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ABSTRACT 

Knowledge of muscle activation during core training exercises over the duration of a training 

program would enhance our understanding of the physiological responses to training. The purpose of 

this study was to quantify the effect of a 12-week core training regimen on neuromuscular activation 

in swimmers. Ten national-level junior swimmers performed a core exercise regimen three times a 

week over a 12-week training period. Surface electromyographic (EMG) measurements from 6 core 

muscles were taken pre- (0 weeks), mid- (6 weeks) and post-training (12 weeks). Analysis was carried 

out on the EMG activity during maximal voluntary isometric contractions (MVCs) and on the 

normalized and non-normalized EMG values during the core exercises. MVC EMG activity increased 

with the intervention in all muscles. The magnitudes of changes in MVC EMG activity were greater 

during the initial phase (effect sizes - standardized mean differences 0.32 to 1.01)  compared to the 

second phase (effect sizes -0.20 to 1.04). Substantial reductions were observed in the normalized EMG 

data, with these effects being greater during the initial phase (effect sizes -1.54 to -0.28) compared to 

the second phase (effects sizes -1.12 to -0.22). There were also substantial reductions in non-

normalized absolute EMG activity in both the initial (effect sizes -2.73 to -0.27) and second (effects 

sizes -1.27 to -0.20) phases. Over the 12 week training program substantial neuromuscular adaptations 

occurred in the core muscles; activation during the core exercises reduced, whilst activation during the 

MVCs increased. These adaptations are indicative of improvements in neuromuscular strength and 

efficiency. Changes in EMG data provide objective measures of neuromuscular adaptation which can 

inform future iterations of training regimens for athletic populations.  

Keywords: Core training, core exercise, muscle activity, electromyography, training response 
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INTRODUCTION 

The core refers to the musculature of the shoulder stabilisers, trunk and the upper leg muscles (1). 

A major role of the core musculature is to provide dynamic stiffness for the central joints of the body 

and in particular the spinal joints. The tension created by coordinated core muscular actions induces 

controllable stiffness of the spine via axial compression (2) and the ability to perform this function is 

often referred to as core stability (3). It is commonly held that a stable core will increase the efficiency 

of movement (e.g. 1). Accordingly, there is often an assumption in the sports sciences that core 

exercises lead to performance improvements. Consequently, core muscles exercises are integrated into 

many strength and conditioning regimens (4, 5).   

The goal of any muscular training regimen is to overload the muscle to elicit a consistent 

physiological training response over the time course of the regimen. There are several mechanisms by 

which the muscles respond to this loading which include changes in size, structure and neural drive 

(6,7). Although attention has recently been placed on the harmful/beneficial effects of core training 

programs (3), importantly little is actually known about muscle activity whilst performing these core 

exercises during the time course of the regimen.  

Surface electromyography (EMG) is a standard technique for the objective quantification of 

muscular activity (8). A number of studies have used EMG to quantify muscle activity during a range 

of functional exercises which include components of core training (9-12). Collectively, these studies 

have contributed to a better understanding of muscle activity during a range of core exercises. In 

addition, based on the relationship between normalized EMG values and predetermined threshold 

levels (13), these studies were able to quantify muscle overload and thus predict whether a training 
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response is likely. However, these aforementioned studies were all cross-sectional in design and thus 

it is not possible to quantify the magnitude of response over a typical core training regimen.  

Any observed training response could be due to increases in strength, an increased ability to 

maximally activate motor units which produces an increase in maximal EMG activity (14), or changes 

in the muscular strategy for performing these movements (15, 16). So the prediction of the 

neuromuscular response to training is not straightforward. However, changes in EMG over the time 

course of a training regimen have been recorded to quantify changes in neural drive in untrained 

participants and patients with musculoskeletal disorders (7, 17-21). Specifically, these changes are 

suggested to reflect the changes in efferent neural output from the central nervous system to muscles 

which, particularly in the absence of noticeable hypertrophy, are the major training response to a short-

term training regimen (15). However, it has been highlighted that most of the research in this area has 

focussed on untrained rehabilitating populations and very little is known about the magnitude of 

neuromuscular changes during athletic training regimens (22). To the best of our knowledge, this is 

still the case.   

In athletic research there is a key need to develop objectively determined training regimens relevant 

to the sport. Efficient swimming is believed to require a core musculature that is able to stabilise the 

spine (23) and a high-level swimmer will elicit activity in the core musculature to levels greater than 

40% of maximal voluntary isometric contraction (MVC) when performing a stroke (24,25). 

Consequently, swimmers undergo dry-land training which often involves a substantial component of 

core training. However, at present these core training regimens are subjectively determined using "good 

judgement, experience and educational training" (26, p.374). In order to develop an objectively 

determined core training regimen for swimmers it is vital to have a better understanding of 
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neuromuscular adaptations and the likely time course of the training response. To the authors’ 

knowledge, there are currently no studies providing evidence regarding this. 

Therefore, the purpose of this study was to quantify neuromuscular adaptations in a group of 

national-level junior swimmers during a 12-week core training regimen. It was expected that loading 

the core muscles would lead to changes in EMG activity of the core muscles and these changes would 

provide insight into the underlying training response during the regimen. In order to elucidate the 

specific detail of any adaptations, we also aimed to assess changes in a) EMG amplitude during MVCs, 

and b) in normalized and non-normalized EMG amplitude, during the core exercises. 

 

MATERIALS AND METHODS 

Participants 

Ten national-level junior swimmers (five men, age: 16.2 ± 1.3 years, stature: 174.3 ± 5.6 cm, body 

mass: 63.4 ± 6.4 kg; five women, age: 17.4 ± 1.5 years, stature: 173.2 ± 4.4 cm, body mass: 63.8 ± 4.6 

kg) were recruited to the study and completed a 12-week core training regimen in addition to their 

normal pool-based swimming regimen. This took place during the pre-season training period prior to 

competitions occurring for the athletes.  To be included in the study participants had to compete at 

national age group level competitions in swimming and be trained to a high standard with 9+ sessions 

a week. All subjects were highly-trained and familiar with, but not currently practising, core training 

exercises. We used a mixed gender sample to increase generalizability and help recruitment. A quasi-

experimental research design was used in this study which is considered appropriate for the sub-elite 

athletes (27). The group was exposed to a control (pre) and intervention (mid and post) period where 

multiple observations of EMG muscle activity were made over time. This study was approved by the 
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Teesside University Ethics Committee. All subjects signed an informed consent form and completed a 

medical questionnaire.   

Exercises 

The core training intervention exercises which were performed in the training regimen are shown in 

Table 1 and were as follows; forward bridge, side bridge, bird dog, straight leg raise, shoulder press, 

overhead squat and medicine ball sit-twist (2, 9, 12). This regimen of exercise was chosen to include 

static, dynamic, low-threshold (no external resistance), high-threshold (with external resistance), 

symmetrical and asymmetrical movements. In a previous study (12) we found these exercises to induce 

levels of activity to be greater than threshold levels required for improving core stability (10-25% of 

MVC ) and core strength (>60% of MVC) (13). To minimise learning effects all participants were 

given a familiarisation exercise session and performed the exercises for two weeks prior to data 

collection. The repetition rate of the exercise was varied according to the demands of the exercise 

(Table 2). Each exercise was performed twice for a total of 60 seconds with 60 seconds recovery 

between sets. The order of exercises was randomised for each subject. The quality of the exercises was 

monitored by a British Association of Sport and Exercise Sciences accredited sport scientist and a 

swimming coach, during the test sessions and training regimen, respectively. Over the 12-week training 

period, the core exercises were performed three times a week. A linear model for functional 

progression, an important component of core training (28), was incorporated (Table 2).  

Data Collection 

 Surface EMG measurements were collected at 3 testing sessions: pre- (0 weeks), mid- (6 weeks) 

and post-training (12 weeks). EMG data were recorded from the right side of six muscle sites. These 
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were the upper rectus abdominis (RA), external oblique (EO), gluteus maximus (GM), multifidus 

(MF), latissimus dorsi (LD) and rectus femoris (RF). The six muscles were selected based on previous 

research that highlights them as important to core stability and strength (9, 13, 29, 30) and from which 

activity levels can be accurately and reliably measured (12, 31, 32). Photographs were taken during 

each data collection period to ensure accurate placement of the electrodes on subsequent sessions. 

EMG data were collected using a Delsys Wireless Myomonitor III device with surface electrodes, and 

sampled at 1000 Hz (Delsys DE-2.3 Single Differential Surface Electrode; inter-electrode distance 1 

cm, gain 1000, bandwidth 20 – 450 Hz, common mode rejection ratio of −92 dB, pre-amplifier gain 

1000 V/V ± 1%, input impedance of >1015 Ω//0.2 pf).  EMG data were collected during the core 

exercises. In addition, at the beginning of each of the 3 testing sessions, 5 MVC exercises were 

performed three times each for 10 seconds, with one minute rest between each. These MVC exercises, 

detailed previously and shown to have good reliability (12), were; resisted sit-up (RA), resisted back 

extension (GM & MF)), resisted trunk rotation (EO), resisted hang (LD) and resisted hip flexion (RF). 

Whilst performing the exercises, the participants were given verbal encouragement to ensure a maximal 

and consistent effort. To standardize the effect of the muscle length–tension relationship on the 

resultant EMG output, these MVC exercises were performed in a similar body position to those of the 

core training exercises (33, 34). 

Data Processing and extraction 

The EMG data processing was described in Hibbs et al. (12). The raw EMG signals were processed 

using Delsys EMGworks software with a Root Mean Square (RMS) moving window of 50 ms. We 

extracted and analysed data for: normalized EMG amplitude during the core exercises; non-normalized 

(absolute) EMG amplitude during the core exercises; EMG amplitude during the MVCs. For each of 
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these, following Hibbs et al. (12), both the peak and average EMG values were extracted and analysed. 

The peak value was taken as the highest EMG value and the average value was taken as the sum of the 

area under the EMG-time curve divided by the time period (12, 18, 35). The derived EMG variables 

used in this study are listed in Table 3. For the static exercises and the MVCs we extracted the data for 

the middle five second period (12). For the dynamic exercises we extracted the data for three repetitions 

in the middle of each set, determining the EMG onset and cessation points of each visually. To 

normalize the EMG data during the core exercises, the peak and average values in the exercises were 

used as the numerators and the MVC peak and average values as the denominators (12). The rationale 

for analysing both normalized and non-normalized data (20) is that both the exercise EMG and MVC 

EMG signals could change over time. This could affect interpretation of the normalized data when 

considered in isolation and potentially mask any neuromuscular responses. In reporting these absolute 

EMG variables, we are aware that between-day differences (36) due to inaccurate sensor placement 

could introduce some random noise. Caution was thus adopted when placing and removing the sensors 

at each testing session (20).  

Data Analysis 

Data are presented as the mean ± SD. Prior to all analyses plots of the residuals versus the predicted 

values revealed no evidence of non-uniformity of error. In athletic research, it has been argued that it 

is not whether an effect exists but how big the effect is that matters and that the use of the P value alone 

provides no information about the direction or size of the effect or the range of feasible values (37).  

Therefore, we elected to use effect sizes, with uncertainty of the estimates shown as 90% confidence 

intervals, to quantify the magnitude of any changes in EMG activity levels across the duration of the 

study (0, 6, and 12 weeks). Effect sizes were classified as trivial (<0.2), small (0.2 to 0.6), moderate 
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(0.6 to 1.2), large (1.2 to 2.0), very large (2.0 to 4.0) and extremely large (>4.0) (38). Also, a threshold 

value of 0.2 between-subject standard deviations was set as the smallest worthwhile change. Inference 

was then based on the disposition of the confidence interval for the mean difference to this smallest 

worthwhile effect; the probability (percent chances) that the true population difference between tests 

is substantial (beneficial / detrimental) or trivial was calculated as per the magnitude-based inference 

approach (39). These percent chances were then qualified via probabilistic terms and assigned using 

the following scale: <0.5%, most unlikely; 0.5-5%, very unlikely; 5-25%, unlikely; 25-75%, possibly; 

75-95%, likely; 95-99.5%, very likely; >99.5%, most likely (37). The effect sizes, confidence intervals 

and magnitude-based inferences were determined using a custom-made spreadsheet (38). 

 

RESULTS 

The effects of the initial 6 weeks of the core training regimen were clear, substantial increases in 

MVC EMG for all six muscles (Figure 1; Figure 2). These increases were observed for both peak MVC 

(PMVC) and average MVC (AMVC) measures, with the magnitude of effects being small to moderate. 

For the second phase of the exercise intervention (weeks 6-12) there were further substantial increases 

in MVC EMG (small to moderate effects), with the exception of MF, LD, and RF peak values where 

the differences were more likely to be trivial. 

The effects of the initial 6 weeks of the core stability exercise intervention were clear, substantial 

reductions in normalized EMG activity in all muscles (Figure 1; Figure 3). These increases were 

observed for both peak normalized (PNORM) and average normalized (ANORM) measures, with the 

magnitude of effects being small to large. Further substantial reductions were evident after weeks 6-12 
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of the training intervention in all muscles in terms of both PNORM and ANORM measures (small to 

moderate effects). 

The effects of the initial 6-week training intervention on absolute EMG activity were clear with 

substantial reductions in EMG activity for muscles RA, EO, LD, GM, and RF (Figure 1; Figure 4). 

The magnitude of the effects was larger for peak absolute (PABS) (moderate to very large) than for 

average absolute (AABS) (small to moderate). There was also a substantial reduction in MF PABS, 

with a substantial increase in MF AABS and these effects were similar in magnitude (moderate). For 

weeks 6-12 further substantial reductions in EMG activity were observed for all muscles (small to large 

effect sizes), with the exception of AABS for the MF and EO where the differences were more likely 

to be trivial. 

 

DISCUSSION 

Despite core exercises being fundamental to many training regimens, very little is known about 

their effect on neuromuscular activation, and the adaptations they produce. Our results indicate that 

due to this training regimen MVC EMG increased, and EMG levels during the core exercises reduced: 

both indicating functional benefit. This is the first study to quantify the effect of a core training regimen 

on the neuromuscular response of the core muscles in swimmers, thus addressing the stated aim of this 

study.  

Other studies have used EMG to quantify changes in maximal neuromuscular activation and 

improvements from these studies have been greater than 10% (e.g. 20). For the group of national-level 

junior swimmers in the present study we report increases of 5-6% in MVC EMG. Thus, in comparison, 
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the reported increase in the current study is relatively modest. However, given that swimming exerts 

high demands on the core, it should be noted that the participants in the present study are likely to be 

highly trained in the core musculature. Thus, when training status is taken into consideration, the gains 

in maximal neuromuscular activation of 5-6% are probably worthwhile for these swimmers. In addition 

to these gains in MVC EMG, we also found changes in the levels of EMG activity during the core 

exercises between testing sessions. This pattern occurred in both the normalized and non-normalized 

EMG data, indicating that it was not solely due to the normalization process. Specifically we report a 

decrease in absolute EMG activity between 2-6% when the athletes performed the training exercises 

in the testing sessions. Unfortunately, there are no previous core exercise studies with which to compare 

these findings but there are a number of potential mechanisms underpinning these changes. There may 

have been changes in motor unit firing rates and synchronisation, and potentially changes in muscle 

morphology (19). There is also evidence to indicate that repeated practice of an exercise will cause the 

central nervous system to select for a muscle activation pattern which is more efficient in generating 

movement at the loaded joints (e.g. 40). The mechanism in this adaptive response is thought to be a 

reduction in antagonistic contraction, thus allowing a greater expression of agonistic activity (15, 41). 

It is suggested that after a period of adaptation to the core exercises, there is less resistive torque to 

overcome, and the athletes are able to perform the same exercises but with less muscle activation 

required which is indicated by the reduction in the EMG activity.  

This study has important practical applications and clinical relevance, showing the ability to 

highlight the weaknesses of a training regimen such as this. Notably, there was a decrease in training 

response over the time course leading to the eventual plateau in the neuromuscular response. This 

plateau is common to many exercise interventions which are designed to improve performance or 
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muscular strength (42, 43). In the current study, it is suggested that the plateau is due to the muscles 

becoming both stronger and more efficient during the time course of the regimen, thus making it more 

difficult to maintain overload. Consequently, it is argued that the simple linear model of progression 

(Table 1) used in this study was not sufficient to maintain a linear improvement in muscle response. 

With the benefit of hindsight and with this objective data to hand, it is clear that the model of 

progression should have been non-linear, incorporating a lower overall load in the early stages when 

the muscle recruitment strategy was inefficient and the neuromuscular strength was relatively low and 

a higher load in the latter stages when the muscles were more efficient and relatively stronger. A second 

weakness of the regimen, again highlighted by the EMG data, was the different levels of adaptation 

occurring across muscles. Ideally, in the case of the core a harmonious balance should be sought (2), 

such that the training regimen elicits similar responses in all the muscles groups and working pairs. 

The gains in neuromuscular strength in the current study although similar in direction were different 

in magnitude. For example, changes in neuromuscular strength for multifidus were much greater than 

for the external oblique (9% vs 3%, respectively). Further inspection of our EMG data reveals that 

multifidus was loaded substantially (>25%) in all but one of the exercises, whereas the external oblique 

was only loaded substantially in 2 of the 6 exercises. With the benefit of hindsight and again with the 

availability of this objective data, it is clear that the regimen could have included a greater proportion 

of coronal plane loading by, for example, increasing the repetitions of the side-bridge. Our results show 

EMG has potential as a tool for measuring neuromuscular response and for providing objective 

feedback to inform the delivery of exercise regimens in practice. Future studies can develop a more 

detailed understanding of the physiological responses. 
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This study does have some limitations including the small sample size and lack of a control group. 

There are also many limitations of surface EMG which are well-documented (e.g. 36). Nonetheless, it 

remains a widely accepted and key tool for the purpose of quantifying the drivers of muscle activity. 

However, it should also be noted that the use of EMG as a measure of neuromuscular adaptations in a 

pragmatic athletic setting entails further limitations. For example, it was not possible to measure 

maximal external torque and thus it is not possible to quantify the overall change in strength of the 

muscles including gains due to hypertrophy or to structural reorganisation. That said, given the applied 

nature of the research this compromise between measurement and pragmatism are considered to be 

justified in this first study. Again, future studies can look to incorporate measures of torque to further 

enhance our knowledge in this area.   

 

CONCLUSION 

Over the time course of this 12 week core training program, substantial neuromuscular adaptations 

occurred in the core muscles. Levels of muscle activation during the core exercises reduced whilst 

activation during the MVCs increased. These adaptations are indicative of improvements in 

neuromuscular strength and efficiency in swimmers from this core training regimen. These results also 

show that, when using normalised EMG in longitudinal studies, it is important to quantify changes in 

both the numerator and denominator EMG values for a clear understanding of changes that may have 

occurred. 
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Tables 

Table 1 Core training exercise descriptions. 

Exercise Description Repetition rate Diagram 

Forward bridge 

(static) 

Hold a straight body position supported on 

elbows and toes. Brace the abdominal muscles 

and hold the back in a neutral position 

Hold for 60 s 

 

Side bridge 

(static) 

Lie on one side, ensuring top hip is 

positioned above the bottom hip. Push up until 

there is a straight bodyline through feet, hips and 

head 

Hold for 60 s 

 

Birddog 

(asymmetrical) 

Position hands below shoulders and knees 

below hips. Place back in neutral, slowly extend 

one leg backwards and raise forward the 

opposite arm until level with back. Ensure back 

does not extend and shoulders and pelvis do not 

tilt sideways. Bring leg and arm back to start 

position and swap sides 

2 s change 

sides–3 s hold in 

position 
 

Straight leg 

raises 

(asymmetrical) 

Lie on back with knees extended on floor.  

Place back in neutral position and lift one leg 

straight up keeping knee extended and other leg 

held out horizontally off floor.  Raise leg till hip 

at 75degrees, then return to start position and 

repeat with opposite leg 

1 s hip 

flexion (down)   1 

s hip extension 

(up) 

continuous, 

no hold 

 



18 

 

Horizontal 

Shoulder Press 

(asymmetrical) 

lying horizontal on the floor with both arms 

extended above head.  Using a weighted free 

dumbbell in each hand, raise one arm upwards 

extending the shoulder and hold, then return the 

dumbbell back to the floor and repeat this 

movement with the other arm 

 

1 s raise up – 

1 s hold position – 

1 s return to start 
 

Overhead squat 

(symmetrical) 

 

Using weighted medicine ball, place hands 

either side of ball and raise above head with 

straighten arms.  Feet shoulder width apart, squat 

down as low as possible while maintaining 

balance, keeping ball, head and back vertical.  

Straighten legs and repeat 

 

2s hip flexion 

(down)  

 2s hip 

extension (up) 

continuous, 

no hold 

 

Medicine ball, 

sit-twist 

(asymmetrical) 

Sit up with knees bent and lean back at 45°. 

Feet off floor, keeping back in neutral, using a 

4 kg medicine ball, twist waist and shoulders to 

one side with ball held out in front of you. 

Return to forward and repeat to other side 

2s move from 

left to right and 

return (4s total) 
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Table 2. Core exercise progression over the 12 week training regimen. 

Exercise Progression Week 1-2 Week 3-4 Week 5-6 

Repetitions Sets Repetitions Sets Repetitions Sets 

Forward bridge Volume 30 sec hold 2 60 sec hold 2 90 sec hold 2 

Side bridge Volume 30 sec hold 2 60 sec hold 2 90 sec hold 2 

Birddog Volume 10 3 15 3 20 3 

Leg raise Volume 10 3 15 3 20 3 

Shoulder press Volume 10 3 10 4 15 4 

Overhead squat Load 10 (3kg) 3 10 (4kg) 3 15 (5kg) 3 

Sit twist Load 15 (3kg) 3 15 (4kg) 3 15 (5kg) 3 

Exercise 

 

Progression Week 7-8 Week 9-10 Week 11-12 

Repetitions Sets Repetitions Sets Repetitions Sets 

Forward bridge Volume 90 sec hold 3 120 sec hold 2 120 sec hold 3 

Side bridge Volume 90 sec hold 3 120 sec hold 2 120 sec hold 3 

Birddog Volume 25 3 25 4 30 3 

Leg raise Volume 25 3 25 4 30 3 

Shoulder press Volume 20 3 20 4 25 3 

Overhead squat Load 20 (6kg) 3 20 (7kg) 4 25 (7kg) 3 

Sit twist Load 20 (6kg) 3 20 (7kg) 4 25 (7kg) 3 
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Table 3. The EMG variables used in this study 

Variable  Description (units) 

PMVC Peak EMG activity whilst performing a maximum voluntary isometric contraction 

(mV). 

AMVC Average EMG activity whilst performing a maximum voluntary isometric 

contraction (mV). 

PABS Peak absolute (non-normalized) EMG activity whilst performing the core exercise 

(mV). 

AABS Average absolute (non-normalized) EMG activity whilst performing the core 

exercise (mV). 

PNORM Peak normalized EMG activity where PABS is the numerator and PMVC is the 

denominator (%). 

ANORM Average normalized EMG activity where AABS is the numerator and AMVC is 

the denominator (%). 
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Figure Legends 

Figure 1. Means and standard deviations for EMG variables for each testing session (0, 6 and 12 

weeks).  

A) The data for each testing session are grouped by muscle and presented as peak EMG variables. 

PMVC, PNORM and PABS (see Table2 for definitions) are shown as dashed grey, solid black 

and solid grey lines respectively.  

B) The data for each testing session are grouped by muscle and presented as average EMG 

variables. AMVC, ANORM and AABS (see Table2 for definitions) are shown as dashed grey, 

solid black and solid grey lines respectively. 

Figure 2. Changes in peak and average EMG variables during MVCs. PMVC and AMVC are 

defined in Table 2. The effects and confidence intervals (90%) for weeks 0-6 and 6-12 are shown 

in black and grey respectively.  

 

Figure 3. Changes in peak and average normalized EMG variables during the core exercises. 

PNORM and ANORM are defined in Table 2. The effects and confidence intervals (90%) for 

weeks 0-6 and 6-12 are shown in black and grey respectively. 

 

Figure 4. Changes in peak and average absolute EMG variables during the core exercises. PABS 

and AABS are defined in Table 2. The effects and confidence intervals (90%) for weeks 0-6 and 

6-12 are shown in black and grey respectively. 
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Figure 1a and 1b 
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Figure 2
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Figure 3
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Figure 4

 




