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1 Introduction

1.1 Motivation

Evolutionary Game Theory (EGT) (Maynard Smith and Price, 1973) has be-
come one of the most diverse and far reaching theories in biology finding its
applications in a plethora of disciplines such as ecology, population genetics, so-
cial sciences, economics and computer science (Maynard Smith, 1982; Axelrod,
1984; Hofbauer and Sigmund, 1998; Nowak, 2006; Broom and Rychtář, 2013;
Perc and Szolnoki, 2010; Sandholm, 2010; Han et al., 2017), see also recent
reviews (Wang et al., 2016; Perc et al., 2017). For example, in economics, EGT
has been employed to make predictions in situations where traditional assump-
tions about agents’ rationality and knowledge may not be justified (Friedman,
1998; Sandholm, 2010). In computer science, EGT has been used extensively
to model dynamics and emergent behaviour in multiagent systems (Helbing
et al., 2015; Tuyls and Parsons, 2007; Han, 2013). Furthermore, EGT has pro-
vided explanations for the emergence and stability of cooperative behaviours
which is one of the most well-studied and challenging interdisciplinary prob-
lems in science (Pennisi, 2005; Hofbauer and Sigmund, 1998; Nowak, 2006).
A particularly important subclass in EGT is random evolutionary games in
which the payoff entries are random variables. They are useful to model so-
cial and biological systems in which very limited information is available, or
where the environment changes so rapidly and frequently that one cannot de-
scribe the payoffs of their inhabitants’ interactions (May, 2001; Fudenberg and
Harris, 1992; Han et al., 2012; Gross et al., 2009; Galla and Farmer, 2013).

Similar to the foundational concept of Nash equilibrium in classical game
theory (Nash, 1950), the analysis of equilibrium points is of great importance in
EGT. It provides essential understanding of complexity in a dynamical system,
such as its behavioural, cultural or biological diversity (Haigh, 1988, 1990;
Broom et al., 1997; Broom, 2003; Gokhale and Traulsen, 2010; Han et al., 2012;
Gokhale and Traulsen, 2014; Duong and Han, 2015, 2016; Broom and Rychtář,
2016). A large body of literature has analysed the number of equilibria, their
stability and attainability in concrete strategic scenarios such as the public
goods game and its variants, see for example Broom et al. (1997); Broom
(2000); Pacheco et al. (2009); Souza et al. (2009); Peña (2012); Peña et al.
(2014); Sasaki et al. (2015). However, despite their importance, equilibrium
properties in random games are far less understood with, to the best of our
knowledge, only a few recent efforts (Gokhale and Traulsen, 2010; Han et al.,
2012; Galla and Farmer, 2013; Gokhale and Traulsen, 2014; Duong and Han,
2015, 2016; Broom and Rychtář, 2016). One of the most challenging problems
in the study of equilibrium properties in random games is to characterise the
distribution of the number of equilibria (Gokhale and Traulsen, 2010; Han
et al., 2012):

What is the distribution of the number of (internal) equilibria in a d-player
random evolutionary game and how can we compute it?
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This question has been studied in the literature to some extent. For example, in
Gokhale and Traulsen (2010); Han et al. (2012); Gokhale and Traulsen (2014),
the authors studied this question with a small number of players (d ≤ 4) and
only focused on the probability of attaining the maximal number of equilib-
rium points, i.e. pd−1, where pm (0 ≤ m ≤ d − 1) is the probability that
a d-player game with two strategies has exactly m internal equilibria. These
works use a direct approach by analytically solving a polynomial equation, ex-
pressing the positivity of its zeros as domains of conditions for the coefficients
and then integrating over these domains to obtain the corresponding probabil-
ities. However, it is impossible to extend this approach to games with a large
or arbitrary number of players as in general, a polynomial of degree five or
higher is not analytically solvable (Abel, 1824). In more recent works (Duong
and Han, 2015, 2016; Duong et al., 2017a), we have established the links be-
tween random evolutionary games, random polynomial theory (Edelman and
Kostlan, 1995) and classical polynomial theory (particularly Legendre polyno-
mials), employing techniques from the latter to study the expected number of
internal equilibria, E. More specifically, we provided closed form formulas for
E, characterised its asymptotic limits as the number of players in the game
tends to infinity and investigated the effect of correlation in the case of cor-
related payoff entries. On the one hand, E offers useful information regarding
the macroscopic, average behaviour of the number of internal equilibria a dy-
namical system might have. On the other hand, E cannot provide the level
of complexity or the number of different states of biodiversity that will occur
in the system. In these situations, details about how the number of internal
equilibrium points distributed is required. Furthermore, as E can actually be
derived from pm using the formula E =

∑d−1
m=0mpm, a closed form formula for

pm would make it possible to compute E for any d, hence filling in the gap in
the literature on computing E for large d (d ≥ 5). Therefore, it is necessary
to estimate pm.

1.2 Summary of main results

In this paper, we address the above question by providing a closed-form for-
mula for the probability pm (0 ≤ m ≤ d − 1). Our approach is based on the
links between random polynomial theory and random evolutionary game the-
ory established in our previous work (Duong and Han, 2015, 2016). That is,
an internal equilibrium in a d-player game with two strategies can be found by
solving the following polynomial equation (detailed derivation in Section 2),

d−1∑
k=0

βk

(
d− 1
k

)
yk = 0, (1)

where βk = Ak−Bk, with Ak and Bk being random variables representing the
entries of the game payoff matrix. We now summarise the main results of this
paper. Detailed derivations and proofs will be given in subsequent sections.
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The first main result is an explicit formula for the probability distribution of
the number of internal equilibria.

Theorem 1 (The distribution of the number of internal equilibria in
a d-player two-strategy random evolutionary game) Suppose that the
coefficients {βk} in (1) are either normally distributed, uniformly distributed
or the difference of uniformly distributed random variables. The probability
that a d-player two-strategy random evolutionary game has m, 0 ≤ m ≤ d− 1,
internal equilibria, is given by

pm =

b d−1−m
2 c∑

k=0

pm,2k,d−1−m−2k, (2)

where pm,2k,d−1−m−2k are given in (13), (14) and (15), respectively.

This theorem, which is stated in detail in Theorem 4 in Section 3, is derived
from a more general theorem, Theorem 3, where we provide explicit formulas
for the probability pm,2k,n−m−2k that a random polynomial of degree n has
m (0 ≤ m ≤ n) positive, 2k (0 ≤ k ≤ bn−m2 c) complex and n − 2m − 2k
negative roots. Note that results from Theorem 3 are applicable to a wider class
of general random polynomials, i.e. beyond those derived from evolutionary
random games considered in this work.

Theorem 1 is theoretically interesting and can be used to compute pm,
0 ≤ m ≤ d− 1 for small d. We use it to compute all the probabilities pm, 0 ≤
m ≤ d−1, for d up to 5, and compare the results with those obtained through
extensive numerical simulations (for validation). However, when d is larger
it becomes computationally expensive to compute these probabilities using
formula (2) because one needs to calculate all the probabilities pm,2k,d−1−2k,
0 ≤ k ≤ bn−m2 c, which are complex multiple integrals. To overcome this issue,
in Section 5, we develop our second main result, Theorem 2 below, which
offers simpler explicit estimates of pm in terms of d and m. The main idea
in developing this result is employing the symmetry of the coefficients βk.
Specifically, we consider two cases

Case 1 : P(βk > 0) = P(βk < 0) =
1

2
,

Case 2 : P(βk > 0) = α and P(βk < 0) = 1− α,

for all k = 0, . . . , d − 1 and for some 0 ≤ α ≤ 1. Note here that Case 1 is
an instance of Case 2 when α = 1

2 and can be satisfied when ak and βk are
exchangeable (see Lemma 1 below). Interestingly, the symmetry of βk allows us
to obtain a much simpler treatment. The general case allows us to move beyond
the exchangeability condition capturing the fact that different strategies might
have different payoff properties.

Theorem 2 We have the following upper-bound estimate for pm

pm ≤
∑
k≥m

k−m even

pk,d−1, (3)
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where pk,d−1 = 1
2d−1

(
d− 1
k

)
if α = 1

2 , in this case the sum on the right hand

side of (3) can be computed explicitly in terms of m and d. For the general
case, it can be computed explicitly according to Theorem 7. The estimate (3)
has several useful implications, leading to explicit bounds for pd−2 and pd−1 as
well as the following assertions:

1) For d = 2: p0 = α2 + (1− α)2 and p1 = 2α(1− α);
2) For d = 3: p1 = 2α(1− α).

This theorem is a summary of Theorems 6, 7 and 8 in Section 4 that are
derived using Descartes’ rule of signs and combinatorial methods. We note
that results of the aforementioned theorems are applicable to a wider class of
random polynomials that are not necessarily from random games.

1.3 Organisation of the paper

The rest of the paper is organised as follows. In Section 2, we recall and sum-
marise the replicator dynamics for multi-player two-strategy games. The main
contributions of this paper and the detailed analysis of the main results de-
scribed above will be presented in subsequent sections. Section 3 is devoted to
the proof of Theorem 1 on the probability distribution. The proof of Theorem 2
will be given in Section 4. In Section 5 we show some numerical simulations
to demonstrate analytical results. In Section 6, further discussions are given.
Finally, Appendix 7 contains proofs of technical results from previous sections.

2 Replicator dynamics

A fundamental model of evolutionary game theory is replicator dynamics (Tay-
lor and Jonker, 1978; Zeeman, 1980; Hofbauer and Sigmund, 1998; Schuster
and Sigmund, 1983; Nowak, 2006), describing that whenever a strategy has
a fitness larger than the average fitness of the population, it is expected to
spread. For the sake of completeness, below we derive the replicator dynamics
for multi-player two-strategy games.

Consider an infinitely large population with two strategies, A and B. Let x,
0 ≤ x ≤ 1, be the frequency of strategy A. The frequency of strategy B is thus
(1 − x). The interaction of the individuals in the population is in randomly
selected groups of d participants, that is, they play and obtain their fitness
from d-player games. The game is defined through a (d−1)-dimensional payoff
matrix (Gokhale and Traulsen, 2010), as follows. Let Ak (respectively, Bk) be
the payoff that an A-strategist (respectively, a B-strategist) obtained when
playing with a group of d − 1 players that consists of k A-strategists. In this
paper, we consider symmetric games where the payoffs do not depend on the
ordering of the players. Asymmetric games will be studied in our forthcoming
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paper (Duong et al., 2017b). In the symmetric case, the probability that an A
strategist interacts with k other A strategists in a group of size d− 1 is(

d− 1
k

)
xk(1− x)d−1−k. (4)

Thus, the average payoffs of A and B are, respectively

πA =

d−1∑
k=0

Ak

(
d− 1
k

)
xk(1−x)d−1−k, πB =

d−1∑
k=0

Bk

(
d− 1
k

)
xk(1−x)d−1−k.

The replicator equation of a d-player two-strategy game is given by (Hofbauer
and Sigmund, 1998; Sigmund, 2010; Gokhale and Traulsen, 2010)

ẋ = x(1− x)
(
πA − πB

)
.

Since x = 0 and x = 1 are two trivial equilibrium points, we focus only on
internal ones, i.e. 0 < x < 1. They satisfy the condition that the fitnesses of
both strategies are the same, i.e. πA = πB , which gives rise to

d−1∑
k=0

βk

(
d− 1
k

)
xk(1− x)d−1−k = 0,

where βk = Ak − Bk. Using the transformation y = x
1−x , with 0 < y < +∞,

dividing the left hand side of the above equation by (1− x)d−1 we obtain the
following polynomial equation for y

P (y) :=

d−1∑
k=0

βk

(
d− 1
k

)
yk = 0. (5)

Note that this equation can also be derived from the definition of an evolution-
arily stable strategy (ESS), an important concept in EGT (Maynard Smith,
1982), see e.g., (Broom et al., 1997). Note however that, when moving to ran-
dom evolutionary games with more than two strategies, the conditions for ESS
are not the same as for those of stable equilibrium points of replicator dynam-
ics. As in Gokhale and Traulsen (2010); Duong and Han (2015, 2016), we are
interested in random games where Ak and Bk (thus βk), for 0 ≤ k ≤ d − 1,
are random variables.

In Section 3 where we provide estimates for the number of internal equilib-
ria in a d-player two-strategy game, we will use the information on the sym-
metry of βk. The following lemma gives a necessary condition to determine
when the difference of two random variables is symmetrically distributed.

Lemma 1 (Duong et al., 2017a, Lemma 3.5) Let X and Y be two exchange-
able random variables, i.e. their joint probability distribution fX,Y (x, y) is sym-
metric, fX,Y (x, y) = fX,Y (y, x). Then Z = X−Y is symmetrically distributed
about 0, i.e., its probability distribution satisfies fZ(z) = fZ(−z). In addition,
if X and Y are i.i.d then they are exchangeable.

For the sake of completeness, the proof of this Lemma is provided in Section
7.1.
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3 The distribution of the number of positive zeros of random
polynomials and applications to EGT

This section focuses on deriving the distribution of the number of internal
equilibria of a d-player two-strategy random evolutionary game. We recall that
an internal equilibria is a real and positive zero of the polynomial P (y) in (5).
We denote by κ the number of positive zeros of this polynomial. For a given
m, 0 ≤ m ≤ d − 1, we need to compute the probability pm that κ = m. To
this end, we first adapt a method introduced in Zaporozhets (2006) (see also
Butez and Zeitouni (2017); Götze et al. (2017) for its applications to other
problems) to establish a formula to compute the probability that a general
random polynomial has a given number of real and positive zeros. Then we
apply the general theory to the polynomial P .

3.1 The distribution of the number of positive zeros of a random polynomial

Consider a general random polynomial

P(t) = ξ0t
n + ξ1t

n−1 + . . .+ ξn−1t+ ξn. (6)

We use the following notations for the elementary symmetric polynomials

σ0(y1, . . . , yn) = 1,

σ1(y1, . . . , yn) = y1 + . . .+ yn,

σ2(y1, . . . , yn) = y1y2 + . . .+ yn−1yn, (7)

...

σn−1(y1, . . . , yn) = y1y2 . . . yn−1 + . . .+ y2y3 . . . yn,

σn(y1, . . . , yn) = y1 . . . yn,

and denote by

∆(y1, . . . , yn) =
∏

1≤i<j≤n

|yi − yj | (8)

the Vandermonde determinant.

Theorem 3 Assume that the random variables ξ0, ξ1, . . . , ξn have a joint den-
sity p(a0, . . . , an). Let 0 ≤ m ≤ d − 1 and 0 ≤ k ≤ bn−m2 c. The probability
pm,2k,n−m−2k that P has m positive, 2k complex and n−m−2k negative zeros
is given by

pm,2k,n−m−2k =
2k

m!k!(n−m− 2k)!

∫
Rm

+

∫
Rn−m−2k
−

∫
Rk

+

∫
[0,π]k

∫
R

r1 . . . rkp(aσ0, . . . , aσn)|an∆| da dα1 . . . dαkdr1 . . . drkdx1 . . . dxn−2k, (9)
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where

σj = σj(x1, . . . , xn−2k, r1e
iα1 , r1e

−iα1 , . . . , rke
iαk , rke

−iαk), (10)

∆ = ∆(x1, . . . , xn−2k, r1e
iα1 , r1e

−iα1 , . . . , rke
iαk , rke

−iαk). (11)

As consequences,

(1) The probability that P has m positive zeros is

pm =

bn−m2 c∑
k=0

pm,2k,n−m−2k.

(2) In particular, the probability that P has the maximal number of positive
zeros is

pn =
2k

k!(n− 2k)!

∫
Rn

+

∫
R

p(aσ0, . . . , aσn) |an∆| dadx1 . . . dxn,

where
σj = σj(x1, . . . , xn), ∆ = ∆(x1, . . . , xn).

Proof The reference (Zaporozhets, 2006, Theorem 1) provides a formula to
compute the probability that the polynomial P has n − 2k real and 2k com-
plex roots. In the present paper, we need to distinguish between positive and
negative real zeros. We now sketch and adapt the proof of Theorem 1 of Za-
porozhets (2006) to obtain the formula (9) for the probability that the poly-
nomial P has m positive, 2k complex and n−m−2k negative roots. Consider
a (n+ 1)-dimensional vector space V of polynomials of the form

Q(t) = a0t
n + a1t

n−1 + . . .+ an−1t+ an,

and a measure µ on this space defined as the integral of the differential form

dQ = p(a0, . . . , an) da0 ∧ . . . ∧ dan. (12)

Our goal is to find µ(Vm,2k) where Vm,2k is the set of polynomials having m
positive, 2k complex and n −m − 2k negative roots. Let Q ∈ Vm,2k. Denote
all zeros of Q as

z1 = x1, . . . , zn−2k = xn−2k, zn−2k+1 = r1e
iα1 , zn−2k+2 = r1e

−iα1 , . . . ,

zn−1 = rke
iαk , zn = rke

−iαk ,

where

0 < x1, . . . , xm <∞; −∞ < xm+1, . . . , xn−2k < 0; 0 < r1, . . . , rk <∞;

0 < α1, . . . , αk < π.

To find µ(Vm,2k) we need to integrate the differential form (12) over the set
Vm,2k. The key idea in the proof of Theorem 1 Zaporozhets (2006) is to make a
change of coordinates (a0, . . . , an) 7→ (a, x1, . . . , xn−2k, r1, . . . , rk, α1, . . . , αk),
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with a = a0, and find dQ in the new coordinates. The derivation of the fol-
lowing formula is carried out in detail in Zaporozhets (2006):

dQ = 2kr1 . . . rk p(a, aσ1(x1, . . . , xn−2k, r1e
iα1 , r1e

−iα1 , . . . , rke
iαk , rke

−iαk),

. . . aσn(x1, . . . , xn−2k, r1e
iα1 , r1e

−iα1 , . . . , rke
iαk , rke

−iαk))

× |an∆((x1, . . . , xn−2k, r1e
iα1 , r1e

−iα1 , . . . , rke
iαk , rke

−iαk))|
× dx1 ∧ . . . ∧ dxn−2k ∧ dr1 ∧ . . . ∧ drk ∧ dα1 ∧ . . . ∧ dαk ∧ da.

Now we integrate this equation over all polynomials Q that have m positive
zeros, n − m − 2k negative zeros and k complex zeros in the upper half-
plane. Since there are m! permutations of the positive zeros, (n − m − 2k)!
permutations of the negative zeros, and k! permutations of the complex zeros,
after integrating each polynomial in the left-hand side will occur m!k!(n−m−
2k)! times. Hence the integral of the left-hand side is equal to m!k!(n −m −
2k)! pm,2k,n−m−2k. The integral on the right-hand side equals

2k
∫
Rm

+

∫
Rn−m−2k
−

∫
Rk

+

∫
[0,π]k

∫
R

r1 . . . rkp(aσ0, . . . , aσn)|an∆| da dα1 . . . dαk

dr1 . . . drkdx1 . . . dxn−2k,

hence the assertion (9) follows.

3.2 The distribution of the number of internal equilibria

Next we apply Theorem 3 to compute the probability that a random evolu-
tionary game has m, 0 ≤ m ≤ d − 1, internal equilibria. We derive formulas
for the three most common cases (Han et al., 2012):

C1) {βj , 0 ≤ j ≤ d− 1} are i.i.d. standard normally distributed,
C2) {βj} are i.i.d. uniformly distributed with the common distribution fj(x) =

1
21[−1,1](x),

C3) {Ak} and {Bk} are i.i.d. uniformly distributed with the common distri-
bution fj(x) = 1

21[−1,1](x).

The main result of this section is the following theorem (cf. Theorem 2).

Theorem 4 The probability that a d-player two-strategy random evolutionary
game has m (0 ≤ m ≤ d− 1) internal equilibria is

pm =

b d−1−m
2 c∑

k=0

pm,2k,d−1−m−2k,

where pm,2k,d−1−m−2k is given below for each of the cases above:
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- For the case C1)

pm,2k,d−1−m−2k

=
2k

m!k!(d− 1−m− 2k)!

Γ
(
d
2

)
(π)

d
2

d−1∏
i=0

δi

∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

r1 . . . rk

(
d−1∑
i=0

σ2
i

δ2i

)− d2
∆ dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k, (13)

where σi, for i = 0, . . . , d−1, and ∆ are given in (10)–(11) and δi =

(
d− 1
i

)
.

- For the case C2)

pm,2k,d−1−m−2k =
2k+1−d

dm! k! (d− 1−m− 2k)!
d−1∏
i=0

δi

∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

r1 . . . rk

(
min

{
|δi/σi|

})d
∆ dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k. (14)

- For the case C3)

pm,2k,d−1−m−2k =
2k+1(−1)d

m!k!(d− 1−m− 2k)!
∏d−1
j=0 δ

2
j

∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

r1 . . . rk

d−1∏
j=0

|σj |
d∑
i=0

(−1)i
Ki

2d− i

(
min

{
|δi/σi|

})2d−i
∆dα1 . . . dαkdr1 . . . drk

dx1 . . . dxd−1−2k. (15)

In particular, the probability that a d-player two-strategy random evolution-
ary game has the maximal number of internal equilibria is:

1) for the case C1)

pd−1 =
1

(d− 1)!

Γ
(
d
2

)
(π)

d
2

d−1∏
i=0

δi

∫
Rd−1

+

q(σ0, . . . , σd−1) dx1 . . . dxd−1; (16)

2) for the case C2)

pd−1 =
21−d

d!
∏d−1
i=0 δi

∫
Rd−1

+

(
min

{
|δi/σi|

})d
∆dx1 . . . dxd−1; (17)
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3) for the case C3)

pd−1 =
2(−1)d

(d− 1)!
∏d−1
j=0 δ

2
j

∫
Rd−1

+

d−1∏
j=0

|σj |
d∑
i=0

(−1)i
Ki

2d− i

(
min

{
|δi/σi|

})2d−i
∆

dx1 . . . dxd−1. (18)

Note that in formulas (16)-(18) above

σj = σj(x1, . . . , xd−1), ∆ = ∆(x1, . . . , xd−1)

.

Proof 1) Since {βj , 0 ≤ j ≤ d−1} are i.i.d. standard normally distributed, the

joint distribution p(y0, . . . , yd−1) of

{(
d− 1
j

)
βj , 0 ≤ j ≤ d− 1

}
is given by

p(y0, . . . , yd−1) =
1

(2π)
d
2

∏d−1
i=0

(
d− 1
i

) exp

−1

2

d−1∑
i=0

y2i(
d− 1
i

)2


=

1

(2π)
d
2 |C| 12

exp
[
− 1

2
yTC−1y

]
,

where y = [y0 y1 . . . yd−1]T and C is the covariance matrix

Cij =

(
d− 1
i

)(
d− 1
j

)
δij .

Therefore,

p(aσ0, . . . , aσd−1) =
1

(2π)
d
2 |C| 12

exp

(
− a2

2
σT C−1 σ

)
, (19)

where σ = [σ0 σ1 . . . σd−1]T . Using the following formula for moments of a
normal distribution, ∫

R

|x|n exp
(
− αx2

)
dx =

Γ
(
n+1
2

)
α
n+1
2

,

we compute

∫
R

|a|d−1 exp

(
− a2

2
σT C−1 σ

)
da =

Γ
(
d
2

)
(
σT C−1σ

2

) d
2

=
2
d
2 Γ
(
d
2

)
(
σTC−1σ

) d
2

.
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Applying Theorem 3 to the polynomial P given in (5) and using the above
identity we obtain

pm,2k,d−1−m−2k

=
2k

m!k!(d− 1−m− 2k)!

∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

∫
R

r1 . . . rk p(aσ0, . . . , aσd−1)|a|d−1∆dadα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k

=
2k

m!k!(d− 1−m− 2k)!

1

(2π)
d
2 |C| 12

2
d
2 Γ
(d

2

) ∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

r1 . . . rk
(
σTC−1σ

)− d2 ∆dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k

=
2k

m!k!(d− 1−m− 2k)!

Γ
(
d
2

)
(π)

d
2 |C| 12

∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

r1 . . . rk
(
σTC−1σ

)− d2 ∆dα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k,

which is the desired equality (13) by definition of C and σ.
2) Now since {βj} are i.i.d. uniformly distributed with the common distri-

bution fj(x) = 1
21[−1,1](x), the joint distribution p(y0, . . . , yd−1) of{(

d− 1
j

)
βj , 0 ≤ j ≤ d− 1

}
is given by

p(y0, . . . , yd−1) =
1

2d
∏d−1
i=0 δi

1×d−1
i=0 [−δi,δi](y0, . . . , yd−1) where δi =

(
d− 1
i

)
.

Therefore,

p(aσ0, . . . , aσd−1) =
1

2d
∏d−1
i=0 δi

1×d−1
i=0 [−δi,δi](aσ0, . . . , aσd−1).

Since 1×d−1
i=0 [−δi,δi](aσ0, . . . , aσd−1) = 1 if and only if aσi ∈ [−δi, δi] for all

i = 0, . . . , d− 1, i.e., if and only if

a ∈
d−1⋂
i=0

[
− |δi/σi|, |δi/σi|

]
=
[
− min
i∈{0,...,d−1}

{
|δi/σi|

}
, min
i∈{0,...,d−1}

{
|δi/σi|

}]
,

we have (for simplicity of notation, in the subsequent computations we shorten
min

i∈{0,...,d−1}
by min)

p(aσ0, . . . , aσd−1) =

{
1

2d
∏d−1
i=0 δi

, if a ∈
[
−min

{
|δi/σi|

}
,min

{
|δi/σi|

}]
,

0, otherwise.
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Therefore,

∫
R

|a|d−1p(aσ0, . . . , aσd−1) da =
1

2d
∏d−1
i=0 δi

∫ min
{
|δi/σi|

}
−min

{
|δi/σi|

} |a|d−1 da
=

1

d 2d−1
∏d−1
i=0 δi

(
min

{
|δi/σi|

})d
.

Similarly as in the normal case, using this identity and applying Theorem 3
we obtain

pm,2k,d−1−m−2k

=
2k

m!k!(d− 1−m− 2k)!

∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

∫
R

r1 . . . rk p(aσ0, . . . , aσd−1)|a|d−1∆dadα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k

=
2k+1−d

dm! k! (d− 1−m− 2k)!
∏d−1
i=0 δi

∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

r1 . . . rk

(
min

{
|δi/σi|

})d
∆dadα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k.

3) Now we assume that Aj and Bj are i.i.d. uniformly distributed with the
common distribution γ(x) = 1

21[−1,1](x). Since βj = Aj − Bj , its probability
density is given by

γβ(x) =

∫ +∞

−∞
f(y)f(x+ y) dy = (1− |x|)1[−1,1](x).

The probability density of δjβj is

γj(x) =
1

δj

(
1− |x|

δj

)
1[−1,1](x/δj) =

δj − |x|
δ2j

1[−δj ,δj ](x),

and the joint distribution p(y0, . . . , yd−1) of {δjβj , 0 ≤ j ≤ d− 1} is given by

p(y0, . . . , yd−1) =

d−1∏
j=0

δj − |yj |
δ2j

1×d−1
i=0 [−δi,δi](y0, . . . , yd−1).

Therefore

p(aσ0, . . . , aσd−1) =

d−1∏
j=0

δj − |aσj |
δ2j

1×d−1
i=0 [−δi,δi](aσ0, . . . , aσd−1).
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We compute∫
R

|a|d−1p(aσ0, . . . , aσd−1) da

=
1∏d−1

j=0 δ
2
j

∫ min
{
|δi/σi|

}
−min

{
|δi/σi|

} |a|d−1 d−1∏
j=0

(δj − |aσj |) da

=
2∏d−1

j=0 δ
2
j

∫ min
{
|δi/σi|

}
0

ad−1
d−1∏
j=0

(δj − a|σj |) da

= 2(−1)d
d−1∏
j=0

|σj |
δ2j

∫ min
{
|δi/σi|

}
0

ad−1
d−1∏
j=0

(
a− δj
|σj |

)
da

= 2(−1)d
d−1∏
j=0

|σj |
δ2j

d∑
i=0

(−1)iKi

∫ min
{
|δi/σi|

}
0

a2d−1−i da

= 2(−1)d
d−1∏
j=0

|σj |
δ2j

d∑
i=0

(−1)i
Ki

2d− i

(
min

{
|δi/σi|

})2d−i
,

where Ki = σi(δ0/|σ0|, . . . , δd−1/|σd−1|) for i = 0, . . . , d.
Therefore,

pm,2k,d−1−m−2k

=
2k

m!k!(d− 1−m− 2k)!

∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

∫
R

r1 . . . rk p(aσ0, . . . , aσd−1)|a|d−1∆dadα1 . . . dαkdr1 . . . drkdx1 . . . dxd−1−2k

=
2k+1(−1)d

m!k!(d− 1−m− 2k)!
∏d−1
j=0 δ

2
j

∫
Rm

+

∫
Rd−1−2k−m
−

∫
Rk

+

∫
[0,π]k

r1 . . . rk

d−1∏
j=0

|σj |
d∑
i=0

(−1)i
Ki

2d− i

(
min

{
|δi/σi|

})2d−i
∆dα1 . . . dαkdr1 . . . drk

dx1 . . . dxd−1−2k.

Corollary 1 The expected numbers of internal equilibria and stable internal
equilibria, E(d) and SE(d), respectively, of a d-player two-strategy game, are
given by

E(d) =

d−1∑
m=0

mpm, SE(d) =
1

2

d−1∑
m=0

mpm.

Note that this formula for E(d) is applicable for non-normal distributions,
which is in contrast to the method used in previous works (Duong and Han,
2015, 2016) that can only be used for normal distributions. The second part,
i.e. the formula for the expected number of stable equilibrium points, was
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obtained based on the following property of stable equilibria in multi-player
two-strategy evolutionary games, as shown in (Han et al., 2012, Theorem 3):
SE(d) = 1

2E(d).

Remark 1 In Theorem 4 for the case (C1), the assumption that βk’s are stan-
dard normal distributions, i.e. having variance 1, is just for simplicity. Suppose
that βk’s are normal distributions with mean 0 and variance η2. We show that
the probability pm, for 0 ≤ m ≤ d− 1, does not depend on η. In this case, the
formula for p is given by (19) but with C being replaced by η2C. To indicate
its dependence on η, we write pη. We use a change of variable a = ηã. Then

ad−1pη(aσ0, . . . , aσd−1) da

= ηd−1ãd−1
1

(
√

2πη)d
∏d−1
j=0

(
d− 1
j

) exp

− ã22
d−1∑
j=0

σ2
j(

d− 1
j

)2

 η dã

= ãd−1
1

(
√

2π)d
∏d−1
j=0

(
d− 1
j

) exp

− ã22
d−1∑
j=0

σ2
j(

d− 1
j

)2

 dã
= ãd−1p1(ãσ0, . . . , ãσd−1),

from which we deduce that pm does not depend on η. Similarly for the other
cases, the uniform interval can be 1

2α [−α, α] for some α > 0.

For illustration of the application of Theorem 4, the following examples
show explicit calculations for d = 3 and 4 for the case of normal distributions,
i.e. (C1). Further numerical results for d = 5 and also for other distributions,
i.e. (C2) and (C3), are provided in Figure 1. The integrals in these examples
were computed using Mathematica.

3.3 Examples for d = 3, 4

Example 1 (Three-player two-strategy games: d = 3)
1) One internal equilibria: p1 = p1,0,1. We have

m = 1, k = 0, σ0 = 1, σ1 = x1 + x2, σ2 = x1x2, ∆ = |x2 − x1|,

q(σ0, σ1, σ2) =
1(

1 + x21x
2
2 + 1

4 (x1 + x2) 2
)
3/2
|x2 − x1|.

Substituting these values into (13) we obtain the probability that a three-
player two-strategy evolutionary game has 1 internal equilibria

p1 =
1

4π

∫
R+

∫
R−

1(
1 + x21x

2
2 + 1

4 (x1 + x2) 2
)
3/2
|x2 − x1| dx1 dx2 = 0.5.



16 Manh Hong Duong et al.

2) Two internal equilibria: p2 = p2,0,0. We have

m = 2, k = 0, σ0 = 1, σ1 = x1 + x2, σ2 = x1x2, ∆ = |x2 − x1|,

q(σ0, σ1, σ2) =
1(

1 + x21x
2
2 + 1

4 (x1 + x2) 2
)
3/2
|x2 − x1|.

The probability that a three-player two-strategy evolutionary game has 2
internal equilibria is

p2 =
1

8π

∫
R2

+

1(
1 + x21x

2
2 + 1

4 (x1 + x2) 2
)
3/2
|x2 − x1| dx1 dx2 ≈ 0.134148.

(20)
3) No internal equilibria: the probability that a three-player two-strategy evo-
lutionary game has no internal equilibria is p0 = 1 − p1 − p2 ≈ 1 − 0.5 −
0.134148 = 0.365852.

Example 2 (Four-player two-strategy games: d = 4)

1) One internal equilibria: p1 = p1,0,2 + p1,2,0.

We first compute p1,0,2. In this case,

m = 1, k = 0, σ0 = 1, σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3,

∆ = |x2 − x1| |x3 − x1| |x3 − x2|.

Substituting these into (13) we get

p1,0,2 =
1

18π2

∫
R−

∫
R−

∫
R+

(
1+

(x1 + x2 + x3)2

9
+

(x1x2 + x1x3 + x2x3)2

9
+(x1x2x3)2

)−2
× |x2 − x1| |x3 − x1| |x3 − x2| dx1 dx2 dx3 ≈ 0.223128.

Next we compute p1,2,0. In this case,

m = 1, k = 1, σ0 = 1,

σ1 = σ1(x1, r1e
iα1 , r1e

−iα1) = x1 + r1e
iα1 + r1e

−iα1 = x1 + 2r1 cos(α1),

σ2 = σ2(x1, r1e
iα1 , r1e

−iα1) = x1(r1e
iα1 + r1e

−iα1) + r21 = 2x1r1 cos(α1) + r21,

σ3 = σ3(x1, r1e
iα1 , r1e

−iα1) = x1r
2
1,

∆ = ∆(x1, r1e
iα1 , r1e

−iα1) = |r1eiα1 − x1||r1e−iα1 − x1||r1eiα1 − r1e−iα1 |
= |r21 − 2x1r1 cos(α1) + x21||2r1 sin(α1)|.

Substituting these into (13) yields

p1,2,0 =
2

9π2

∫
R+

∫
[0,π]

∫
R+

r1

(
1+

(x1 + 2r1 cos(α1))2

9
+

(2x1r1 cos(α1) + r21)2

9
+(x1r

2
1)2
)−2

× |r21 − 2x1r1 cos(α1) + x21||2r1 sin(α1)| dx1dr1dα1da ≈ 0.260348.
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Therefore, we obtain that

p1 = p1,0,2 + p1,2,0 ≈ 0.223128 + 0.260348 = 0.483476.

2) Two internal equilibria: p2 = p2,0,1

m = 2, k = 0, σ0 = 1, σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3,

σ3 = x1x2x3, ∆ = |x2 − x1| |x3 − x1| |x3 − x2|.

The probability that a four-player two-strategy evolutionary game has 2 in-
ternal equilibria is

p2 =
1

18π2

∫
R+

∫
R+

∫
R−

(
1+

(x1 + x2 + x3)2

9
+

(x1x2 + x1x3 + x2x3)2

9
+(x1x2x3)2

)−2
× |x2 − x1| |x3 − x1| |x3 − x2| dx1 dx2 dx3 ≈ 0.223128. (21)

3) Three internal equilibria: p3 = p3,0,0

m = 3, k = 0, σ0 = 1, σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3,

σ3 = x1x2x3, ∆ = |x2 − x1| |x3 − x1| |x3 − x2|.

The probability that a four-player two-strategy evolutionary game has 3 in-
ternal equilibria is

p3 =
1

54π2

∫
R3

+

(
1 +

(x1 + x2 + x3)2

9
+

(x1x2 + x1x3 + x2x3)2

9
+ (x1x2x3)2

)−2
×|x2 − x1| |x3 − x1| |x3 − x2| dx1 dx2 dx3 ≈ 0.0165236.

4) No internal equilibria: the probability that a four-player two-strategy evo-
lutionary game has no internal equilibria is: p0 = 1 − p1 − p2 − p3 ≈ 1 −
0.483476− 0.223128− 0.0165236 = 0.276872.

4 Universal estimates for pm

In Section 3, we have derived closed-form formulas for the probability distri-
butions pm (0 ≤ m ≤ d− 1) of the number of internal equilibria. However, it
is computationally expensive to compute these probabilities since it involves
complex multiple-dimensional integrals. In this section, using Descartes’ rule
of signs and combinatorial techniques, we provide universal estimates for pm.
Descartes’ rule of signs is a technique for determining an upper bound on the
number of positive real roots of a polynomial in terms of the number of sign
changes in the sequence formed by its coefficients. This rule has been applied
to random polynomials before in the literature (Bloch and Pólya, 1932); how-
ever this paper only obtained estimates for the expected number of zeros of a
random polynomial.
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Theorem 5 (Descartes’ rule of signs, see e.g., (Curtiss, 1918)) Con-
sider a polynomial of degree n, p(x) = anx

n + . . . + a0 with an 6= 0. Let v be
the number of variations in the sign of the coefficients an, an−1, . . . , a0 and np
be the number of real positive zeros. Then (v − np) is an even non-negative
integer.

We recall that an internal equilibrium of a d-player two-strategy game is a
positive root of the polynomial P given in (5). We will apply Descartes’ rule
of signs to find an upper bound for the probability that a random polynomial
has a certain number of positive roots. This is a problem that is of interest
in its own right and may have applications elsewhere; therefore we will first
study this problem for a general random polynomial of the form

p(y) :=

n∑
k=0

aky
k, (22)

and then apply it to the polynomial P . It turns out that the symmetry of {ak}
will be the key: the asymmetric case requires completely different treatment
from the symmetric one.

4.1 Estimates of pm: symmetric case

We first consider the case where the coefficients {ak} in (22) are symmetrically
distributed. The main result of this section will be Theorem 6 that provides
several upper and lower bounds for the probability that a d-player two strat-
egy game has m internal equilibria. Before stating Theorem 6, we need the
following auxiliary lemmas.

Proposition 1 Suppose that the coefficients ak, 0 ≤ k ≤ n in the polyno-
mial (22) are i.i.d. and symmetrically distributed. Let pk,n, 0 ≤ k ≤ n, be the
probability that the sequence of coefficients (a0, . . . , an) has k changes of signs.
Then

pk,n =
1

2n

(
n
k

)
. (23)

Proof See Appendix 7.2.

The next two lemmas on the sum of binomial coefficients will be used later
on.

Lemma 2 Let 0 ≤ k ≤ n be positive integers. Then it holds that

n∑
j=k
j:even

(
n
j

)
=

1

2

[
n−k∑
j=0

(
n
j

)
+ (−1)k

(
n− 1
k − 1

)]
,

n∑
j=k
j:odd

(
n
j

)
=

1

2

[
n−k∑
j=0

(
n
j

)
− (−1)k

(
n− 1
k − 1

)]
,
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where it is understood that

(
n
j

)
= 0 if j < 0. In particular, for k = 0, we get

n∑
j=0
j:even

(
n
j

)
=

n∑
j=0
j:odd

(
n
j

)
= 2n−1. (24)

Proof See Appendix 7.3.

The following lemma provides estimates on the sum of the first k binomial
coefficients.

Lemma 3 Let n and 0 ≤ k ≤ n be positive integers. We have the following
estimates (MacWilliams and Sloane, 1977, Lemma 8 and Corollary 9, Chapter
10) and (Gottlieb et al., 2012)

2nH
(
k
n

)
√

8k
(
1− k

n

) ≤ k∑
j=0

(
n
j

)
≤ δ2nH

(
k
n

)
if 0 ≤ k < n

2
, and (25)

2n − δ2nH
(
k
n

)
≤

k∑
j=0

(
n
j

)
≤ 2n − 2nH

(
k
n

)
√

8k
(
1− k

n

) if
n

2
≤ k ≤ n, (26)

where δ = 0.98 and H is the binary entropy function

H(x) = −x log2(x)− (1− x) log2(1− x), (27)

where 0 log2 0 is taken to be 0. In addition, if n = 2n′ is even and 0 ≤ k ≤ n′,
we also have the following estimate (Lovász et al., 2003, Lemma 3.8.2)

k−1∑
j=0

(
2n′

j

)
≤ 22n

′−1
(

2n′

k

)/(2n′

n′

)
. (28)

We now apply Proposition 1 and Lemmas 2-3 to derive estimates for the prob-
ability that a d-player two-strategy evolutionary game has a certain number
of internal equilibria. The main theorem of this section is the following.

Theorem 6 Suppose that the coefficients {βk} in (5) are symmetrically dsitributed.
Let pm, 0 ≤ m ≤ d−1, be the probability that the d-player two-strategy random
game has m internal equilibria. Then the following assertions hold
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(a) Upper-bound for pm, for all 0 ≤ m ≤ d− 1,

pm ≤
1

2d−1

∑
j:j≥m

j−m even

(
d− 1
j

)
=

1

2d

[
d−1−m∑
j=0

(
d− 1
j

)
+

(
d− 2
m− 1

)]
(29)

≤



1
2d

[
δ2(d−1)H

(
m
d−1

)
+

(
d− 2

m− 1

)]
if d−1

2 < m ≤ d− 1,

1
2d

[
2d−1 − 2

(d−1)H

(
m
d−1

)
8m
(
1− m

d−1

) +

(
d− 2

m− 1

)]
if 0 ≤ m ≤ d−1

2 .

(30)

As consequences, 0 ≤ pm ≤ 1
2 for all 0 ≤ m ≤ d − 1, pd−1 ≤ 1

2d−1 ,

pd−2 ≤ d−1
2d−1 and lim

d→∞
pd−1 = lim

d→∞
pd−2 = 0.

In addition, if d− 1 = 2d′ is even and 0 ≤ m ≤ d′ then

pm ≤
1

2d

[
2d−2

(
d− 1
m− 1

)/(d− 1
d′

)
+

(
d− 2
m− 1

)]
. (31)

(b) Lower-bound for p0 and p1:

p0 ≥
1

2d−1
and p1 ≥

d− 1

2d−1
. (32)

(c) For d = 2: p0 = p1 = 1
2 .

(d) For d = 3: p1 = 1
2 .

Proof (a) This part is a combination of Decartes’ rule of signs, Proposition 1
and Lemmas 2-3. In fact, as a consequence of this rule and by Proposition 1,
we have

pm ≤
∑
j:j≥m

j−m: even

pj,d−1 =
1

2d−1

∑
j:j≥m

j−m: even

(
d− 1
j

)
,
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which is the inequality part in (29). Next, applying Lemma 2 for k = m and
n = d− 1 and then Lemma 3, we obtain

1

2d−1

∑
k:k≥m

k−m: even

(
d− 1
k

)

=



1
2d

[∑d−1−m
j=0

(
d− 1

j

)
+ (−1)m

(
d− 2

m− 1

)]
if m is even

1
2d

[∑d−1−m
j=0

(
d− 1

j

)
− (−1)m

(
d− 2

m− 1

)]
if m is odd

=
1

2d

[
d−1−m∑
j=0

(
d− 1
j

)
+

(
d− 2
m− 1

)]

≤



1
2d

[
δ2(d−1)H

(
m
d−1

)
+

(
d− 2

m− 1

)]
if d−1

2 < m ≤ d− 1,

1
2d

[
2d−1 − 2

(d−1)H

(
m
d−1

)
8m
(
1− m

d−1

) +

(
d− 2

m− 1

)]
if 0 ≤ m ≤ d−1

2 .

This proves the equality part in (29) and (30). As a result, the estimate pm ≤ 1
2

for all 0 ≤ m ≤ d−1 is followed from (29) and (24); the estimates pd−1 ≤ 1
2d−1

and pd−2 ≤ d−1
2d−1 are special cases of (29) for m = d − 1 and m = d − 2,

respectively.
Finally, the estimate (31) is a consequence of (29) and (28).

(b) It follows from Decartes’ rule of signs and Proposition 1 that

p0 ≥ p0,d−1 =
1

2d−1
and p1 ≥ p1,d−1 =

d− 1

2d−1
.

(c) For d = 2: from parts (a) and (b) we have

1

2
≤ p0, p1 ≤

1

2
,

which implies that p0 = p1 = 1
2 as claimed.

(d) Finally, for d = 3: also from parts (a) and (b) we get

1

2
≤ p1 ≤

1

2
,

so p1 = 1
2 . This finishes the proof of Theorem 6.

Remark 2 Note that in Theorem 6 we only assume that βk are symmetrically
distributed but do not require that they are normal distributions. When {βk}
are normal distributions, we have derived (Duong and Han, 2015, 2016) a
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closed formula for the expected number E(d) of internal equilibria, which

can be computed efficiently for large d. Since E(d) =
∑d−1
m=0mpm, we have

pm ≤ E(d)/m for all 1 ≤ m ≤ d − 1. Therefore, when {βk} are normal, we
obtain an upper bound for pm as the minimum between E(d)/m and the bound
obtained in Theorem 6. The comparison of the new bounds with E(d)/m in
Figure 2 shows that the new ones do better for m closer to 0 or d − 1 but
worse for intermediate m (i.e. closer to (d− 1)/2).

4.2 Estimates of pm: general case

In the proof of Proposition 1 the assumption that {ak} are symmetrically
distributed is crucial. In that case, all the 2n binary sequences constructed are
equally distributed, resulting in a compact formula for pk,n. However, when
{ak} are not symmetrically distributed, those binary sequences are no longer
equally distributed. Thus computing pk,n becomes much more intricate. We
now consider the general case where

P(ai > 0) = α, P(ai < 0) = 1− α for all i = 0, . . . , n.

Note that the general case allows us to move beyond the usual assumption in
the analysis of random evolutionary games that all payoff entries ak’s and bk’s
have the same probability distribution resulting in α = 1/2 (see Lemma 1). In
the general case it only requires that all ak’s have the same distribution and
all bk’s have the same distribution, capturing the fact that different strategies,
i.e. A and B in Section 2, might have different payoff properties (e.g., defectors
always have a larger payoff than cooperators in a public goods game).

The main results of this section will be Theorem 7 and Theorem 8. The
former provides explicit formulas for pk,n while the latter consists of several
upper and lower bounds for pm. We will need several technically auxiliary
lemmas whose proofs will be given in Appendix 7. We start with the following
proposition that provides explicit formulas for pk,n for k ∈ {0, 1, n− 1, n}.

Proposition 2 The following formulas hold:

• p0,n = αn+1 + (1− α)n+1, p1,n =

{
n
2n if α = 1

2 ,

2α(1− α) (1−α)n−αn
1−2α if α 6= 1

2 ;

• pn−1,n =

nα
n
2 (1− α)

n
2 if n even,

α
n+1
2 (1− α)

n+1
2

[
n+1
2

(
α

1−α + 1−α
α

)
+ (n− 1)

]
if n odd;

• pn,n =

{
α
n
2 (1− α)

n
2 if n is even,

2α
n+1
2 (1− α)

n+1
2 if n is odd.

In particular, if α = 1
2 , then p0,n = p1,n = 1

2n and p1,n = pn−1,n = n
2n .

Proof See Appendix 7.4.
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The computations of pk,n for other k are more involved. We will employ com-
binatorial techniques and derive recursive formulas for pk,n. We define

uk,n = P(there are k variations of signs in {a0, . . . , an}
∣∣an > 0),

vk,n = P(there are k variations of signs in {a0, . . . , an}
∣∣an < 0).

We have the following lemma.

Lemma 4 The following recursive relations hold:

uk,n = αuk,n−1 + (1− α)vk−1,n−1 and vk,n = αuk−1,n−1 + (1− α)vk,n−1.
(33)

Proof See Appendix 7.5.

We can decouple the recursive relations in Lemma 4 to obtain recursive rela-
tions for {uk,n} and vk,n separately as follows:

Lemma 5 The following recursive relations hold

uk,n = α(1− α)(uk−2,n−2 − uk,n−2) + uk,n−1,

vk,n = α(1− α)(vk−2,n−2 − vk,n−2) + vk,n−1.

Proof See Appendix 7.6.

Using the recursive equations for uk,n and vk,n we can also derive a recursive
relation for pk,n.

Proposition 3 {pk,n} satisfies the following recursive relation.

pk,n = α(1− α)(pk−2,n−2 − pk,n−2) + pk,n−1. (34)

Proof See Appendix 7.7.

Remark 3 Proposition 3 provides a second-order recursive relation for the
probabilities {pk,n}. This relation resembles the well-known Chu-Vandermonde

identity for binomial coefficients,
{
bk,n :=

(
n
k

)}
, which is that, for 0 < m <

n,

bk,n =

k∑
j=0

(
m
j

)
bk−j,n−m.

Particularly for m = 2 we obtain

bk,n = bk,n−2 + 2bk−1,n−2 + bk−2,n−2

= bk−2,n−2 − bk,n−2 + 2(bk,n−2 + bk−1,n−2)

= bk−2,n−2 − bk,n−2 + 2bk,n−1,

where the last identity is Pascal’ rule for binomial coefficients.
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On the other hand, the recursive formula pk,n for α = 1
2 becomes

pk,n =
1

4
(pk−2,n−2 − pk,n−2) + pk,n−1.

Using the transformation ak,n := 1
2n pk,n as in the proof of Theorem 7, then

ak,n = ak−2,n−2 − ak,n−2 + 2ak,n−1,

which is exactly the Chu-Vandermonde identity for m = 2 above. Then it is
no surprise that in Theorem 7 we obtain that ak,n is exactly the same as the

binomial coefficient ak,n =

(
n
k

)
.

In the next main theorem we will find explicit formulas for {pk,n} from
the recursive formula in the previous lemma using the method of generating
functions. The case α = 1

2 will be a special one.

Theorem 7 pk,n is given explicitly by: for α = 1
2 ,

pk,n =
1

2n

(
n
k

)
.

For α 6= 1
2 :

(i) if k is even, k = 2k′, then

pk,n =



∑n
m=dn2 e

n−k+1
2m−n+1

(
m

k′, n− k′ −m, 2m− n

)
(−1)n−k

′−m(α(1− α))n−m

if n even,

∑n
m=dn2 e

n−k+1
2m−n+1

(
m

k′, n− k′ −m, 2m− n

)
(−1)n−k

′−m(α(1− α))n−m

+2

(
dn−12 e
k′

)
(−1)d

n−1
2 e−k

′+1(α(1− α))
n+1
2 if n odd;

(ii) if k is odd, k = 2k′ + 1, then

pk,n = 2

n∑
m=dn−1

2 e

(
m

k′, n− k′ −m− 1, 2m− n+ 1

)
(−1)n−k

′−m−1(α(1−α))n−m.

Proof See Appendix 7.8.

Example 3 Below we provide explicit formulas for {pk,n} for 0 ≤ k ≤ n ≤ 4:

• n = 1 : p0,1 = α2 + (1− α)2; p1,1 = 2α(1− α);

• n = 2 : p0,2 = α3 + (1− α)3, p1,2 = 2α(1− α), p2,2 = α(1− α);

• n = 3 : p0,3 = α4 + (1− α)4, p1,3 = 2α(1− α)(α2 − α+ 1),

p2,3 = 2α(1− α)(α2 − α+ 1), p3,3 = 2α2(1− α)2;

• n = 4 : p0,4 = α5 + (1− α)5, p1,4 = 2α(1− α)(2α2 − 2α+ 1),

p2,4 = 3α(1− α)(2α2 − 2α+ 1), p3,4 = 4α2(1− α)2, p4,4 = α2(1− α)2.
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Direct computations verify the recursive formula for k = 2, n = 4

p2,4 = α(1− α)(p0,2 − p2,2) + p2,3.

We now apply Theorem 7 to the polynomial P in (5) to obtain estimates
for pm, 0 ≤ m ≤ d − 1, which is the probability that a d-player two-strategy
random evolutionary game has m internal equilibria. This theorem extends
Theorem 6 for α = 1/2 to the general case although we do not achieve an
explicit upper bound in terms of d as in Theorem 6.

Theorem 8 The following assertions hold

(i) Upper-bound for pm

pm ≤
∑
k≥m

k−m even

pk,d−1,

where pk,d−1 can be computed explicitly according to Theorem 7 with n
replaced by d− 1.

(ii) Lower-bound for p0: p0 ≥ αd + (1− α)d ≥ 1
2d−1 .

(iii) Lower-bound for p1: p1 ≥

{
d−1
2d−1 if α = 1

2 ,

2α(1− α) (1−α)d−1−αd−1

1−2α if α 6= 1
2 .

(iv) Upper-bound for pd−2:

pd−2 ≤

(d− 1)α
d−1
2 (1− α)

d−1
2 if d odd,

α
d
2 (1− α)

d
2

[
d
2

(
α

1−α + 1−α
α

)
+ (d− 2)

]
if d even,

≤ d− 1

2d−1
when d ≥ 3.

(v) Upper-bound for pd−1:

qd−1 ≤

{
α
d−1
2 (1− α)

d−1
2 if d is odd,

2α
d
2 (1− α)

d
2 if d is even,

≤ 1

2d−1
.

As consequences:

(a) For d = 2: p0 = α2 + (1− α)2 and p1 = 2α(1− α).
(b) For d = 3, p1 = 2α(1− α).

Proof We will apply Decartes’ rule of signs, Proposition 2 and Theorem 7 for
the random polynomial (5). It follows from Decartes’ rule of signs that

pm ≤
∑
k≥m

k−m even

pk,d−1,

where pk,d−1 is given explicitly in Theorem 7 with n replaced by d − 1. This
proves the first statement. In addition, we can also deduce from Decartes’
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rule of signs and Proposition 2 the following estimates for special cases m ∈
{0, 1, d− 2, d− 1}:

• p0 ≥ p0,d−1 = αd + (1− α)d ≥ min
0≤α≤1

[αd + (1− α)d] =
1

2d−1
;

• p1 ≥ p1,d−1 =

{
d−1
2d−1 if α = 1

2 ,

2α(1− α) (1−α)d−1−αd−1

1−2α if α 6= 1
2 ;

• pd−2 ≤ pd−2,d−1 =

(d− 1)α
d−1
2 (1− α)

d−1
2 if d odd,

α
d
2 (1− α)

d
2

[
d
2

(
α

1−α + 1−α
α

)
+ (d− 2)

]
if d even,

=

{
(d− 1)(α(1− α))

d−1
2 if d odd,

d
2 (α(1− α))d/2−1 − 2(α(1− α))d/2 if d even,

≤

{
(d− 1)(1/4)

d−1
2 = d−1

2d−1 if d odd,

max0≤β≤ 1
4
f(β) = d−1

2d−1 if d ≥ 3 even;

where, β := α(1− α), f(β) :=
d

2
βd/2−1 − 2βd/2, and to obtain the last inequality

we have used the fact that 0 ≤ β = α(1− α) ≤ 1

4
and

f ′(β) = dβd/2−2
(d

4
− 1

2
− β

)
≥ 0 when 0 ≤ β ≤ 1

4
and d ≥ 3.

• pd−1 ≤ pd−1,d−1 =

{
α
d−1
2 (1− α)

d−1
2 if d is odd,

2α
d
2 (1− α)

d
2 if d is even,

≤

{
(1/4)

d−1
2 = 1

2d−1 if d is odd,

2(1/4)
d
2 = 1

2d−1 if d is even.

These computations establish the estimates (ii)− (v) of the theorem. For the
consequences: for d = 2, in this case the above estimates (ii)− (v) respectively
become:

p0 ≥ α2 + (1− α)2, p1 ≥

{
1
2 if α = 1

2 ,

2α(1− α) if α 6= 1
2

= 2α(1− α), and

p0 ≤ α(1− α)
[ α

1− α
+

1− α
α

]
= α2 + (1− α)2, q1 ≤ 2α(1− α),

which imply that p0 = α2 + (1− α)2, p1 = 2α(1− α).
Similarly for d = 3, estimates (ii) and (iii) respectively become

p1 ≥

{
1
2 if α = 1

2 ,

2α(1− α)if α 6= 1
2

= 2α(1− α), and p1 ≤ 2α(1− α),

from which we deduce that p1 = 2α(1− α).
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5 Numerical simulations

In this section, we perform several numerical (sampling) simulations and calcu-
lations to illustrate the analytical results obtained in previous sections. Figure
1 shows the values of {pm} for d ∈ {3, 4, 5}, for the three cases studied in The-
orem 4, i.e., when βk are i.i.d. standard normally distributed (GD), uniformly
distributed (UD1) and when βk = ak − bk with ak and βk being uniformly
distributed (UD2). We compare results obtained from analytical formulas in
Theorem 4 and from samplings. The figure shows that they are in accordance
with each other agreeing to at least 2 digits after the decimal points. Figure 2
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Fig. 1 Numerical vs. simulation calculations of the probability of having a concrete number
(m) of internal equilibria, pm, for different values of d. The payoff entries ak and bk were
drawn from a normal distribution with variance 1 and mean 0 (GD) and from a standard
uniform distribution (UD2). We also study the case where βk = ak − bk itself is drawn
from a standard uniform distribution (UD1). Results are obtained from analytical formulas
(Theorem 2) (panel a) and are based on sampling 106 payoff matrices where payoff entries
are drawn from the corresponding distributions. Analytical and simulations results are in
accordance with each other. All results are obtained using Mathematica.
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compares the new upper bound obtained in Theorem 6 with that of E(d)/m.
The comparison indicates which formulas should be used to obtain a stricter
upper bound of pm.

Number of equilibria (m)

N
um

be
r o

f p
la

ye
rs

 (d
)

(a) (b)

Number of equilibria (m)
Fig. 2 Comparison of the new upper bounds of pm derived in Theorem 6 with that of
E(d)/m: panel (a) for the bound in (36) and panel (b) for the bound in (37). Black areas
indicate when the former ones are better and the grey areas otherwise. Clearly the bound in
panel (a) is stricter/better than that of panel (b). For small d, the new bounds are better.
When d is sufficiently large, we observe that for any d, the new bounds are worse than
E(d)/m when m is intermediate while better otherwise. Overall, this comparison indicates
which formulas should be used to obtain a stricter upper bound of pm.

6 Further discussions and future research

In this paper, we have provided closed-form formulas and universal estimates
for the probability distribution of the number of internal equilibria in a d-player
two-strategy random evolutionary game. We have explored further connections
between evolutionary game theory and random polynomial theory as discov-
ered in our previous works (Duong and Han, 2015, 2016; Duong et al., 2017a).
We believe that the results reported in the present work open up a new ex-
citing avenue of research in the study of equilibrium properties of random
evolutionary games. We now provide further discussions on these issues and
possible directions for future research.

Computations of probabilities {pm}. Although we have found analytical
formulas for pm it is computationally challenging to deal with them because
of their complexity. Obtaining an effective computational method for {pm}
would be an interesting problem for future investigation.

Quantification of errors in the mean-field approximation theory (Schehr
and Majumdar, 2008). Consider a general polynomial P as given in (6) with
dependent coefficients, and let Pm([a, b], n) be the probability that P has m
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real roots in the interval [a, b] (recall that n is the degree of the polynomial,
which is equal to d − 1 in Equation (1)). The mean-field theory (Schehr and
Majumdar, 2008) neglects the correlations between the real roots and simply
considers that these roots are randomly and independently distributed on the
real axis with some local density f(t) at point t, with f(t) being the den-
sity that can be computed from the Edelman-Kostlan theorem (Edelman and
Kostlan, 1995). Within this approximation in the large n limit, the probability
Pm([a, b], n) is given by a non-homogeneous Poisson distribution, see (Schehr
and Majumdar, 2008, Section 3.2.2 & Equation (70)). By applying the mean-
field theory one can approximate the probability pm that a random d-player
two-strategy evolutionary game has m internal equilibria by a simpler and
computationally feasible formula. However, it is unclear to us how to quantify
the errors of approximation. We leave this topic for future research.

Extensions to multi-strategy games. We have focused in this paper on ran-
dom games with two strategies (with an arbitrary number of players). The
analysis of games with more than two strategies is much more intricate since
in this case one needs to deal with systems of multi-variate random polynomi-
als. We have provided (Duong and Han, 2016, 2015) a closed formula for the
expected number of internal equilibria for a multi-player multi-strategy games
for the case of normal payoff entries. We aim to extend the present work to the
general case in future publications. In particular, Decartes’ rule of signs for
multi-variate polynomials (Itenberg and Roy, 1996) might be used to obtain
universal estimates, regardless of the underlying payoff distribution.

7 Appendix

In this appendix, we present proofs of technical results in previous sections.

7.1 Proof of Lemma 1

The probability distribution, fZ , of Z = X − Y can be found via the joint
probability distribution fX,Y as

fZ(z) =

∫ ∞
−∞

fX,Y (x, x− z) dx =

∫ ∞
−∞

fX,Y (y + z, y) dy.

Therefore, using the symmetry of fX,Y we get

fZ(−z) =

∫ ∞
−∞

fX,Y (x, x+ z) dx =

∫ ∞
−∞

fX,Y (x+ z, x) dx = fZ(z).

If X and Y are i.i.d with the common probability distribution f then

fX,Y (x, y) = f(x)f(y),

which is symmetric with respect to x and y, i.e., X and Y are exchangeable.
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7.2 Proof of Proposition 1

We take the sequence of coefficients (a0, . . . , an) and move from the left start-
ing from a0 to the right ending at an. When there is a change of sign, we
write a 1 and write a 0 when there is not. Then the changes of signs form a
binary sequence of length n. There are 2n of them in total. Thereby pk,n is the
probability that there are exactly k number 1s in the binary sequence. There

are

(
n
k

)
such sequences. Since {βk} are independent and symmetrically dis-

tributed, each sequence has a probability 1
2n of occurring. From this we deduce

(23).

7.3 Proof of Lemma 2

Since
n∑
j=0

(
n
j

)
(−1)j = (1 + (−1))n = 0, we have

n∑
j=k

(
n
j

)
(−1)j = −

k−1∑
j=0

(
n
j

)
(−1)j .

According to (Duong and Tran, 2018, Lemma 5.4)

k−1∑
j=0

(
n
j

)
(−1)j = (−1)k−1

(
n− 1
k − 1

)
.

Therefore,
n∑
j=k

(
n
j

)
(−1)j = (−1)k

(
n− 1
k − 1

)
,

or equivalently:
n∑
j=k
j: even

(
n
j

)
−

n∑
j=k
j: odd

(
n
j

)
= (−1)k

(
n− 1
k − 1

)
.

Define S̄k,n :=
n∑
j=k

(
n
j

)
and Sk,n :=

k∑
j=0

(
n
j

)
. Then using the property that(

n
j

)
=

(
n

n− j

)
we get S̄k,n = Sn−k,n and

n∑
j=k
j:even

(
n
j

)
=

1

2

[
S̄k,n + (−1)k

(
n− 1
k − 1

)]
=

1

2

[
Sn−k,n + (−1)k

(
n− 1
k − 1

)]
,

n∑
j=k
j:odd

(
n
j

)
=

1

2

[
S̄k,n − (−1)k

(
n− 1
k − 1

)]
=

1

2

[
Sn−k,n − (−1)k

(
n− 1
k − 1

)]
.

This finishes the proof of this Lemma.
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7.4 Proof of Proposition 2

The four extreme cases k ∈ {0, 1, n − 1, n} are special because we can char-
acterise explicitly the events that the sequence {a0, . . . , an} has k changes of
signs. We have

p0,n = P
{
a0 > 0, . . . , an > 0}+ P{a0 < 0, . . . , an < 0)

}
= αn+1 + (1− α)n+1.

p1,n = P
{
∪n−1k=0 {a0 > 0, . . . ak > 0, ak+1 < 0, . . . , an < 0}

∪ {a0 < 0, . . . ak < 0, ak+1 > 0, . . . , an > 0}
}

=

n−1∑
k=0

(
αk+1(1− α)n−k + (1− α)k+1αn−k

)
= α(1− α)n

n−1∑
k=0

( α

1− α

)k
+ αn(1− α)

n−1∑
k=0

(1− α
α

)k

=


n
2n if α = 1

2 ,

α(1− α)n
1−
(

α
1−α

)n
1− α

1−α
+ αn(1− α)

1−
(

1−α
α

)n
1− 1−α

α

if α 6= 1
2

=

{
n
2n if α = 1

2 ,

2α(1− α) (1−α)n−αn
1−2α if α 6= 1

2 .

pn,n = P
{
{a0 > 0, a1 < 0, . . . , (−1)nan > 0} ∪ {a0 < 0, a1 > 0, . . . , (−1)nan < 0}

}
=

{
α
n+2
2 (1− α)

n
2 + (1− α)

n+2
2 α

n
2 if n is even,

2α
n+1
2 (1− α)

n+1
2 if n is odd

=

{
α
n
2 (1− α)

n
2 if n is even,

2α
n+1
2 (1− α)

n+1
2 if n is odd.

It remains to compute pn−1,n.

pn−1,n =

n−1∑
k=0

P
{
ak and ak+1 have the same signs and there are n− 1 changes of signs in

(a0, . . . , ak, ak+1, . . . , an)
}

=:

n−1∑
k=0

γk.
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We now compute γk. This depends on the parity of n and k. If both n and k
are even, then

γk = P
(
a0 > 0, a1 < 0, . . . , ak > 0, ak+1 > 0, . . . an < 0

)
+ P

(
a0 < 0, a1 > 0, . . . , ak < 0, ak+1 < 0, . . . an > 0

)
= (1− α)

n
2 α

n+2
2 + (1− α)

n+2
2 α

n
2 .

If n is even and k is odd, then

γk = P
(
a0 > 0, a1 < 0, . . . , ak < 0, ak+1 < 0, . . . an < 0

)
+ P

(
a0 < 0, a1 > 0, . . . , ak > 0, ak+1 > 0, . . . an > 0

)
= α

n+2
2 (1− α)

n
2 + (1− α)

n+2
2 α

n
2 .

Therefore, in both cases, i.e., if n is even we get

γk = α
n
2 (1− α)

n
2 .

From this we deduce pn−1,n = nα
n
2 (1 − α)

n
2 . Similarly if n is odd and k is

even

γk = P
(
a0 > 0, a1 < 0, . . . , ak > 0, ak+1 > 0, . . . an > 0

)
+ P

(
a0 < 0, a1 > 0, . . . , ak < 0, ak+1 < 0, . . . an < 0

)
= (1− α)

n+3
2 α

n−1
2 + (1− α)

n−1
2 α

n+3
2 .

If both n and k are odd

γk = P
(
a0 > 0, a1 < 0, . . . , ak < 0, ak+1 < 0, . . . an > 0

)
+ P

(
a0 < 0, a1 > 0, . . . , ak > 0, ak+1 > 0, . . . an < 0

)
= α

n+1
2 (1− α)

n+1
2 + (1− α)

n+1
2 α

n+1
2 .

Then when n is odd, we obtain

pn−1,n =
n+ 1

2

[
(1− α)

n+3
2 α

n−1
2 + (1− α)

n−1
2 α

n+3
2

]
+ (n− 1)α

n+1
2 (1− α)

n+1
2

= α
n+1
2 (1− α)

n+1
2

[
n+ 1

2

( α

1− α
+

1− α
α

)
+ (n− 1)

]
.

In conclusion,

pn−1,n =

nα
n
2 (1− α)

n
2 if n even,

α
n+1
2 (1− α)

n+1
2

[
n+1
2

(
α

1−α + 1−α
α

)
+ (n− 1)

]
if n odd.
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7.5 Proof of Lemma 4

Applying the law of total probability

P (A|B) = P (A|B,C)P (C|B) + P (A|B, C̄)P (C̄|B),

we have:

P
(
k sign switches in{a0, . . . , an}

∣∣an > 0
)

= P
(
k sign switches in {a0, . . . , an}

∣∣an > 0, an−1 > 0)P(an−1 > 0|an > 0
)

+ P
(
k sign switches in {a0, . . . , an}

∣∣an > 0, an−1 < 0)P(an−1 < 0|an > 0
)
.

Since an−1 and an are independent, we have P(an−1 > 0
∣∣an > 0) = P(an−1 >

0) and P (an−1 < 0
∣∣an > 0) = P (an−1 < 0). Therefore,

P
(
k sign switches in {a0, . . . , an}

∣∣an > 0
)

= P
(
k sign switches in {a0, . . . , an}

∣∣an > 0, an−1 > 0
)
P(an−1 > 0)

+ P
(
k sign switches in {a0, . . . , an}

∣∣an > 0, an−1 < 0
)
P(an−1 < 0)

= P
(
k sign switches in {a0, . . . , an−1}

∣∣an−1 > 0
)
P(an−1 > 0)

+ P
(
k − 1 sign switches in {a0, . . . , an−1}

∣∣an−1 < 0
)
P(an−1 < 0

)
.

Therefore we obtain the first relationship in (33). The second one is proved
similarly.

7.6 Proof of Lemma 5

From (33), it follows that

vk−1,n−1 =
uk,n − αuk,n−1

1− α
, vk,n−1 =

uk+1,n − αuk+1,n−1

1− α
. (35)

Substituting (35) into (33) we obtain

uk+1,n+1 − αuk+1,n

1− α
= αuk−1,n−1 + (1− α)

uk+1,n − αuk+1,n−1

1− α
,

which implies that

uk+1,n+1 = (1− α)αuk−1,n−1 + (1− α)(uk+1,n − αuk+1,n−1) + αuk+1,n

= (1− α)αuk−1,n−1 − α(1− α)uk+1,n−1 + uk+1,n.

Re-indexing we get uk,n = (1−α)α(uk−2,n−2−uk,n−2) +uk,n−1. Similarly we
obtain the recursive formula for vk,n.
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7.7 Proof of Proposition 3

From Lemmas 4 and 5 we have

pk,n = αuk,n + (1− α)vk,n

= α[α(1− α)(uk−2,n−2 − uk,n−2) + uk,n−1]

+ (1− α)[α(1− α)(vk−2,n−2 − vk,n−2) + vk,n−1]

= α(1− α)[α(uk−2,n−2 − uk,n−2) + (1− α)(vk−2,n−2 − vk,n−2)]

+ αuk,n−1 + (1− α)vk,n−1

= α(1− α)(pk−2,n−2 − pk,n−2) + pk,n−1.

This finishes the proof.

7.8 Proof of Theorem 7

Set 1/A2 := α(1−α). By the Cauchy-Schartz inequality α(1−α) ≤ (α+1−α)2
4 =

1
4 , it follows that A2 ≥ 4. Define ak,n := Anpk,n. Substituting this relation into
(34) we get the following recursive formula for ak,n

ak,n = ak−2,n−2 − ak,n−2 +Aak,n−1.

According to Proposition 2

a0,n = Anp0,n = An
(
αn+1 + (1− α)n+1

)
= α

( α

1− α

)n
2

+ (1− α)
(1− α

α

)n
2

,

(36)

a1,n = Anp1,n =

{
n if α = 1

2 ,
2α(1−α)
1−2α

[(
1−α
α

)n
2 −

(
α

1−α
)n

2

]
.

(37)

Also ak,n = 0 for k > n. Let F (x, y) be the generating function of ak,n, that is

F (x, y) :=

∞∑
k=0

∞∑
n=0

ak,nx
kyn.

Define

g(x, y) =

∞∑
n=0

a0,ny
n +

∞∑
n=0

a1,nxy
n.

From (36)-(37) we have: for α = 1
2

g(x, y) =

∞∑
n=0

yn + xy

∞∑
n=0

nyn−1 =
1

1− y
+ xy

d

dy

( 1

1− y

)
=

1− y + xy

(1− y)2
,
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and for α 6= 1
2

g(x, y)

=

∞∑
n=0

[
α
( α

1− α

)n
2

+ (1− α)
(1− α

α

)n
2

]
yn +

2α(1− α)x

1− 2α

∞∑
n=1

[(1− α
α

)n
2 −

( α

1− α

)n
2

]
yn

=
[
α− 2α(1− α)x

1− 2α

] ∞∑
n=0

( α

1− α

)n
2

yn +
[
1− α+

2α(1− α)x

1− 2α

] ∞∑
n=0

(1− α
α

)n
2

yn

=
[
α− 2α(1− α)x

1− 2α

] ∞∑
n=0

(αA)nyn +
[
1− α+

2α(1− α)x

1− 2α

] ∞∑
n=0

((1− α)A)nyn

=
[
α− 2α(1− α)x

1− 2α

] 1

1− αAy
+
[
1− α+

2α(1− α)x

1− 2α

] 1

1− (1− α)Ay

=

(
α(1− 2α)− 2α(1− α)x

)(
1− (1− α)Ay

)
+
(

(1− α)(1− 2α) + 2α(1− α)x
)(

1− αAy
)

(1− 2α)(1− αy)(1− (1− α)Ay)

=
1− 2y

A + 2xy
A

1−Ay + y2
.

Note that in the above computations we have the following identities

1

A2
= α(1−α),

α

1− α
= (αA)2,

1− α
α

= (1−α)2A2, (1−αAy)(1−(1−α)Ay) = 1−Ay+y2.

Now we have

F (x, y) =

∞∑
k=0

∞∑
n=0

ak,nx
kyn

= g(x, y) +

∞∑
k=2

∞∑
n=2

(ak−2,n−2 − ak,n−2 +Aak,n−1)xkyn

= g(x, y) +

∞∑
k=2

∞∑
n=2

ak−2,n−2x
kyn −

∞∑
k=2

∞∑
n=2

ak,n−2x
kyn +A

∞∑
k=2

∞∑
n=2

ak,n−1x
kyn

(38)

= g(x, y) + (I) + (II) + (III). (39)

We rewrite the sums (I), (II) and (III) as follow. For the first sum

(I) =

∞∑
k=2

∞∑
n=2

ak−2,n−2x
kyn = x2y2

∞∑
k=0

∞∑
n=0

ak,nx
kyn = x2y2F (x, y).

For the second sum

(II) =

∞∑
k=2

∞∑
n=2

ak,n−2x
kyn =

∞∑
k=0

∞∑
n=2

ak,n−2x
kyn −

∞∑
n=2

a0,n−2y
n −

∞∑
n=2

a1,n−2xy
n

= y2
∞∑
k=0

∞∑
n=0

ak,nx
kyn − y2

∞∑
n=0

a0,ny
n − y2

∞∑
n=1

a1,nxy
n

= y2(F (x, y)− g(x, y)).



36 Manh Hong Duong et al.

And finally for the last sum

(III) =

∞∑
k=2

∞∑
n=2

ak,n−1x
kyn = y(F (x, y)− g(x, y)).

Substituting these sums back into (39) we get

F (x, y) = g(x, y) +x2y2F (x, y)− y2(F (x, y)− g(x, y)) +Ay(F (x, y)− g(x, y)),

which implies that

F (x, y) =
g(x, y)(1−Ay + y2)

(1−Ay + y2 − x2y2)
.

For α = 1
2 , we get

F (x, y) =
1− y + xy

(1− y)2
(1− y)2

(1− y)2 − x2y2
=

1

1− y − xy

=

∞∑
n=0

(1 + x)nyn

=

∞∑
n=0

n∑
k=0

(
n
k

)
xkyn,

which implies that αk,n =

(
n
k

)
. Hence for the case α = 1

2 , we obtain pk,n =

1
2n

(
n
k

)
.

For the case α 6= 1
2 we obtain

F (x, y) =
1− 2y

A + 2xy
A

1−Ay + y2
1−Ay + y2

1−Ay + y2 − x2y2
=

1− 2y
A + 2xy

A

1−Ay + y2 − x2y2
.

Finding the series expansion for this case is much more involved than the
previous one. Using the multinomial theorem we have

1

1−Ay + y2 − x2y2
=

∞∑
m=0

(x2y2 − y2 +Ay)m

=

∞∑
m=0

∑
0≤i,j,l≤m
i+j+l=m

(
m
i, j, l

)
(x2y2)i(−y2)j(Ay)l

=

∞∑
m=0

∑
0≤i,j,l≤m
i+j+l=m

(
m
i, j, l

)
(−1)jAlx2iy2i+2j+l

=

∞∑
m=0

∑
0≤i,l≤m
i+l≤m

(
m

i,m− i− l, l

)
(−1)m−i−lAlx2iy2m−l.
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Therefore

F (x, y) =
1

A
(A− 2y + 2xy)

∞∑
m=0

∑
0≤i,l≤m
i+l≤m

(
m

i,m− i− l, l

)
(−1)m−i−lAlx2iy2m−l

=

∞∑
m=0

∑
0≤i,l≤m
i+l≤m

(
m

i,m− i− l, l

)
(−1)m−i−lAl−1

(
Ax2iy2m−l − 2x2iy2m−l+1 + 2x2i+1y2m−l+1

)
.

(40)

From this we deduce that:

If k is even, k = 2k′, then to obtain the coefficient of xkyn on the right-hand
side of (40), we select (i,m, l) such that

(i = k′ & 2m−l = n& 0 ≤ i, l ≤ m) or (i = k′ & 2m−l+1 = n& 0 ≤ i, l ≤ m).
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Then we obtain

ak,n =

n∑
m=dn2 e

(
m

k′,m− k′ − (2m− n), 2m− n

)
(−1)m−k

′−(2m−n)A2m−n

+ 2

n∑
m=dn−1

2 e

(
m

k′,m− k′ − (2m− n+ 1), 2m− n+ 1

)
(−1)m−k

′−(2m−n+1)+1A2m−n

=

n∑
m=dn2 e

(
m

k′, n− k′ −m, 2m− n

)
(−1)n−k

′−mA2m−n

+ 2

n∑
m=dn−1

2 e

(
m

k′, n− k′ −m− 1, 2m− n+ 1

)
(−1)n−k

′−mA2m−n

=



∑n
m=dn2 e

[(
m

k′, n− k′ −m, 2m− n

)
+ 2

(
m

k′, n− k′ −m− 1, 2m− n+ 1

)]
×(−1)n−k

′−mA2m−n if n even,

∑n
m=dn2 e

[(
m

k′, n− k′ −m, 2m− n

)
+ 2

(
m

k′, n− k′ −m− 1, 2m− n+ 1

)]

×(−1)n−k
′−mA2m−n + 2

(
dn−12 e
k′

)
(−1)d

n−1
2 e−k

′+1A−1 if n odd

=



∑n
m=dn2 e

n−k+1
2m−n+1

(
m

k′, n− k′ −m, 2m− n

)
(−1)n−k

′−mA2m−n if n even,

∑n
m=dn2 e

n−k+1
2m−n+1

(
m

k′, n− k′ −m, 2m− n

)
(−1)n−k

′−mA2m−n

+2

(
dn−12 e
k′

)
(−1)d

n−1
2 e−k

′+1A−1 if n odd.

Similarly, if k is odd, k = 2k′+ 1, then to obtain the coefficient of xkyn on the
right-hand side of (40), we select (i,m, l) such that

(i = k′ & 2m− l + 1 = n & 0 ≤ i, l ≤ m),

and obtain

ak,n = 2

n∑
m=dn−1

2 e

(
m

k′, n− k′ −m− 1, 2m− n+ 1

)
(−1)n−k

′−m−1A2m−n.

From ak,n we compute pk,n using the relations pk,n =
ak,n
An and A2 = 1

α(1−α)
and obtain the claimed formulas. This finishes the proof of this theorem.
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Remark 4 We can find ak,n by establishing a recursive relation. We have

1

F (x, y)
=

1−Ay + y2 − x2y2

1− 2y
A + 2xy

A

= −Axy
2
− Ay

2
+
A2

4
+

1−A2/4

1− 2y
A + 2xy

A

= −Axy
2
− Ay

2
+
A2

4
+ (1−A2/4)

∞∑
n=0

(2y

A
(1− x)

)n
= −Axy

2
− Ay

2
+
A2

4
+ (1−A2/4)

∞∑
n=0

( 2

A

)n
(1− x)nyn

= −Axy
2
− Ay

2
+
A2

4
+ (1−A2/4)

∞∑
n=0

n∑
k=0

(−1)kCk,n

( 2

A

)n
xkyn

= 1 +
( 2

A
−A

)
y − 2

A
xy + (1−A2/4)

∞∑
n=2

n∑
k=0

(−1)kCk,n

( 2

A

)n
xkyn

=:

∞∑
n=0

n∑
k=0

bk,nx
kyn := B(x, y).

where

b0,0 = 1, b0,1 =
2

A
−A, b1,1 = − 2

A
and

bk,n = (1−A2/4)(−1)kCk,n

( 2

A

)n
for 0 ≤ k ≤ n, n ≥ 2.

Using the relation that

F (x, y)B(x, y) =
( ∞∑
n=0

∞∑
k=0

ak,nx
kyn
)( ∞∑

n′=0

∞∑
k′=0

bk′n′x
k′yn

′
)

= 1,

we get the following recursive formula to determine aK,N

a0,0 =
1

b0,0
= 1, a0,N = −

N−1∑
n=0

a0,nb0,N−n, aK,N = −
K−1∑
k=0

N−1∑
n=0

ak,nbK−k,N−n.

It is not trivial to obtain an explicit formula from this recursive formula. How-
ever, it is easily implemented using a computational software such as Mathe-
matica or Mathlab.
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