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Abstract: 

The aim was to compare potential methods for fluoride analysis in microlitre-volume plasma samples 

containing nano-gram amounts of fluoride. Methods: A group of four laboratories analysed a set of 

standardised biological samples as well as plasma to determine fluoride concentration using three 

methods. In Phase-1, fluoride analysis was carried out using the established HMDS-diffusion method 

(1ml-aliquot/analysis) to obtain preliminary measurement of agreement between the laboratories. In 

Phase-2, the laboratories analysed the same samples using a micro-diffusion method and known-

addition technique with 200µl-aliquot/analysis. Coefficients of Variation (CVs) and intra-class 

correlation coefficients (ICCs) were estimated using ANOVA to evaluate the amount of variation 

within- and between-laboratories. Based on the results of the Phase-2 analysis, 20 human plasma 

samples were analysed and compared using the HMDS-diffusion method and known-addition 

technique in Phase-3. Results:  Comparison of Phase-1 results showed no statistically significant 

difference among the laboratories for the overall data set. The mean between- and within-laboratory 

CVs and ICCs were <0.13 and ≥0.99, respectively, indicating very low variability and excellent 

reliability. In Phase-2, the overall results for between-laboratory variability showed a poor CV (1.16) 

and ICC (0.44) for the micro-diffusion method, whereas with the known-addition technique the 

corresponding values were 0.49 and 0.83. Phase-3 results showed no statistically significant 

difference in fluoride concentrations of the plasma samples measured with HMDS-diffusion method 

and known-addition technique, with a mean (SE) difference of 0.002(0.003) µg/ml. In conclusion, the 

known-addition technique could be a suitable alternative for measurement of fluoride in plasma with 

microlitre-volume samples. 
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Introduction: 

It has been well established that topical fluoride (F) has an important role in the prevention of dental 

caries. However, excessive systemic ingestion of F during enamel development prior to tooth eruption 

can increase the risk of development of dental fluorosis. Therefore, it is important to assess F 

exposure and retention in very young children on a regular basis using a suitable biomarker for F. The 

World Health Organisation (WHO) has stated that “a fluoride biomarker is of value primarily for 

identifying and monitoring deficient or excessive intakes of biologically available fluoride” [World 

Health Organization, 1994]. For a biomarker to be suitable, it needs to be valid, reliable and practical 

in terms of collection and analysis with the practical aspects of sample collection being especially 

pertinent in young children.  

Following ingestion of F, the plasma F concentration increases rapidly, reaching its peak within 20-60 

minutes. Since the rise in plasma F concentration is proportional to F intake, plasma has been 

suggested as a reliable indicator of F exposure in humans. Additionally, from a pharmacokinetic 

perspective, plasma is considered as the ‘central compartment’ of F distribution systemically, since it 

is the fluid that F must pass into and then from, to be distributed around and eliminated from, the body 

[Whitford, 1996]. Despite the importance of plasma F for pharmacokinetic and analytical 

epidemiology studies, there are insufficient data on plasma F concentrations, particularly in children, 

to determine normal baseline values for individuals living in fluoridated and non–fluoridated 

communities with different degrees of F intake and exposure [Rugg-Gunn et al., 2011]. 

Pharmacokinetic and analytical epidemiology studies usually involve venous blood sampling by direct 

puncture to a vein, most often located in the antecubital area of the arm or the dorsal aspect (top) of 

the hand. In surveys involving measurements of several analytes in blood, the relatively large volumes 

of blood required may also be an insurmountable limitation. In addition, venous blood sampling is 

deemed ethically unacceptable or impractical in most studies with healthy young children. As a result, 

capillary blood is often the method of choice for infants, very young children, and elderly patients 

with fragile veins, and is collected by dermal puncture of fingertip or heel.  

Determination of F in biological samples comprises several steps which may include pre-treatment of 

samples, separation and concentration of F, actual measurement of F ions, calculation of final 

concentration per unit of sample, and presentation of the data [Venkateswarlu, 1990]. The most 

accurate sample preparation technique uses a diffusion method, such as acid-hexamethyldisiloxane 

(HMDS) diffusion [Taves, 1968] to separate F ion from the interfering substances in the sample and 

transfer it to a trapping solution of small volume to increase the final F concentration in the solution. 

The most frequently employed method for measurement of F involves the use of ion-selective 

electrode (ISE)-based potentiometric methods which measure free F ions in aqueous solutions fairly 
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quickly. Blood plasma contains two general forms of F: ionic (inorganic) and non-ionic (organic). The 

ionic form is the one of interest in dentistry, medicine, and public health [Whitford, 1996] which can 

be principally determined by F-ISE.  

To optimise the quality of  dental research involving F assay and minimise between-laboratories F 

analysis inconsistencies,  standardised F analysis techniques have been developed and tested based on 

a HMDS-diffusion method using F-ISE [Martínez-Mier et al., 2011]. The techniques are used 

increasingly widely by laboratories undertaking F analysis of biological and non-biological samples 

as they meet requirements for accuracy and reliability at relatively low-cost.  

In adult humans, plasma F concentration might be as low as 6.8ng/ml [Buzalaf, 2011]. Considering 

the limit of sensitivity of the F-ISE, which is about 10-6mol/l (= 0.02 µg/ml=  20 ng/ml) [Whitford, 

1996],  a minimum volume of 1000µl of plasma is required to ensure acceptable F measurement in 

duplicate (500µl per replicate) using the gold standard HMDS diffusion method in which the F is 

concentrated in a 75-100µl volume prior to analysis [Taves, 1968; Martínez-Mier et al., 2011]. The 

volume of plasma that can be obtained from a unit of whole blood is determined by the volume of 

blood collected and the donor percent haematocrit (% Hct). The theoretical range of plasma volume 

that can be recovered from a unit of whole blood is 40-60% [PALL Medical, 2010]. Therefore, a 

minimum of approximately 2ml blood is needed for duplicate (or 3ml for triplicate) plasma F analysis 

using the gold standard HMDS-diffusion method [Martínez-Mier et al., 2011]. 

Due to the importance of F research in dentistry, several F-ISE-based methodologies for sample 

manipulation and F analysis on very small sample volumes have been explored for measuring F in 

biological samples such as saliva, plasma and dental plaque (biofilm). Several techniques, including 

micropipette procedures for transferring samples, preparation of micro F-ISE, and methods for 

adapting standard electrodes have been developed for various biological samples containing nano- or 

sub-nano-gram amounts of F [Hallsworth et al., 1976; Vogel et al., 1990]. Despite promising results 

with these methods for samples such as saliva, dental plaque, and tooth enamel, they have not been 

widely employed due to their cost and time-consumption in addition to the need for careful attention 

to technique which requires extensive experience.  

Using the relatively straightforward known-addition technique, Ekstrand [Ekstrand, 1977] reported a 

satisfactory reproducibility with 150µl plasma samples containing ≥ 20ng F. A rather simple micro-

diffusion technique, based on the gold standard HMDS-diffusion method, has also been developed for 

dental plaque [Martinez-Mier et al., 2010] which can easily be adapted for samples of plasma.  

Therefore, the aim of this study was to investigate the precision and accuracy of these two simple 

methods for F analysis in micro-litre volume plasma samples containing nano- or sub-nano-gram 

amounts of F, in comparison with the gold standard HMDS-diffusion method. 
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Material and methods 

Four internationally recognised laboratories with track record expertise in F analysis participated in 

this study. The sites comprised University of São Paulo (Brazil), Newcastle University (UK), 

Teesside University (UK), and Indiana University (US). Each collaborative laboratory received a set 

of samples comprising: five F standards as Reference Materials (RMs), four samples of National 

Institute of Standards and Technology (NIST) traceable F standards, two samples of Urine Certified 

Reference Fluoride (UCRF), and three samples of freeze-dried powdered plasma samples. 

The five RMs with F concentrations of 0.01, 0.02, 0.06, 0.2 and 1.0 ppm were prepared from a 

certified 100 ppm F standard (940907, Fisher Scientific) in one of the centres. The four NIST 

traceable standards were also prepared from a NIST-certified 10 ppm F solution at another centre. 

Samples of UCRF (PC-U-F1703) were purchased from ‘Laboratoire de santé publique du Québec’ 

(QC H9X 3R5) and powdered plasma (P9523) from Sigma-Aldrich (Saint Louis, MO 63103, USA) 

by one centre. All the samples were prepared and/or purchased by staff who were not directly 

involved in sample analysis and labelled with a code. The blind-labelled samples were then 

distributed among the four collaborative laboratories. No specific preparation was used for RMs, 

NIST traceable standards or UCRFs in each laboratory. However, each vial of dried plasma was 

reconstituted with 5ml deionised distilled water (DDW) to produce 5ml liquid plasma.  All samples 

were stored in a freezer (-20˚C) until F analysis. 

The study was then undertaken in three phases. In Phase 1, a between-laboratory comparison of the 

gold HMDS-diffusion method was conducted. The four collaborative laboratories analysed a set of 

samples (n=14), in triplicate (1ml sample per replicate), in order to obtain a preliminary measure of 

agreement between the laboratories. Within each laboratory, the samples were re-analysed on a 

separate day to obtain the within-laboratory agreement/reliability. In Phase 2, all four laboratories 

analysed the same set of samples as Phase 1 but in a lower volume (200 µl) using the micro-diffusion 

method as well as known-addition technique. Detailed information regarding the three analytical 

methods (HMDS-diffusion method, micro-diffusion method and known-addition technique) is 

available as online supplementary materials on the Karger website. 

The results from the tests in Phases 1 and 2 were distributed to all laboratories and a review involving 

comparison of the three methods for F analysis was conducted by email and at a face-face meeting. 

According to the results, the choice of methods for Phase 3 were agreed among the laboratories. 

In Phase 3, the selected methods were used to analyse 20 human plasma samples by one laboratory.  

Statistical analysis 
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i) Sample size: The sample size calculation was based on the precision of the estimate of the within- 

and between- laboratory intra-class correlation coefficients (ICCs).  The samples were measured twice 

at each of the four laboratories. With a sample size of n=14 samples, the 95% lower confidence bound 

for the ICCs would extend, at most, 0.10 from the estimated ICCs, assuming the within-laboratory 

ICCs were at least 0.90 and the between-laboratory ICCs were at least 0.75. 

ii) Statistical analysis: Plasma samples for which the F concentration was not certified, F standards 

and NIST traceable standards were evaluated for the amount of variation within- and between- 

laboratories using random effects analysis of variance models (ANOVAs). The ANOVAs also 

provided estimates of the Coefficients of Variation (CVs) and intra-class correlation coefficients 

(ICCs). Pairwise comparisons among the laboratories were performed using a Tukey-Kramer 

adjustment for multiple comparisons. Analyses were performed using SAS version 9.3 (SAS Institute 

Inc., Cary, NC). 

Trueness and precision testing of the agreed-upon methods were evaluated using the ISO Guide 32: 

Calibration in analytical chemistry and use of certified reference materials [1997] and the NIST 

Special Publication 829: Use of NIST traceable standards for decision on performance of analytical 

chemical methods and laboratories [Becker D et al., 1992]. Trueness and between-laboratory 

precision were based on confidence intervals that use both the within- and between-laboratory error 

terms. The trueness and precision analyses included the plasma samples in addition to the F standards 

and NIST traceable standards. The F concentrations from the Phase 1 F analysis of the plasma 

samples were considered as the reference values for comparison with the lower volume sample F 

analyses.  

Linear mixed effects models [Pinheiro and Bates, 2000] were used to determine the effects of assay 

method on the measured F concentration.  Method, laboratory and true F concentration (i.e. actual 

expected known value) were used as fixed effects, whilst phase and day were treated as nested 

random effects.  Separate mixed-effects intercept-only analyses were also undertaken on the 

difference between the measured and true F concentrations (ideally zero), with phase, laboratory and 

method as nested random effects.  Quality of the fitted models was assessed by quantile-quantile plots 

(QQ-plot), residuals and predicted vs observed values.  Analyses were undertaken in R using the nlme 

library [Pinheiro J, 2017]. 

Results  

Table 1 presents the overall between- and within-laboratory variabilities in the F concertation of 

samples collectively, by method, when the results from all laboratories were pooled together. Overall, 

results for between-laboratory variability showed a poor ICC of 0.44 for the micro-diffusion method 
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but excellent ICCs for the HMDS-diffusion method (0.99) and the known-addition technique (0.83).  

There was also a poor CV of 1.162 for the micro-diffusion method, however, the between-laboratory 

variability showed an ICC of more than 0.75 (a cut-off point for an excellent agreement) for the three 

methods.  

When looking at the overall data set, the comparison of the mean F concentration of all samples 

showed no statistically significant difference among the four laboratories when the samples were 

analysed by the HMDS-diffusion method as well as with the known-addition technique. However, the 

between-laboratory comparison of the mean F concentrations of all samples, measured by the micro-

diffusion method, found a statistically significantly (p=0.05) difference in the measured F 

concentrations between Laboratory 1 and 3. 

The within-laboratory variation in the overall measured F concertation by method is presented in 

Table 2.  The mean CVs for the laboratories were below 0.1, and the ICCs were above 0.96 with the 

gold standard HMDS-diffusion method and the known-addition technique, whereas the ICC was as 

low as 0.37 and CV as high as 0.671 with the micro-diffusion method. 

Comparison of the results for each individual sample among laboratories indicated statistically 

significant differences among the four laboratories for some samples (Table 3). For the HMDS-

diffusion method, Laboratory 2 had statistically significantly (p=0.04) lower F measurements than 

Laboratory 4 for only one sample (RM-C, 0.06ppmF) with a mean (SE) difference of -0.028 (0.002) 

µg/ml. The between-laboratory comparison of the results obtained by the micro-diffusion method and 

known-addition technique revealed statistically significant differences obtained for certain samples 

(e.g. NIST-A, NIST-D, NIST-C, URCF-2) among some laboratories as demonstrated in Table 3.    

The true F concentrations of all samples, apart from plasma, were known. Therefore, for each 

individual sample (apart from plasma), its measured F concentration by each of the four laboratories 

for each method were pooled and compared with its true (expected known) value (Figure 1). Table 4 

shows the results of the mixed-model analysis, comparing the measured F concentrations with the 

expected F concentration values, with laboratory and method as fixed effects and phase and day as 

nested random effects. The results showed a strong relationship between measured and true (expected 

known) F concentration values. However, there was a significant laboratory effect, with Laboratory 3 

noticeably different from the other 3 laboratories. The comparison of the measured F concentration of 

the three low F concentration samples (i.e. 0.01, 0.02 and 0.06 µg/ml) with predicted values from the 

fitted model, across all the laboratories, showed that the predicted F concentrations by the known-

addition were much closer to the values predicted by the established HMDS-diffusion method. The 

QQ-plots for the HMDS-diffusion method and known- addition technique gave approximately straight 

lines (Figure 2), confirming the validity of the statistical models used in the analysis.  
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Mean (SE) F concentrations of the 20 plasma samples which were measured by the established gold 

standard method (i.e. HMDS-diffusion) and the known-addition technique were 0.040 (0.006) and 

0.038 (0.006) µg/ml, respectively. The mean (SE) differences in F concentration between these two 

methods was 0.002 (0.003) µg/ml, with a 95% CI of -0.005, +0.009 µg/ml; indicating a non-

statistically significant difference in the measured F concentrations between the two methods. 

Discussion 

Pharmacokinetic and analytical epidemiology studies, particularly in dentistry, often seek to assess F 

concentrations in very small volume plasma samples. In the current literature, there is very limited 

information available on the reliability of quantitative measures of F in micro-litre volume plasma 

samples containing nano- or sub-nano-gram amounts of F. The current study quantified the reliability 

of the measurement of F in micro-litre volumes of plasma using micro-diffusion and known-addition 

techniques in comparison with the gold standard HMDS-diffusion method.  

The main purpose of carrying out F analysis of the samples using the established gold standard 

HMDS-diffusion method with a minimum sample volume of 1ml per replicate, in the current study, 

was to; i) obtain a preliminary measure of agreement between the laboratories in determining F 

concentration of samples, and; ii) use as a gold standard method for assessment of the other two 

methods. The comparison of the results obtained for each laboratory showed no statistically 

significant difference among the four laboratories for the overall data set (Table 3) as well as the 

majority of the individual samples including plasma and the other two low F concentration samples 

(i.e. RM A (0.01 µgF/ml) and RM B (0.02 µgF/ml)). This method also demonstrated an excellent 

between-laboratory ICC that ranged from 0.95 to 1.00 with a low CV ranging between 0.091 to 

0.198% as well as an excellent within-laboratory ICC (0.99-1.00) and low CV (0.022-0.047).  

Generally, the sensitivity of the ISE is limited by the Nernstian response slope per decade activity, 

which is almost 57 mV for the F-ISE. Therefore, the limit of sensitivity of the F-ISE is about 0.02 

µg/ml (=1 µmol/l) which is at, or below, the expected F concentrations of human plasma samples. 

However, by using the HMDS diffusion process, the F of the original sample is quantitatively 

transferred to a smaller volume with higher F concentration; well above the limit of sensitively of the 

F-ISE [Whitford, 1996]. A recent study [Wang et al., 2017] suggested a universal ion detection 

method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian 

slope limit. The EIMES was specified to increase the Nernstian response slope from 57.3 mV for a 

single F electrode to 564.7 mV for EIMES-10 F electrodes which consequently could record a 

miniscule change in the ion concentration, improving the accuracy and precision of the measurements. 
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The current study found an overall poor between-laboratory ICC (0.44) and CV (1.162) for the micro-

diffusion method when used to measure micro-litre volumes, indicating a low reliability and high 

variability with this method. The within-laboratory variation in the overall measured F concentrations 

using the micro-diffusion method revealed a wide range in ICC and CVs. The observed between-

laboratory differences in the present study are consistent with those of Martinez-Mier et al [Martínez-

Mier et al., 2011], who compared the F concentration of several biological samples reported by nine 

laboratories. Differences in measured F concertation of samples between the laboratories have also 

been reported in a study that compared F concentration of water samples analysed by nine laboratories 

and the laboratory at the South African Bureau of Standards in light of the implementation of water 

fluoridation in South Africa [Mthethwa and du Plessis, 2005].  

Despite the overall poor performance of the micro-diffusion method in the current study, a low 

variability (CV, 0.044) and excellent reliability (ICC, 1.00) was found for Laboratory 4 where that 

method was developed and is routinely in use. These results highlight the importance of the 

experience held by the laboratories and its impact on the precision and accuracy of the analytical 

method. These results confirm that the use of a protocol for F analysis of samples using the micro-

diffusion method, without participating in a training programme prior to adoption, might not yield 

accurate measurement of F in low volume plasma samples. 

When using the known-addition technique in the current study, the overall within-laboratory variation 

was very low (CVs ranging from 0.030 to 0.068) and the reliability was excellent  (ICCs ranging from 

0.99 to 1.00). However, comparison of the results for each individual sample among laboratories 

indicated statistically significantly differences in F measurements, mainly for those samples with 

higher concentrations of F, among all four laboratories.  

The study results confirmed the established HMDS-diffusion method as the most accurate method for 

low volume plasma samples. Although the known-addition technique performed better than the 

micro-diffusion method, it showed a tendency of underestimating F concentration of samples with 

higher F concentrations (>0.06 mgF/l). At a F concentration of 0.02 µg/ml, the performance of the 

known-addition technique was similar to the established HMDS-diffusion method (Figure 1) which 

was validated by the QQ-plots (Figure 2).  The QQ-plots for the HMDS-diffusion method and known- 

addition technique were straight, implying good agreement, whereas the micro-diffusion method 

showed a distinct S-shaped curve suggesting it is not a reliable method for F measurements of low F 

concentration samples. The non-significant difference in F concentration between the plasma samples 

measured by the established gold standard method (i.e. HMDS-diffusion) and the known-addition 

technique, along with the narrow CI, also support the reliability of the known-addition technique for 

measurement of F in plasma samples. 
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In the current study, a 200 µl plasma sample was used for F determination and the F analysis of the 

plasma samples analysed in Phase 3 showed a F concentration of more than 0.020 µg/ml (=20ng/ml) 

for all samples. A satisfactory reproducibility with 150µl plasma samples containing ≥ 20ng F has 

also been reported by Ekstrand [Ekstrand, 1977]. However, Ekstrand also noted that for samples 

containing <20ng F, a minimum volume of 500µl plasma was required for F determination with 

reasonable accuracy.  

A simple and easy sampling technique, such as capillary sampling, is required for systematic 

determination of plasma F concentrations, particularly in children. A maximum blood volume of 19 µl 

has been reported for 8-20 year olds when the blood samples were collected by capillary punctures 

using soft-touch finger pricking devices [Pacaud et al., 1996].  As a result, the amount of blood 

collected by capillary sampling might be insufficient for accurate and reliable F measurements. 

In conclusion, the findings of this study suggest that the known-addition technique could be an 

alternative option for measurement of F in plasma with micro-litre volume (200µl) samples. Although 

the method gives a satisfactory reliability with samples containing 0.01-0.06 µgF/ml, above a 

concentration of 0.06 µgF/ml, the method tends to underestimate F concentration of samples. More 

studies are needed to refine this method or develop other simple methods for F analysis in micro-litre 

volume plasma samples containing nano- or sub-nano-gram amounts of F. 
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Table headings:  

Table 1. Between- and within-laboratory variability for pooled mean (SD) F concentration (µg/ml), 

combined across all laboratories, by method of analysis. Intra-class Correlation Coefficient (ICC); 

Coefficient of Variation (CV) 

Table 2.Mean (SD) and Within-laboratory variability in the overall F concentration (µg/ml) according 

to analytical method 

Table 3. Comparison of the results for each individual sample* among laboratories by method 

Table 4. Comparison of the measured F concentrations with the true (expected) F concentration values 

using the mixed-model analysis. 

 

Figure legends: 

Figure 1.Comparison of overall measured and true expected F concentration by analytical method 

across all laboratories (red line shows the true expected values) 

A: Gold standard HMDS-diffusion method; B: Micro-diffusion method; C: Known-addition 

Technique 

 

Figure 2. The QQ-plots for gold standard HMDS-diffusion method (A), micro-diffusion method (B) 

and known-addition Technique (C) for the samples RM-A (0.01 µgF/ml), RM-B (0.02 µgF/ml) and 

RM-C (0.06 µgF/ml) across all laboratories. 
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Table 1. Between- and within-laboratory variability for pooled mean (SD) F concentration (µg/ml), 

combined across all laboratories, by method of analysis. Intra-class Correlation Coefficient (ICC); 

Coefficient of Variation (CV) 

 HMDS-diffusion Micro-diffusion Known-addition 

Between-laboratory    

Mean (SD) 0.367 (0.047) 0.324(0.376) 0.277 (0.135) 

ICC (95% CI) 0.99 (0.95-1.00) 0.44 (0.05-0.77) 0.83(0.54-0.94) 

CV (95% CI) 0.129 (0.091-0.198) 1.162(0.633-∞) 0.487(0.325-0.853) 

Within-laboratory    

Mean (SD) 0.367 (0.011) 0.324(0.036) 0.277 (0.013) 

ICC (95% CI) 1.00 (0.99-1.00) 0.97(0.86-0.99) 1.00(0.98-1.00) 

CV (95% CI) 0.031(0.022-0.047) 0.111(0.078-0.169) 0.047(0.033-0.072) 
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Table 2.Mean (SD) and Within-laboratory variability in the overall F concentration (µg/ml) according to analytical method 

Lab 

Method 

HMDS-diffusion  Micro-diffusion  Known-addition 

Mean 

(SD) 

ICC 

(95% CI) 

CV 

(95% CI) 

 Mean 

(SD) 

ICC 

(95% CI) 

CV 

(95% CI) 

 Mean 

(SD) 

ICC 

(95% CI) 

CV 

(95% CI) 

1 
0.358 

(0.035) 

0.96 

(0.82-0.99) 

0.097 

(0.068-0.148) 

 0.072 

(0.048) 

0.37 

(0.00-0.81) 

0.671 

(0.428-1.406) 

 0.249 

(0.007) 

1.00 

(0.99-1.00) 

0.030 

(0.021-0.045) 

2 
0.381 

(0.007) 

1.00 

(1.00-1.00) 

0.018 

(0.012-0.027) 

 0.239 

(0.041) 

0.89 

(0.59-0.97) 

0.171 

(0.120-0.263) 

 0.322 

(0.016) 

1.00 

(0.98-1.00) 

0.049 

(0.035-0.075) 

3 
0.368 

(0.015) 

1.00 

(0.99-1.00) 

0.040 

(0.028-0.060) 

 0.629 

(0.059) 

0.84 

(0.44-0.96) 

0.093 

(0.066-0.142) 

 0.371 

(0.025) 

0.99 

(0.96-1.00) 

0.068 

(0.048-0.103) 

4 
0.358 

(0.008) 

1.00 

(1.00-1.00) 

0.023 

(0.016-0.035) 

 0.355 

(0.016) 

1.00 

(0.98-1.00) 

0.044 

(0.031-0.067) 

 0.165 

(0.009) 

1.00 

(0.98-1.00) 

0.053 

(0.037-0.081) 

 



16 
 

Table 3. Comparison of the results for each individual sample* among laboratories by method 

Method Sample Laboratory 

Mean (SE) 

Between-laboratory 

difference 

P value 

HMDS-diffusion RM-C 2 vs. 4 -0.028 (0.002) 0.04 

Micro-diffusion 

NIST-D 
1 vs. 3 -2.162 (0.146) 0.04 

1 vs. 4 -1.011 (0.075) 0.05 

Plasma-2 
1 vs. 3 -0.019 (0.001) 0.02 

1 vs. 4 -0.012 (0.001) 0.02 

UCRF-2 
1 vs. 3 -0.417 (0.033) 0.04 

2 vs. 3 -0.274 (0.022) 0.04 

Known-addition 

NIST-A 

1 vs. 2 -0.125 (0.007) 0.005 

1 vs. 3 -0.181 (0.007) 0.002 

1 vs. 4 0.106 (0.008) 0.01 

2 vs. 3 -0.056 (0.008) 0.04 

2 vs. 4 0.231 (0.009) 0.002 

3 vs. 4 0.287 (0.009) 0.001 

NIST-B 
1 vs. 4 0.231 (0.013) 0.04 

2 vs. 4 0.446 (0.025) 0.04 

NIST-C 

1 vs. 2 -0.127 (0.009) 0.03 

1 vs. 3 -0.178 (0.017) 0.05 

1 vs. 4 0.115 (0.007) 0.03 

2 vs. 4 0.242 (0.008) 0.01 

3 vs. 4 0.293 (0.017) 0.03 

NIST-D 
1 vs. 4 0.253 (0.016) 0.04 

2 vs. 4 0.462 (0.020) 0.03 

Plasma-3 2 vs. 4 0.018 (0.001) 0.03 

RM-E 3 vs. 4 0.636 (0.047) 0.04 

UCRF-2 
1 vs. 3 -0.094 (0.007) 0.04 

1 vs. 4 0.060 (0.006) 0.05 

 

* The samples with no statistically significant between-laboratory differences in their measured F 

concentration are not presented 
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Table 4. Comparison of the measured F concentrations with the true (expected) F concentration 

values using the mixed-model analysis. 

Variable Statistic P- value 

Intercept F1,158 = 89.18 <0.0001 

True Expected F concentration F1,158 = 221.85 <0.0001 

Method F2,158 = 0.26 0.7727 

Laboratory F3,158 = 9.01 <0.0001 
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