experimental Settings. We also tested the performance of our on-
line implementation of the algorithm AUGMENTED I-DID in ad
hoc applications involving different types of teammates. We also
performed a baseline comparison with a well-known ad hoc planner
- OPAT. The goal of this experiment is to test if augmented I-DIDs
can adapt well when its teammates’ policies are not particularly
effective in advancing the joint goal. We evaluate their ability to
adapt effectively against three types of teammates; (a) Random -
when the teammate plays according to a randomly generated action
sequence for the entire length of the run. Some predefined random
seeds are used to guarantee that each test had the same action se-
quences. (b) Predefined - when the teammate plays according to
some predefined patterns which are sequences of random actions
with some fixed repeated lengths that are randomly chosen at the
beginning of each run. For example, if the action pattern is“1324”
and the repetition value is 2, the resulting action sequence will be
“11332244”. (c) Optimal - when the teammate plays rationally
and adaptively. In the case of OPAT, an optimal MMDP policy of
teammate is computed offline by value iteration.

In order to speed up the generation of RL models at level 0, we
implemented an approximate version of our generalized MCESP
called the Sample Average Approximation (MCESP-SAA) that es-
timates action values by taking a fixed number of samples and
then comparing the sample averages [25]. For this set of experi-
ments, we used n=25 sample trajectories to compute the approx-
imate value of the policy that generated them for MCESP-SAA.
We set α=0.9, and terminate the RL (line 15 in Fig. 5) if no pol-
icy changes are recommended after taking n samples of the value
of each observation sequence-action pair [25]. We also tested with
some domain-specific seed policies to investigate speedup in the

Table 3: Baseline Comparison with OPAT with different types of
teammates. Each datapoint is the average of 10 runs.

Ad Hoc Teammate OPAT Aug. IDID
Grid T=20, look-ahead=3

Random 12.25©1.26 14.2©0.84
Predefined 11.7©1.63 16.85©1.35
Optimal 28.35©2.4 27.96©1.92

BP T=20, look-ahead=3
Random 29.26©2.17 36.15©1.95

Predefined 41.1©1.55 54.43©3.38
Optimal 52.11©0.48 59.2©1.55

MABC T=20, look-ahead=3
Random 9.68©1.37 12.13©1.08

Predefined 12.8©0.65 13.22©0.21
Optimal 16.64©0.28 15.97©1.31

convergence of MCESP. We ran the simulations and reported the
average (of 10 trials) cumulative value at the end of 20 steps with
the discount factor = 0.9. We show that the augmented I-DID
solution significantly outperforms OPAT solutions in all problem
domains for Random and predefined teammates while performing
comparably for optimal ones.

Prj (Msg)

T = 0 T = 10 T = 20 T = 30

Number of Candidate
Models of Agent i

Time Steps (t)

Prj (Msg)

Figure 8: MABC simulation belief updates over 30 steps showing the
distribution approaching the agent j’s true type if it is present in agent
i’s candidate model space

Comparison with OPAT. In ad hoc teams, it may be noted that the
agents may not be aware that they take part in a team or they may
not be capable of working efficiently with other agents. Therefore,
we also implemented a generalized version of the OPAT algorithm
– that accounts for partial observability – to simulate ad hoc team-
work in partially observable settings and used this as the baseline
for comparison with our online implementation of Augmented I-
DIDs. The fundamental idea behind OPAT is that it solves a series
of stage games, one for each step, and then using biased adaptive
play to choose actions. Note that OPAT in its original form assumes
full observability of the environmental state and joint actions, and
the availability of a black box generative model for drawing sam-
ples of team actions. We relax the observability assumption in our
generalized implementation by considering partial observability.
We maintain similar simulation settings as in augmented I-DIDs
such as the random seeds for generating Random and Predefined
teammates. The OPAT simulations with several sample sizes were
run also for 20 steps and the average cumulative reward over 10
trials was reported.
Performance Evaluation. In Table 3, we show how augmented
I-DIDs compare with OPAT for three types of ad hoc teammates
in online simulations spanning 20 steps with a look-ahead of 3 for
the three ad hoc domains. At each step, we maintain top 100 can-
didate models in agent i’s I-DID and generate a 3 step look-ahead
policy for computing the action at each step. Each data point rep-

resents the average cumulative reward of 10 trials over some fixed
time T , and the standard deviation. We computed the Student’s
(Unpaired) T-Test for each pair of data points in order to measure
the significance of the results. In these empirical results, we no-
tice that I-DIDs significantly outperform OPAT especially when
the other agents are random or predefined teammates in all three
problem domains except in the case of the MABC domain with a
predefined teammate where the improvement over OPAT was not
quite significant (2-tailed P-value = 0.0676). The reason for aug-
mented I-DID’s good performance may be attributed to the fact that
if the true model of the other agent is present in agent i’s candidate
model space, over time, the augmented I-DID’s belief update fa-
cilitates the belief distribution over the models to increase over the
agent j’s true model (See Fig. 8). However, although Aug. I-DIDs
performed significantly better than OPAT when faced with opti-
mal teammates only for the BP domain, the results from the other
domains were comparable to OPAT. As expected, we noticed that
both OPAT and Aug. I-DIDs each played the game better against
optimal teammates as opposed to random or predefined ones.

T
im

e
(i

n
 s

ec
)

Learning Time
Solving Time

MABCBPGrid

Figure 9: Timing results for augmented
I-DID simulations and OPAT with an OP-
TIMAL teammate.

Timing Results. In
the Fig. 9, we illustrate
the simulation run times
for the augmented I-DID
and generalized OPAT
approaches for solving
the three problem do-
mains online. Expect-
edly, OPAT performs much
better in terms of timing
because it approximates
the problem by solving
a series of stage games.
In the case of augmented
I-DIDs, we observe that
generating the learning models took the bulk of the time. We show
the learning overhead for Grid, BP, and the MABC domains in red.
To reduce this overhead and speedup augmented I-DIDs, we may
try other faster RL methods to substitute MCESP.
Scalability Results. While we recognize that MCESP is the bot-
tleneck to scaling augmented I-DIDs for larger problems, in a pre-
liminary study of scalability, we computed the augmented I-DID
solutions in a 4 ∗ 4 grid domain and a box-pushing problem of
larger planning horizon. For example, in the larger grid domain for
T=3, the optimal team value of 29.6 is achieved by the augmented
I-DID comparable to 19.82 obtained by solving the traditional I-
DID; while the optimal team policies found by the augmented I-
DID are the same as those computed by DP-JESP in the T=4 box-
pushing problem. Using the augmented I-DID, we are also able
to solve MABC for T=5 and get the same optimal team behavior
as that obtained by DP-JESP. Hence we are optimistic about the
scalability of the augmented I-DID.

5. RELATED WORK
Previously, there have been several attempts to address ad hoc

coordination in multiagent systems. However, the assumptions that
were made by the solutions therein entail that they only address few
aspects of the larger problem. For example, some assume that all
agents follow pre-specified plans that include roles with synchro-
nized action sequences for each role [10, 12] while some assume
that the other agents’ behaviors are fixed and known and that all
agents’ frames are common [2, 6, 31, 32]. However, a good ad
hoc agent would model its teammates in an attempt to converge to
their true types. These types of agents could differ from one an-

other in their frames in the way their payoffs are structured and/or
in the way their mobility/sensing capability is compromised. The
framework used in this paper assumes nothing about the behaviors
or plans of the other agents and seeks to converge to the agents’
respective true models while permitting their frames to differ. Wu
et al. on the other hand, simplify the problem by assuming that
the state and joint actions are fully observable [33]. In this paper
however, we relax this assumption to account for partial observabil-
ity as experienced in most real-world scenarios. I-POMDPs and I-
DIDs provide a formal model general enough to accomodate a wide
spectrum of problems including those of ad hoc coordination as we
note that most existing work in ad hoc planning are procedural in
nature and pertain to only specific (types of) problems. A related
solution is Harsanyi-Bellman Ad Hoc Coordination (HBA) by Al-
brecht et al. [3] where they provide a generalized framework that
is capable of maintaining a distribution over a set of user-defined
behavior types of the opponents, and utilises them in the planning
to obtain its optimal actions. However, there is no guarantee that
the space of user-defined types considered will include the true type
space of the opponents. Broadly, HBA relates pre-defined types to
the true type whereas I-DIDs can recognize the true type from all
possible types of unknown opponents. Although additionally, Al-
brecht et al. propose a opponent modelling method by combining
case-based reasoning and fictitious play called conceptual types,
they do not hypothesise behaviors directly, instead they simplify it
by hypothesising a world conceptualization underlying an agent’s
behavior.

6. DISCUSSION AND CONCLUSION
Self-interested individual decision makers face hierarchical (or

nested) belief systems in their multiagent planning problems. In
this paper, we explicate one negative consequence of bounded ra-
tionality: the agent may not behave as an optimal teammate. In the
I-DID framework that models individual decision makers modeling
other agents, we show that reinforcement learning integrated with
the planning allows the models to produce sophisticated policies.
For the first time, we see the principled and comprehensive emer-
gence of team behavior in I-DID solutions as demonstrated by our
results.

This result facilitated I-DIDs to be applied to ad hoc team set-
tings for which they are just naturally well-suited for. We show
that integrating learning in the context of I-DIDs helped us provide
a solution to a fundamental challenge in ad hoc teamwork; build-
ing a single autonomous agent that can function well in an ad hoc
team setting. Not only did augmented I-DIDs compare well with a
standard baseline algorithm (OPAT), it adapted well with different
kinds of ad hoc teammates.

While individual decision-making frameworks such as interac-
tive POMDPs and I-DIDs are thought to be well suited to non-
cooperative domains, we show a way in which they may be applied
to cooperative domains as well. Integrating learning while plan-
ning provides a middle ground between multiagent planning frame-
works such as the Dec-POMDP and joint learning for cooperative
domains [24]. Additionally, the augmented I-DID differentiates it-
self from other centralized cooperative frameworks by focusing on
the behavior of an individual agent in a multiagent setting. Imme-
diate lines of future work involve improving the scalability of the
framework, and particularly its learning component, by utilizing
larger problems.

7. REFERENCES
[1] B. Adam and E. Dekel. Hierarchies of beliefs and common

knowledge. International Journal of Game Theory, 59(1):189–198,

1993.
[2] N. Agmon and P. Stone. Leading ad hoc agents in joint action

settings with multiple teammates. In AAMAS, 2012.
[3] S. Albrecht and S. Ramamoorthy. A game-theoretic model and

best-response learning method for ad hoc coordination in multiagent
systems. Technical report, School of Informatics, The University of
Edinburgh, United Kingdom, 2013.

[4] R. J. Aumann. Interactive epistemology II: Probability. International
Journal of Game Theory, 28:301–314, 1999.

[5] B. Banerjee, J. Lyle, L. Kraemer, and R. Yellamraju. Solving finite
horizon decentralized pomdps by distributed reinforcement learning.
In AAMAS Workshop on MSDM, pages 9–16, 2012.

[6] S. Barrett, P. Stone, and S. Kraus. Empirical evaluation of ad hoc
teamwork in the pursuit domain. In AAMAS, 2011.

[7] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The
complexity of decentralized control of Markov decision processes.
Mathematics of Operations Research, 27(4):819–840, 2002.

[8] D. S. Bernstein, E. A. Hansen, and S. Zilberstein. Bounded policy
iteration for decentralized pomdps. In IJCAI, pages 1287–1292,
2005.

[9] K. Binmore. Essays on Foundations of Game Theory. Pittman, 1982.
[10] M. H. Bowling and P. McCracken. Coordination and adaptation in

impromptu teams. In AAAI, pages 53–58, 2005.
[11] A. Brandenburger. The power of paradox: Some recent developments

in interactive epistemology. International Journal of Game Theory,
35:465–492, 2007.

[12] D. H. Browning, M. B. Dias, T. K. Harris, B. Browning, E. G. Jones,
B. Argall, M. Veloso, A. Stentz, and A. Rudnicky. Dynamically
formed human-robot teams performing coordinated tasks. In AAAI
Spring Symposium “To Boldly Go Where No Human-Robot Team
Has Gone Before”, 2006.

[13] L. Chrisman. Reinforcement learning with perceptual aliasing: the
perceptual distinctions approach. In AAAI, pages 183–188, 1992.

[14] P. Doshi. Decision making in complex mulitiagent contexts: A tale of
two frameworks. AI Magazine, 4(33):82–95, 2012.

[15] P. Doshi, Y. Zeng, and Q. Chen. Graphical models for interactive
pomdps: Representations and solutions. JAAMAS, 18(3):376–416,
2009.

[16] R. Fagin, J. Geanakoplos, J. Halpern, and M. Vardi. The hierarchical
approach to modeling knowledge and common knowledge.
International Journal of Game Theory, 28, 1999.

[17] P. Gmytrasiewicz and P. Doshi. A framework for sequential planning
in multiagent settings. JAIR, 24:49–79, 2005.

[18] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic
programming for partially observable stochastic games. In AAAI,
pages 709–715, 2004.

[19] A. K. Mccallum. Reinforcement learning with selective perception
and hidden state. PhD thesis, University of Rochester, 1996.

[20] J. Mertens and S. Zamir. Formulation of bayesian analysis for games
with incomplete information. International Journal of Game Theory,
14:1–29, 1985.

[21] N. Meuleau, L. Peshkin, K. eung Kim, and L. P. Kaelbling. Learning
finite-state controllers for partially observable environments. In UAI,
pages 427–436, 1999.

[22] B. Ng, K. Boakye, C. Meyers, and A. Wang. Bayes-adaptive
interactive pomdps. In AAAI, 2012.

[23] D. Nikovski. State-Aggregation Algorithms for Learning
Probabilistic Models for Robot Control. PhD thesis, Carnegie Mellon
University, 2002.

[24] L. Panait and S. Luke. Cooperative multi-agent learning: The state of
the art. JAAMAS, 11(3):387–434, 2005.

[25] T. J. Perkins. Reinforcement learning for pomdps based on action
values and stochastic optimization. In AAAI, pages 199–204, 2002.

[26] D. Pynadath and S. Marsella. Minimal mental models. In AAAI,
pages 1038–1044, 2007.

[27] S. Seuken and S. Zilberstein. Improved memory-bounded dynamic
programming for decentralized pomdps. In UAI, pages 344–351,
2007.

[28] S. Seuken and S. Zilberstein. Formal models and algorithms for
decentralized decision making under uncertainty. JAAMAS,

17(2):190–250, 2008.
[29] M. Spaan and F. Oliehoek. The multiagent decision process toolbox:

Software for decision-theoretic planning in multiagent systems. In
AAMAS Workshop on MSDM, pages 107–121, 2008.

[30] P. Stone, G. A. Kaminka, S. Kraus, J. R. Rosenschein, and
N. Agmon. Teaching and leading an ad hoc teammate: Collaboration
without pre-coordination. Artificial Intelligence, 2013.

[31] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein. Ad hoc
autonomous agent teams: Collaboration without pre-coordination. In
AAAI, 2010.

[32] P. Stone and S. Kraus. To teach or not to teach? decision making
under uncertainty in ad hoc teams. In AAMAS, 2010.

[33] F. Wu, S. Zilberstein, and X. Chen. Online planning for ad hoc
autonomous agent teams. In IJCAI, pages 439–445, 2011.

[34] Y. Zeng and P. Doshi. Exploiting model equivalences for solving
interactive dynamic influence diagrams. JAIR, 43:211–255, 2012.

