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Abstract

In the mid-1990s, the crime scene toolkit was revolutionised by the introduction 
of DNA-based analyses such as the polymerase chain reaction, low copy number 
DNA analysis, short-tandem repeat typing, pulse-field gel electrophoresis and vari-
able number tandem repeat. Since then, methodological advances in other disci-
plines, especially molecular microbial ecology, can now be adapted for cutting-edge 
applications in forensic contexts. Despite several studies and discussions, there is, 
however, currently very little evidence of these techniques’ adoption at the con-
temporary crime scene. Consequently, this article discusses some of the popular 
‘omics’ and their current and potential exploitations in the ‘forensic ecogenomics’ 
of body decomposition in a crime scene. Thus, together with published supportive 
findings and discourse, knowledge gaps are identified. These then justify the need 
for more comprehensive, directed, concerted and global research towards state-of-
the-art microecophysiology method application and/or adaptation for subsequent 
successful exploitations in this additional context of microbial forensics.

Key words: forensic science; crime scene; molecular microbial ecology, 
ecogenomics

Introduction

The detection of clandestine gravesites and areas of surface body deposition is of 
vital importance in a range of forensic contexts, but particularly in the investiga-
tion of acts of mass violence. Generally this can be achieved through the use of eye 
witness statements, aerial photography and field walking. However, there are occa-
sions when graves are reopened and the remains moved elsewhere or, indeed, dug 
and never used. Determining whether or not a grave has been used in these situ-
ations can be difficult. Traditional archaeological methods that focus directly on 
the grave1 and the presence of small human remains or associated personal effects 
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may be helpful.2 These approaches are, however, dependent on meticulous site 
excavation, which may not always be achievable. An alternative may be to examine 
the surrounding soil. Work has shown that decomposition alters indigenous 
soil microbial community profiles3 and there is, therefore, potential to use these 
detectable changes to determine grave locations and use. Although a very techni-
cal approach to the investigation of events of mass violence has been cautioned, 
advanced scientific techniques do have a role to play if deployed sensitively.4

The forensic sciences have an ability to co-opt methods and procedures from 
other disciplines to enhance expertise at a crime scene with forensic evidence. 
It is well recognised that molecular analyses have revolutionised this discipline 
as a whole, from collecting evidence and intelligence on site to informing court 
decisions. Particularly well-publicised applications focussed on body tissues and 
fluids and human identification and verification.5 Although only currently offer-
ing potential, there is now a developing appreciation that the directed scrutiny of 
microbial communities can contribute to the study and identification of people 
and bodies.6 Within the forensic sciences, there is great debate surrounding the 
boundaries of the term ‘microbial forensics’.7 However, since our interest focusses 
on the gravesite and not the individual per se, we propose a more encompassing 
‘forensic ecogenomics’ for the application of molecular microbial ecology tech-
niques at the interface of (environmental) forensics, microbiology and archaeol-
ogy, and thus expand on initial applications of microbiological analyses of soil.8

This perspective thus seeks to highlight ‘forensic ecogenomics’ as another aspect 
of the ‘microbial forensics’ category with current applications and the potential 
exploitation of popular and novel microbial ecology techniques in contempo-
rary crime scene investigations. The ultimate proposal is to make stronger links 
between soil and aquatic microbial profiles and clandestine burial sites, in particu-
lar. Suggestions for additional methodological adoption are also made to ensure 
that microbial forensics, as an exciting new field of study and investigative disci-
pline, is fit-for-purpose and applicable to wider but relevant contexts.

Specific attention is therefore given to decomposition-related microbioforensic 
studies published between 2000 and 2014. The application of ecogenomic proto-
cols has then focussed on those with the highest potential for immediate extended 
applications in real-life scenarios (Table 1). The microecophysiology tools consid-
ered include denaturing gradient gel electrophoresis (DGGE), fatty acid methyl 
ester analysis (FAME), length heterogeneity PCR (LH-PCR), phospholipid fatty 
acid analysis (PLFA), polymerase chain reaction (PCR), terminal restriction frag-
ment length polymorphisms (t-RFLP), next generation sequencing and micro-
arrays/genechips as used, or for potential application, in measuring ecosystem 
response to burial and subsequent decomposition.

Burial and decomposition in soil

Soil is recognised in microbial ecology as a complex and heterogeneous environ-
ment that supports a vast number of phylogenetically, phenotypically and func-
tionally diverse microbial populations. While the scientific discipline is changing, 
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until recently soil was often considered in forensic science as essentially a burial 
medium where human and animal remains decompose. Typically, decomposition 
processes are mediated by changing indigenous microbial communities, especially 
bacteria, which are most abundant.9 According to Carter et al., the burial and 
subsequent decomposition of cadavers in a grave was often determined to be eco-
logically localised, releasing organic resources that were spatially and temporally 
finite. As a result, studies of soil in the burial context tended to focus on the local-
ised influence of temperature or pH on the rate of decomposition.10 Nevertheless, 
several researchers reported that chemical, biological and physical changes occur 
in the burial site in response to the corpse and its resultant decay.11 These processes 
are mutual and each impacts on the other. Typically, high temperatures increase 
the rate of decomposition and, in turn, soil temperatures increase with advanced 
decay.12 Fluctuations in pH, sometimes in relation to oxic or anoxic conditions, 
have been recorded where the production of ammonia and volatile fatty acids led 
to increases and decreases in soil pH, respectively.

Expectedly, these interacting processes will both lead to changes in, and be partly 
dependent on, the local microbial communities. Complex scenarios arise, there-
fore, due to the number of soil types, the way in which the unique and individual 
properties influence and/or are affected by the added remains, the indigenous 
microbial communities, local climatic conditions and nutrient availability. As a 
result, the decompositional effects of these variables and different environmental 
parameters, such as moisture content, pH, temperature and anion and cation con-
centrations have been explored in different soils. Thus, Hopkins et al. assessed vari-
ables in 430-day grave soils of four- to five-month old pigs, which were between 5 
and 20 m from the grave of a murder victim. The researchers recorded increases 
in several parameters including microbial biomass C, microbial respiration, nitro-
gen mineralisation and pH in comparison to the controls (1 m away from each 
grave).13 Haslam and Tibbett made a laboratory-based study of the effects of lamb 
(Ovis aries) skeletal muscle tissue decomposition in three soils with different pH 
values – a Podzol (pH 4.6), Cambisol Brown Earth (pH 6.4) and Rendzina (pH 
7.8) – and found that decomposition and substrate-induced respiration increased 
in the acidic Podzol in combination with a slightly higher CO2 evolution while the 
alkaline Rendzina recorded the highest microbial biomass.14 The effect of moisture 
on decomposition in Brown Sodosol (loamy sand), Rudosol (sandy) and Grey 
Vertosol (medium clay) was tested by Carter et al. where higher decomposition 
rates resulted from increased wetness for the two sandy soils.15

Overall, the original soil characteristics and the early-phase decomposition by-
products select for specific microbial communities and the size of the impacted 
area. These affect the rate of mid- to late-phase decomposition, subsequent by-
products and, in turn, microbial respiration rates and biomass (population size) 
that show soil-specific responses. For example, Parkinson et al. applied PLFA and 
t-RFLP analyses of bacterial and fungal profiles to human burial soils and reported 
distinct changes in fungal populations between the early and late phases of cadaver 
decomposition. These clear delineations were attributed to changes in the amounts 
and types of substrates that were available as a direct result of decomposition. An 
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increase in nutrients will thus be accompanied by an abundance of the r-strategist 
while a decrease in labile substrates will result in higher numbers of the typically 
slow-growing k-strategists. The authors also suggested that sequential changes in 
community profiles could be linked, potentially, to post-mortem interval (PMI) 
estimation as with insect colonisation in forensic entomology.16

Length heterogeneity PCR was applied by Moreno et al. to study the response of 
soil microbial communities to cadaver decomposition, particularly in shallow clan-
destine graves during a sixteen-week period across nine different sites. Together 
with changes in community compositions of specific functional microbial clades/
genes such as nitrogen fixers and the nifH gene, the occurrences of different intes-
tinal, oral and skin commensal microbiota were recorded. These were attributed 
to unique microbiome fingerprints specific to each of the bodies. As a result, the 
authors proposed that LH-PCR could be another reliable body identification tech-
nique in criminal or missing person cases.17

Apart from bacteria, other microorganisms such as fungi, and their recognised 
diversity, can be exploited in a field termed ‘forensic mycology’.18 A comprehen-
sive review by Hawksworth and Wiltshire considered the use of fungi as potential 
targets for diverse applications including the estimation of time since death, burial 
location, time of deposition, biological warfare investigations and the enforcement 
of legislation such as the Drugs Act 2005.19 Some researchers also recorded the 
consistent occurrence of fruiting structures in specific fungi, such as Penicillium 
sp., Aspergillus terreus and Eurotium spp. in response to mammalian/human 
decomposition.20 The studies were made in situ in clandestine graves and/or with 
real site materials from different environments including forests and a domestic 
garden. In particular, Ishii et al. reported the first study where taxonomic determi-
nations of the appearance of fungal strains on a decomposing cadaver were made 
to suggest the PMI.21 Other strains, such as Trichophyton mentagrophytes, were 
then used in vitro on the hair of adult corpses to investigate the perforation test in 
the gaseous post-mortem period to establish time since death.22

Despite these demonstrable achievements, there are several issues to resolve 
including the dwindling number of specialist mycologists. Also, the numbers 
(and types) of fungi in a single location are vast with comprehensive invento-
ries impractical and unattainable (particular spores and fruiting bodies of some 
species are produced infrequently), and appropriate and extensive experimenta-
tion on the patterns and rates of growth of species in relation to the post-mortem 
interval is required.23 Therefore, robust fungal analysis, dependent particularly 
on well-established microbial ecology techniques rather than conventional taxo-
nomic methods alone, would enhance the evident and potential value of forensic 
mycology. Anderson and Cairney present an opportune and succinct review of 
the molecular techniques used to study fungal diversity and ecology in soils with 
total/direct 18S rRNA gene or 18S – 23S rRNA gene internal transcribed spacer 
(ITS) as the principal targets.24 Furthermore, Damon et al. investigated an alterna-
tive fungal molecular marker, the mitochondrial cytochrome c oxidase 1 (COX1) 
encoding gene, for environmental RNA-based analyses of metabolically active 
Agaricomycetes and Pezizomycotina communities.25 Although the discourse by 
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Anderson and Cairney and Damon et al. was not intended for the forensic ecog-
enomic context, we propose that the strengths, limitations and novel approaches 
highlighted by these researchers are also transferable to, and must be explored for, 
the advancement and validation of forensic mycology.26

Generally, the reports, exemplified above, acknowledge the potential applicabil-
ity and relevance of the methodologies that are currently adopted in soil-based 
forensic investigations. They also emphasise the need for additional, robust and 
sensitive microbial assessments of soils around burial environments and human 
decomposition to explore local dynamics and functions in more detail and, thus, 
extend taphonomic research. Also, identification of (core) microbial taxa linked 
to decomposition ‘history’ would, potentially, provide stronger or more accurate 
determinations of PMI.27 Previous studies have already established that high-
throughput sequencing techniques could play a key role in rapidly increasing the 
necessary comparative libraries.28 This comprehensive approach would directly 
address the observation by Tomberlin et al. of the need to streamline ‘research in 
decomposition ecology, which promotes quantitative approaches to collecting and 
applying data to forensic investigations involving decomposing human remains’.29

Aquatic environments

Despite the occurrence of human remains in bodies of water, little research has 
been conducted with a detailed analysis of taphonomic changes due to aquatic sub-
mersion.30 Nevertheless, some studies have explored the potential roles of micro-
bial communities in aquatic ecosystems for their effective and reliable application 
in human body crime scene investigations. For example, Kakizaki et al. used blood 
from twenty-two cadavers recovered from or near fresh or saline water and normal 
blood to model blood samples of victims found twenty-four hours after drowning. 
Culture-dependent and molecular homologous analyses of the 16S rRNA gene 
were used to determine the occurrence of marine bacteria in blood samples and, 
potentially, establish a protocol for victims of drowning. The researchers recorded 
distinct microbial profile differences of cadavers drowned in seawater compared 
with those drowned in fresh water (river, bathtub) and deposited on dry land. 
Specifically, homologous 16S rRNA gene analysis of bioluminescent and/or blue 
colonies on 4% (w/v) NaCl-supplemented TH agar indicated a predominance 
of marine strains of the Photobacterium, Vibrio, Shewanella and Psychrobacter 
genera in blood of cadavers drowned in seawater. In contrast, non-marine strains, 
Aeromonas, Vagococcus, Staphylococcus and Pseudomonas spp were recovered 
from cadavers from a river, bathtub and dry land.31

Although more traditional diatom analyses can be cumbersome32, a combina-
tion of bacterioplankton cultivation and marine or freshwater diatom counts was 
used by Kakizaki et al. to confirm drowning as the cause of death for a female body 
that had washed up on a beach after a typhoon. Despite extensive decomposition, 
the combined analysis of water samples from different organs (such as kidneys, 
liver and both lungs, including and excluding the pleura) provided conclusive evi-
dence of drowning in fresh or brackish water with low salinity.33
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In vitro studies have also been used to address knowledge gaps on the potential 
use of specific aquatic microbiological indicators for drowning and differentiation 
between incidences in waters of different salinities.34 These initiatives were com-
plemented further by other research groups such as Dickson et al. who applied 
molecular-based PCR and sequencing of the 16S rRNA gene to determine links 
between microbial invasion, body decomposition in marine ecosystems and post-
mortem submersion interval (PMSI). Analysis of completely submerged pig (Sus 
scrofa L.) carcasses showed a sequential occurrence of specific microbial communi-
ties with distinctive diversities and compositions relative to specific PMSIs. Hence, 
although a predominance of Gammaproteobacteria was generally recorded, novel 
Bacteroidales genera showed distinct season- and submersion-specific coloni-
sation patterns. Despite these, the authors highlighted deliberations by other 
workers that microbial composition trends, which then provide PMSI estimates, 
are dependent on several parameters including temperature, water depth, current, 
salinity, access to water surface (whether the body remains afloat or sinks), nature 
of the underlying substrate, water chemistry, presence of scavengers and clothing 
and trauma. Consequently, the post-mortem submersion interval determinations 
could probably be site-specific.35

These studies highlight that local aquatic environment analysis could be com-
plemented by culture- and molecular-based studies of the microbial communities 
found in or on victims to provide a substantive link to the crime scene, even if 
the remains have been moved and/or decomposed. Further detailed, more robust 
and conclusive research (particularly regarding species distribution) is required, 
however, before the informed adoption of this approach in the crime investigative 
toolkit.

Potential impacts of the human microbiome

The human body is host to thousands of different bacterial species (see NIH HMP 
Working Group et al. and Wilson and Kong for comprehensive reviews) and the 
topmost layer of skin, the epidermis, has local characteristics that result in unique 
microecosystems.36 For example, the skin has a low pH, low water activity and 
secretions from sudoriferous (sweat) and sebacious (oil) glands, with the epidermis 
contributing dead keratinised epithelial cells. Overall, the inherent properties of 
each organ lead to differences in bacterial community composition from one area 
of the body to another. These differences even occur in physiological proximity 
and/or depths, hence Grice et al. observed that hand bacterial profiles are different 
to those of the forearm.37

Furthermore, several symbiotic relationships exist between the human body 
and a wide range of bacteria, and common examples include the intestinal and 
skin microbiota.38 Also, personal lifestyles create distinct microenvironments 
that select for specific microbial communities or local microbial fingerprints that 
differ between individuals (Table 2). Thus Fierer et al. suggest that ‘the collective 
genomes of our microbial symbionts may be more personally identifying than 
our own human genomes’.39 Since these interactions are constant but unique for 
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each individual, they may afford valuable identification information for forensic 
investigations ante-mortem. A microbial community must, however, be relatively 
consistent over time and independent of transitory perturbations to constitute a 
unique ‘microbial fingerprint’.40 This concept has been tested on different parts 
of the body including hands, elbows and forearms41 with the use of culture-based 
and 16S rRNA gene pyrosequencing analyses where the data recorded some core 
bacterial taxa together with distinct intra- and interpersonal bacterial associations. 
The distributions of different phylotypes were also dependent on other parameters 
including sex. Despite these findings, the occurrence of a microbial fingerprint for 
forensic applications remains the subject of considerable debate and experimental 
scrutiny. Its persistence post-mortem, particularly relative to different phases of 
decomposition, mandates comprehensive studies and is outside the scope of this 
article.

To date, several investigations of the application of microarrays to explore the 
human microbiome have been made and/or debated. For example, a review of 
community composition, dynamics and functional capacity of the human micro-
biota is presented by Paliy and Agans. The authors highlighted the application of 
metagenomics, metatranscriptomics, metaproteomics, metabolomics and meta-
bonomics to understand the capacities of microbial communities to function and 
produce metabolites in response to specific interactions with the environment. 
Also, recent data comparing child gut microbiomes in response to long-term diets 
in industrialised (Europe, Amerindian) and emerging (Burkina Faso, Malawi) 
nations is explored.42 Similarly, Bergström et al. reported on the gut low density 
array (GULDA), which they developed for rapid, quantitative, cost-effective and 
high throughput community dynamics analysis of typical and predominant core 
intestinal microbiome phyla including Firmicutes, Bacteroidetes, Actinobacteria, 
Proteobacteria and Verrucomicrobia. Despite the small sample size, the study data 
suggested a potential application of GULDA to assess the response of specific phy-
logenetic groups as a function of age, diet, functional food, antibiotics and health.43 
Therefore, although experimental analyses are limited or not possible due to ethical 
guidelines, it seems likely that different human microbiome-based assays that have 
been used ante-mortem could be applied at real crime scenes to investigate their 
potential applicability to determine the health, lifestyle, socioeconomic and cul-
tural background of an unidentified victim or suspect.

Although studies on human cadavers are lacking, animal model-based studies 
have suggested that spatio-temporal shifts in necrobiome community structure 
and composition can be used, potentially, for PMI estimates.44 Also, while compre-
hensive investigations are required, it seems plausible that person-specific microbi-
ota would result in distinct post-mortem decomposition timelines. These would, in 
turn, lead to divergent effects on the dynamics of the surrounding environmental 
(burial) microbial communities. Thus post-mortem interval and time-since-burial 
calculations, as also based on forensic ecogenomic analyses, would be affected 
directly by the substrates and chemicals released by the decomposing body relative 
to several parameters such as its size, age, hygiene, diet and health (medication).
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Future perspectives

Apart from monitoring the effects of decomposition on microbial community 
dynamics, other potential applications of forensic ecogenomics may be considered. 
Some examples include: (i) use of species-specific and hierarchical oligonucleotide 
primer extension determinations45 to link environmental degradation to specific 
pollution sources (‘environmental forensics’)46 such as human or animal type 
faecal matter in surface water; (ii) analysis of samples of the oral microbiome (bite 
marks and buccal swabs), lip prints and skin microbiota (fingerprints and skin 
cells) using microarrays or genechips; and (iii) the examination of stable isotope 
profiles of decomposition products.47 Although presently theoretical, these inno-
vative and high throughput tools have the potential to extend the forensic toolkit 
further. The typically rapid generation of large molecular and metabolomic data 
sets, coupled with robust and proven analysis and conventional intelligence gather-
ing, could facilitate more comprehensive, efficient and expedient interpretation of 
the complete crime scene data set.

Conclusions

The introduction of DNA-based analysis revolutionised crime scene and forensic 
investigation protocols. As with any discipline, new challenges necessitate the 
development of novel approaches and/or the adoption of existing techniques from 
related fields. For different environmental biotechnologies, this process led to the 
increasing application of rapid, easy-to-use, high resolution, high throughput, 
robust and cutting-edge molecular microecophysiology techniques that typically 
result in data sets of high quantity and quality. Therefore, the aim of this article is 
to emphasise that the methods now common in exploring the molecular microbial 
ecology of soils, sediments and water have an exciting role to play in the future 
investigation of episodes of violence.

Although some key preliminary steps such as sample collection, storage and 
preparation, especially for representative and uncontaminated DNA/RNA/
protein/fatty acid recovery remain critical (and yet could be problematic in remote 
areas), the advantages and limitations of established and novel ecogenomic tools 
need to be considered specifically for application in forensic archaeological con-
texts. Hence, as exemplified in Table 1, rigorous testing and verification of some of 
these tools prior to their adoption, particularly in the microbioforensics of decom-
position, is underway.
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Table 1: Current and potential applications of ecogenomic techniques in 
microbial forensics (adapted from Ralebitso-Senior et al.)48

Technique Current and potential applications/observations 

DNA/RNA Most crime scene science/forensic investigations rely on 
DNA-based protocols. RNA-based microbial forensics may 
be required especially for decomposition studies.

D/TGGE‡ Reliability of DGGE (and other profiling techniques) data as 
part of a robust intelligence is potentially dependent on the 
establishment/adoption of specific protocols.49

Q-PCR/RT-
PCR‡

Traced sources of environmental degradation. Quantifies 
the expression of catabolic enzymes for specific substrates in 
decomposing materials.50

LH-PCR Identifies composition of specific functional microbial 
clades/genes for an individual to allow for body identification 
in criminal or missing person cases. 51

Homologous 
16S rRNA gene 
analysis

Establishes the occurrence/predominance of different genera 
in victims drowned in saline and freshwater.52

t-RFLP Establishes changes in fugal community structure that could 
be linked to early and late phases of decomposition. May 
determine differences in human microbiota.53

FISH-based e.g. 
MAR-FISH, 
STAR-FISH

Potential application especially in identifying zones affected 
by decomposition. Estimation of the size and/or weight of 
the original buried material.

‡

SIP GC/MS-based analysis for lipids (FAME). Combination 
with DNA-/RNA-/protein-/amino acid-based tracking 
of microbial communities/enzymes in response to 
decomposition‡. 54

HOPE Afford activity-specific comparisons between pristine and 
contaminated ecosystems (e.g. Bacteroidales-Prevotella 
distribution/predominance due to farming activities). 
Quantitative data may allow estimates of contaminant 
migration relative to source.55

Metagenomic 
analysis

Applicable: (i) pre-, during and post-decomposition; (ii) 
above, within, below and away from decomposing material; 
and (iii) upstream, within and downstream of pollution 
point.

‡

Microarrays Potential for bespoke platforms targeting common members 
of the human microbiota. Use existing arrays, e.g. GeoChip 
2.0/3.0 and PhyloChip, in decomposition studies.

‡

Clone libraries Highly applicable for defined microhabitats and human 
‘microbial fingerprinting’.56
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Sequencing Identifies phylogenetic members/profiles indicative of 
and unique to decomposition history, defined ‘microbial 
fingerprints’ and tissue-specific human microbiota‡. 
Provides data to design primers/probes, e.g. for 
microarrays.57

SDS-PAGE Applicable for rapid analysis of protein-based response to 
decomposition.

‡

FAME Lipid analysis of grave soil confirms disinterred 
grave location. Can be complemented with microbial 
community tracking to link profile dynamics as a result of 
decomposition.58

PLFA Robust evidence of microbial community structure changes 
in response to decomposition.59

CLPP Compares physiological/metabolic profiles between crime- 
and non-crime-scene samples.

‡

‡ designates techniques that have not yet applied in microbial forensics; FISH: 
Fluorescent in situ hybridization; MAR-FISH: microautoradiography-fluoresence 
in situ hybridization; STAR-FISH: substrate-tracking autoradiography-FISH; 
SDS-PAGE: Sodium dodecyl sulphate polyacrylamide gel electrophoresis; CLPP: 
Community-level physiological profiling

Table 2: Influences on microbial communities on the person

Lifestyle Variable Details

Hand sanitation Increased use of antibacterial hand gels and soaps reduces 
bacterial adherence and colonisation. They also target specific 
strains selecting the number and types of skin colonising 
species.60

Antibiotics / 
medication

These change the chemical composition of skin secretions 
and, thus, the resident microbial strains. Specifically, 
antibiotics are bactericidal to species around skin hair 
follicles.61

Smoking The habit has several effects on the skin including a decrease 
in moisture making it more difficult for bacteria to find free 
water in an already dry environment.62

Age Bodily functions change with age potentially affecting 
amounts/types of secretions hence the commensal microbial 
profiles. Medical devices (catheters or prostheses) will affect 
populations.63

Sex Male and female bodies are characterised by different 
communities, e.g. male skin generally supports higher 
bacterial density while female skin has a lower density but 
higher diversity.64
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Body piercing Pierced areas are cleansed to reduce risk of infection, which 
affects the bacterial composition, while silver jewellery 
may influence bacterial composition due to antimicrobial 
properties.65

Geographical 
location

Microorganisms are often acquired from the surrounding 
environment and so it is possible to measure differences in 
species that are geographically region-specific.66

Occupation The palm, in particular, is in constant contact with other 
surfaces and/or areas of the body, e.g. manual labourers’ 
hands are mostly subject to harsh treatment and extensive 
wear and tear depending on the materials handled, hence 
reducing colonisation by transient bacteria. 
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