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Abstract 

 

A complementary study, which involves computational and in-house collected experimental 

work, has been employed to elucidate the swelling effect within polysulfone membranes by 

CO2 at varying operating temperatures. The simulation models have been constructed with 

accordance to collected experimental data. The experimental and simulated sorption 

isotherms of CO2 are in fairly good agreement with one another. Subsequently, the 

constructed molecular structures of unswollen and swollen polysulfone membrane at varying 

operating temperature has been analyzed to study the effect of CO2 in terms of physical 

characteristic, glass transition temperature, relaxation and free volume to determine whether 

the temperature or concentration parameters are more dominant in CO2 swelling. In addition, 

radial distribution function (RDF) between CO2 and varying groups within polysulfone has 

been evaluated to determine association reaction that invokes the dilation. RDF at various 

operating temperature has been employed to be incorporated within a series of 

thermodynamic equations in order to quantify the interaction of CO2 with polysulfone that 

constitutes to swelling.  
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1. Introduction  

 

Membrane process is a recently emerged alternative in gas separation applied in 

natural gas purification as compared to traditional techniques, e.g. absorption, adsorption and 

cryogenics [1] attributed to its many benefits, such as flexible operating conditions, effective 

energy utilization and operating cost, chemical free as well as occupancy of smaller footprint 

[2-5]. Glassy polymeric membranes dominate membrane separation technology in an 

industrial scale since they have huge reproducibility for large scale production and low 

fabrication cost as compared to inorganic membranes [6], while exhibiting high gas 

selectivities alongside good mechanical characteristics in comparison to rubbery membranes 

[7]. Nonetheless, the drawback of adopting polymeric membrane is the occurrence of 

swelling effect, which has been rationalized through interaction between highly condensable 

gas molecules often existing as impurities in natural gas, e.g.  CO2, H2S, and H2O [8-17], 

with functional group of the polymeric chain [18]. Sorption of the gas molecules contributes 

to ease of movement for chain molecules to slide among each other, which constitute to 

enlargement in free volume of membrane matrix, consequently known as polymer softening 

[19, 20]. Hence, it becomes prominent to illuminate the swelling phenomenon since it is 

highly probable to cause alteration in membrane morphology that constitute to unwanted 

product lost, which decreases productivity of typical CO2 separation from natural gas 

processing application [21].  

 

Insight towards CO2 induced swelling plays an essential role in development of 

separation efficiency and the molecular design of existing and next-generation polymeric 

membranes with desirable transport properties. As such, molecular simulation has been 

suggested as a viable substitute to offer elucidation towards morphology and properties of 

membranes from the molecular level, frequently realized through a combination of molecular 

dynamics (MD) and Monte Carlo (MC) methodology [22-25] following advancement in 

simulation and computational tools [18]. Moreover, adaptation of molecular simulation tool 

also overcomes the obstruction, expenditure and time in fabrication and empirical 

investigation of membrane through employment of experimental scale apparatus since it is 

found to be easier and direct to tune operating conditions of the simulation [26]. Nonetheless, 

to date merely a limited number of molecular simulation works have been dedicated towards 

unraveling CO2 swelling effect to provide microscopic insight at a molecular level. 

 



The feasibility elucidation of substantial interaction between gas molecule and 

polymeric system, which occurs typically at higher gas concentration levels, has been 

pioneered in work by van der Vegt et al. (1998), whence they considered a modified model of 

conventional polyethylene (PE) [27]. Based on the above motivation, Heuchel et al. (2006) 

initiated an effort to simulate unswollen and swollen states of polysulfone (PSF) and poly 

(ether sulfone) (PES) through generation of models with incorporation and without sorbed 

carbon dioxide [28]. Consequently, Hölck et al. (2006) correlated the PSF molecular 

structures at the reference states of unswollen and swollen conditions to the common dual 

sorption model and site distribution model of Kirchheim, which enabled quantification of 

CO2 swelling induced behaviour in glassy polymers [29]. In another work by Hölck et al. 

(2008), they conducted molecular modelling in PSF and polyimide 6FDA-TrMPD (P14) 

structures to study the dilation effects induced by CO2 swelling effect in varying types of 

polymer [30]. Spyriouni et al. (2009) introduced a new computational scheme to investigate 

the sorption and swelling characteristic of glassy atactic polystyrene (PS) at elevated 

pressures but reported requirement of more expensive computational procedures and tool to 

accomplish the simulation work [31]. In a subsequent work by Zhang et al. (2010), they 

investigated CO2 induced swelling in 6PDA-ODA (6FDA = 4, 4-(hexafluoroisopropylidene) 

diphthalic anhydride, ODA = 4, 4-oxydianiline) polymeric membrane to realize a quantitative 

characterization between the polymer structure and its interaction with CO2 molecules, which 

ultimately affected it separation performance [18]. In a similar work by Velioğlu et al. (2012), 

they extended the study of CO2 swelling phenomenon to varying fluorinated polyimide 

membranes (e.g. 6PDA-ODA, 6FPA-DPX and 6FDA-DAM; DPX = 2,5-dimethyl-p-

phenylenediamine, DAM = 2,4,6-trimethyl-m-phenylenediamine) [32]. Neyertz & Brown 

(2014) simulated meta-linked and para-linked 6FDA-6FmDA polyimide membrane to 

examine the CO2 sorption and swelling resistant of isomeric structures [33, 34].  

 

Based on review of published literatures, it is found that albeit acknowledgement of 

CO2 swelling within glassy polymeric structures at the atomistic scale, the molecular 

simulation works have all been confined to study at ambient operating temperature of 

typically 308.15 K (35 °C). In typical natural gas processing, the entering natural gas are in 

the range of 30°C to 55°C in order to suit the temperature for membrane separation [35, 36]. 

The limitation thereby confines the understanding of CO2 swelling phenomena at the 

fundamental level over an extended range of operating temperature from ambient condition, 



which is frequently encountered in membrane gas separation industry [37]. The vitality of 

effect of operating temperature upon CO2 induced swelling in gas transport properties have 

been affirmed through experimental observation by Duthie et al. (2007), whereby they 

reported solubility, diffusivity and permeability of gases through a swollen polyimide 

membrane at 21, 35, 50 and 77 °C respectively [38].  

 

Nonetheless, operating temperature impacts on the CO2 swelling phenomenon has 

been scarcely elucidated through molecular simulation work to provide phenomenological 

insight towards the thermal dependency on membrane morphology and interaction between 

CO2 and functional group of the polymeric chains from molecular level. The relaxation 

process attributed to gas induced swelling behaviour at different operating temperature is 

dependent upon (i) the solubility of gas in the polymeric matrix and (ii) operating temperature 

of the system. In general, under isothermal conditions, the swelling effect is expected to be 

more apparent with increment of penetrant concentration in the membrane matrix. The higher 

gas concentration is typically encountered at lower operating temperature since solubility of 

gas decreases with increment in temperature attributed to higher affinity to maintain at the 

gaseous phase. On the other hand, mobility of polymeric chains may increase with higher 

temperature, which further induces accelerated swelling process. Both variables are 

interrelated and therefore substantiate in depth elucidation towards the membrane 

morphology and physical properties during the temperature dependent CO2 swelling 

phenomena. Nonetheless, CO2 swelling phenomena has been reported to be a reversible 

process, whereby membrane morphology returns to its original state once CO2 is desorbed 

from the polymeric matrix [39]. The constraint prompts the requirement of in-situ 

observation of membrane to study the CO2 swelling, which is difficult and costly through 

elipsometry technique to measure the free volume changes associated to CO2 exposure and 

almost infeasible for study of CO2 interaction with polymeric chain at a molecular level [40]. 

Hence, the question of operating temperature dependent swelling within polymeric 

membrane remains open and one that remains unravelled to date. It is not clear whether the 

temperature or gas concentration parameter is more dominant in the temperature dependent 

CO2 swelling phenomena. 

 

In this paper, a molecular modelling assemble has been conducted to simulate 

unswollen and swollen polysulfone (PSF) polymeric membrane structures characterizing the 

effect of CO2 swelling at distinct operating temperatures, which are 30, 35, 40, 45, 50 and 



55 °C, since it is one of the most commonly employed membranes in industrial application 

[41-43]. The studied temperature range is selected since it is typical operating temperature for 

natural gas purification and much lower than the glass transition temperature of PSF, which 

remains the polymeric membrane at glassy-like condition [44] to perform separation based on 

sorption and diffusion of gas penetrants [45, 46]. Simulated models have been constructed 

based upon inputs from in-house collected experimental data, such as operating conditions, 

amount of gas sorbed within the polymeric membrane matrix and structure density. Validity 

of the constructed polymeric membrane structures has been verified through good 

compliance observed between published or in-house experimentally measured and 

computationally simulated properties, such as density and sorption isotherms. Subsequently, 

physical properties characterizing effect of operating temperature towards extend of 

relaxation and swelling of polymeric membranes (e.g. physical structure, depression of glass 

transition temperature and mean square displacement of polymeric chains) have been 

elucidated. In addition, free volume of the constructed PSF membranes have been quantified 

[47], to address elucidation of temperature dependent swelling in polymeric membranes that 

remains unanswered in preceding simulation works. Interaction between CO2 gas penetrants 

and PSF polymeric chain has been investigated to understand the functional groups that are 

responsible at incipient point of swelling. Finally, a mathematical correlation that quantifies 

the interaction of CO2 and functional group of polymer at varying operating temperature has 

been proposed to quantify the swelling process in present work.  

 

2. Methodology 

 

In an overall, the methodology is comprised of coupling between experimental and 

simulation procedure to form a basis for correlation of molecular modeling work to actual 

membrane separation performance in order to further elucidate the temperature induced 

swelling effect. In this context, the molecular models have been simulated in accordance to 

measurement from laboratory condition. Applicability of the constructed models is further 

evaluated through comparison between simulated and experimentally measured sorption 

isotherms at varying operating temperatures. Subsequently, physical properties and 

morphology of the validated unswollen and swollen polymeric structures at varying operating 

temperatures have been elucidated. Overview of the methodology employed in present work 

is provided in Figure S1 in the Supplementary Information. In addition, few assumptions 

have been made in this work, such that the motion of atoms is describable by the law of 



Newton’s [48]. Other than that, the interaction between atoms is determinable by using the 

empirical potential functions [49]. Well-defined periodic boundaries in the x, y and z 

directions have been adapted to permit considerable simplification to the modeling process 

through assumption of homogenous characteristics throughout the polymeric membrane 

matrix [50].  

 

2.1   Experimental Section 

 

This section describes the materials and fabrication methodology to prepare PSF 

membrane employed in present study and pressure decay methodology for measurement of 

gas penetrants solubility within the fabricated PSF membrane matrix. 

 

2.1.1 Materials and Membrane Preparation 

 

The polysulfone (PSF) dense film was prepared via solution casting method using N-

Methyl-2-pyyrolidone (NMP) as solvent [51-53] with a composition of 25 wt% PSF. The 

PSF was manufactured and supplied in pellet form by Aldrich (MW ~35000 by light 

scattering) while NMP from Merck (analytical grade) was used as received.  

 

Initially, the PSF pellets were placed in a vacuum oven overnight to remove excess 

moisture trapped within the solids. Then, the dehydrated pellets were weighted on a Sartorius 

weighing scale (precision 0.1 mg) to determine the required amount. On the other hand, NMP 

solvent was measured and filtered using a 1.0 μm PTFE membrane filter to eliminate any 

undesirable contaminants and debris. The PSF pellets were then dissolved and mixed within 

NMP solvent for 24 hrs until the dissolution process has been completed, which was 

confirmed via the observation of a homogenous PSF/ NMP solution through naked eyes. 

Prior to casting, the mixed solution was desonicated within an ultrasonication water bath, 

which is operated at 120 W and 40 kHz, for 4 hrs and subsequently for 24 hrs of free standing 

degassing at ambient condition. The sonication and degassing procedure was conducted to 

remove any microbubbles formed during the mixing process to form a homogenous PSF/ 

NMP solution. The casting solution was then poured into a levelled and clean Petri glass dish. 

Subsequently, an aluminium foil was enveloped on the surface area of the Petri dish to 

minimize its evaporation rate. Drying protocol comprising of solvent evaporation process 

under atmospheric operating condition, and then annealing in vacuum oven via temperature 



increment from 40 to 180 °C every 2 hrs with temperature interval of 20 °C has been carried 

out to avoid the creation of defects attributed to rapid solvent evaporation.  Finally, the dried 

PSF membrane film was peeled off from the Petri dish with care. 

 

2.1.2 Characterization of Membrane Sample  

 

This section describes the characterization analyses that have been incorporated in 

current work to elucidate morphology of the fabricated membrane in order ensure its 

applicability prior to measurement of gas solubility behavior.  

 

2.1.2.1 Variable Pressure Field Emission Scanning Electron Microscope 

(VPFESEM) 

 

Morphology of the membrane samples were examined by variable pressure field 

emission scanning electron microscope (VPFESEM, Zeiss Supra 55 VP). Cross section 

images of the resultant membranes were obtained by using FESEM with an accelerating 

voltage of 10 kV. Cross sections of the membranes were prepared by submerging the samples 

in liquid nitrogen for several minutes before fracturing the film in order to obtain a clear and 

better image of the samples. All the membrane samples were subsequently sputter coated 

with platinum using Quorum Q150R S coater prior to imaging. Membrane samples were 

observed using VPFESEM with magnification from 300-3000. 

 

2.1.2.2 Fourier transform infrared (FTIR) 

 

The infrared (IR) spectra of the membrane sample were recorded using Fourier 

transform infrared spectrometer (Perkin Elmer Spectrum One), with 50 scans in the 

wavelength range of 450 - 4000 cm-1 under the transmission mode. The FTIR spectra were 

obtained using KBr method. 

 

2.1.3 Solubility Measurement (Pressure Decay Methodology) 

 

The principle is based on a dual-chamber pressure decay setup, which has been 

demonstrated in detailed elsewhere [54], in which the approach utilizes the concept of 

measuring the amount of gas initially in contact with a polymer sample and the amount of gas 



remaining in the gas phase after equilibration. The methodology involves measurement of the 

resulting decrease in pressure as gas is absorbed into the polymer sample, the temperature of 

the sample and gas, and volume of the system in which the experiment takes place. In this 

study, in order to capture the impact of operating temperature to swelling induced sorption 

within polymeric membrane, the entire system has been submerged in a constant temperature 

water bath, whereby the temperature is constantly monitored and regulated at the designated 

operating condition of 30, 35, 40, 45, 50 and 55 °C respectively.  

 

Theoretically, the dual chamber sorption system utilizes a reservoir chamber of 

known volume filled with gas to a known pressure, 𝑃𝑃1 , whereby the amount of gas,  𝑛𝑛1 , 

presents in the cell can be calculated using Eq. (1). 

𝑛𝑛1 = 𝑃𝑃1𝑉𝑉𝐶𝐶1
𝑍𝑍1𝑅𝑅𝑅𝑅

                                                                                                                                 (1) 

In Eq. (1), 𝑉𝑉𝐶𝐶1 describes the inner volume of the chamber, 𝑇𝑇 represents temperature of the gas, 

𝑍𝑍1 is compressibility factor of the real gas under the designated operating condition ( 𝑃𝑃1 and 

𝑇𝑇), which can be directly obtained or interpolated from established thermodynamic gas table, 

while 𝑅𝑅 characterizes the ideal gas constant. In this study, the pressure  𝑃𝑃1 has been regulated 

to up to 50 bars at an incremental step of 5 bars interval, to acquire the sorption behaviour of 

CO2 in PSF membrane. A maximum pressure of 50 bars is required to constitute sufficient 

driving force in order to induce the swelling effect in PSF membranes [29, 30]. On the other 

hand, a second chamber that holds the polymeric membrane under study is located adjacent 

to the reservoir chamber. By opening a valve that separates both the reservoir and membrane 

chambers, the gas is allowed to flow into the second chamber and thus into the polymer. At 

the equilibrium point, when the sample is saturated, the pressure,  𝑃𝑃2 , will be relatively 

constant, and the amount of gas remaining in the reservoir and membrane chambers, 𝑛𝑛1+2, 

can be conveniently calculated through employment of Eq. (2). 

𝑛𝑛1+2 = 𝑃𝑃2�𝑉𝑉𝐶𝐶1+𝑉𝑉𝐶𝐶2−𝑉𝑉𝑝𝑝�
𝑍𝑍2𝑅𝑅𝑅𝑅

                                                                                                               (2) 

In this context, 𝑉𝑉𝐶𝐶2 corresponds to inner volume of the membrane cell, 𝑉𝑉𝑝𝑝 is volume of the 

polymeric sample whereas 𝑍𝑍2 represents the compressibility factor at 𝑃𝑃2 and 𝑇𝑇. Finally, the 

amount of gas dissolved into the polymer, 𝑛𝑛𝑝𝑝, can be determined as the difference of the 

initial amount of gas before sorption and the amount of gas remaining after sorption, such as 

that depicted in Eq. (3). 

𝑛𝑛𝑝𝑝 = 𝑛𝑛1 − 𝑛𝑛1+2                                                                                                                         (3) 



 

The concentration of gas molecule, 𝑥𝑥, sorbed within the polymer membrane at any 

operating temperature has been obtained through Eq. (4), where 22414 cm3/ mol corresponds 

to a simple numerical conversion factor and 𝑉𝑉𝑝𝑝 (cm3) is volume of the polymer sample in the 

membrane chamber, which has been determined through the conventional fluid displacement 

method in current work.                                       

 𝑥𝑥 = 𝑛𝑛𝑝𝑝 �
22414
𝑉𝑉𝑝𝑝

�                                                                                                               (4) 

 

2.2 Molecular Simulation Section 

 

The molecular simulation methodology in present work is subdivided into four parts. 

The first is molecular simulation treatment to construct the reference sates of unswollen and 

swollen PSF polymeric membrane structure at different operating temperatures, the second is 

procedure for determination of sorption of CO2 gas molecules through Monte Carlo 

algorithm, third is glass transition temperature in the polymeric membranes, and the finally is 

analytical tool to evaluate free volume and cavity size distribution within the membrane 

matrix.  All the molecular simulation works has been conducted using Materials Studio 8.0 

software developed by Biovia [55].  

 

2.2.1 Atomistic Packing Models 

 

Polysulfone (PSF), which is a commercial membrane commonly adapted for gas 

separation, has been simulated employing a series of molecular dynamics (MD) procedure in 

Materials Studio 8.0. The repeating unit of the PSF polymeric membrane is provided in 

Figure 1.  
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Figure 1 Single repeat unit for Polysulfone (PSF) polymeric chain, white: hydrogen, grey: 

carbon, yellow: sulphur, red: oxygen atom. Typical interaction sites with CO2 under 

investigation (O1, C1 and O2) are shown. 

 

The properties of the PSF polymeric membrane employed for molecular simulation study in 

present work has been summarized in Table 1 [56].  

 

Table 1 Properties of PSF polymeric membrane for molecular simulation 

Polymeric Membrane  PSF  

Number of repeat unit  94  

Number of polymeric chains  1  

Experimental density (g/ cm3)  1.24 a 

Experimental glass transition temperature (°C)  186 a 

a  Experimental value by Ahn et al. (2008) [63]. 
 

To simulate the pure PSF membrane, PSF chain with head-to-tail orientation and isotactic 

tacticity has been employed consistently throughout the study. A PSF polymeric chain 

consisting of 94 repeat units is used as basis in all simulation works since it has been reported 

in previous work by Hölck et al. (2006) that this initial configuration can simulate bulk PSF 

polymeric membranes with relative great success at a fixed temperature of 308.15 K (35 °C) 

[28-30]. The same chain length has been employed but extended to different operating 

temperatures for ease of comparison and validation with previous published literatures [29]. 

A linear PSF polymeric chain has been simulated with the similar reasoning and basis as 

explained in our previous published literature [57].  

 

The Condensed-phase Optimized Molecular Potentials for Atomistic Simulation 

Studies (COMPASS) force field has been employed constantly throughout the work.  The 

COMPASS force field has been selected since it has been demonstrated in previous published 

works to be of sufficient reliability to simulate PSF membrane under the assumption of 

periodic boundary condition, which is in satisfactory accordance to actual experimental 

observation [57, 58]. The fundamental equation underlying the COMPASS force field is 

provided in equations (S1) – (S4) of Supplementary Information. The electrostatic 



interactions have been characterized via the Ewald method (accuracy of 0.001 kcal/ mol), 

while the Lennard-Jones-6-12 function has been employed to describe the van der Waals 

interaction [59] with a cut-off-distance of ~18 Ǻ (spline width of 1 Ǻ and buffer width of 0.5 

Ǻ). The cut-off distance has been employed since it is lower than half of the anticipated cell 

specification, which has been suggested in previous published works to be adequate to 

prevent atoms interrelating with their own image, while minimizing computational cost [60-

63]. All the electrostatic and Lennard Jones parameters have been extracted from Materials 

Studio simulation software for computational work. The computational study has been 

conducted from 3 initial configurations under all conditions, while the average has been 

reported to be statistically reliable. 

 

2.2.1.1 Unswollen Polymeric Membrane Structure 

 

The Forcite module of Materials Studio 8.0 has been employed to treat the initial 

polymeric chain through an energy minimization and geometry optimization protocol. In this 

context, the COMPASS force field has been employed together with the smart algorithm, 

which is a combination of the steepest descent; adjusted basis set Newton-Raphson (ABNR) 

and quasi-Newton algorithms in a cascading manner, in order to refine geometry of the initial 

polymeric chain. Later, the polymeric membrane chain has been folded into Amorphous Cell 

module adopting Construction task. The polymeric chain has been folded in the hypothetical 

cell by assuming PBC in all x, y and z directions at a value of 10% of the expected 

experimental density since initializing from a small density has been proposed to enhance the 

success rate of packing the polymeric chains at confined specification [64]. Moreover, it has 

been reported in published simulation works that the coupling effect of ring can be minimized 

via ramping from a low initial density [65-68]. In addition, small spacer molecules of 500 

CO2 have been packed in addition to the PSF polymeric chain during the initial phase of 

building amorphous cell, which can be removed in subsequent equilibration steps, to achieve 

the objective of minimizing the possibility of ring spearing and catenation during compacting 

process [69, 70]. Additionally, when constructing the polymeric membrane at low density 

through employment of the Amorphous Cell module, the function of checking for ring 

spearing and close contact has been enabled to prepare structures that are defects free prior to 

being subjected to a series of molecular treatment. During the molecular dynamics simulation 

process to gradually increase the structure to the targeted experimental density, the energy 

deviation tolerance has been set to a low value of 10000 kcal/mol since the phenomena of 



ring coupling has been reported to induce excessive system energy [71, 72]. Rigorous 

checking for spearing and catenation of the ring has been conducted through employment of 

scripting available in Materials Studio [55]. All these procedures have been carried out with 

care to ensure that coupling effect of benzene ring has been avoided in all the final polymeric 

PSF membranes.   

 

The basis adopted for packing and equilibration of polymeric membranes have been 

described in our previous works [57, 73] but devoted to construction of ultrathin Polysulfone 

at fixed operating parameters of 2 atm and 308.15 K. Firstly, all CO2 from initial packing has 

been deleted prior to being subjected to the equilibration assemblies. In general, the initial 

constructed atomistic configuration without spacer molecules has been subsequently 

minimized and optimized adopting a series of protocols. Initially, in order to eradicate any 

unwanted atomistic arrangements, such as not feasible overlapping and close contact, a 10000 

step energy minimization has been carried out. Subsequently, the polymeric membrane 

structures have been subjected to an annealing procedure through employment of the 

temperature cycle function embedded within Forcite module. In other words, temperature of 

the system has been increased from 353.15 K to 653.15 K with an interval of 20°C, and then 

from 653.15 K to 353.15 K, which corresponds to 15 heating ramps per cycle [74]. 100 ps 

isothermal-isobaric (NPT) has been performed at each designated temperature, which 

contributes to a total annealing simulation time of 3 ns. To maintain temperature and pressure 

(2 atm) of the molecular system at the designated operating conditions, the Nose thermostat 

with Q ratio of 0.01 and Berendsen barostat with decay constant of 0.1 ps have been 

employed continuously. After implementation of the thermal treatment, additional 25000 ps 

NPT molecular dynamics equilibration run has been conducted on the membrane cell to 

attain the most possible geometry and least energy structure. In a similar manner, the Nose 

thermostat and Berendsen barostat have been employed to coordinate the pressure at 2 atm 

while the temperature is fixed at the designated operating temperature (e.g. 303.15-328.15 

K). Time step of 1 fs has been adapted to integrate the equation of motions via the velocity 

Verlet algorithm throughout the molecular dynamic steps. Subsequently, an additional 25000 

ps of Canonical (NVT) ensemble has been conducted on the equilibrated polymeric structure 

at the studied operating temperature to eliminate any internal structural inhomogeneities and 

to ensure the structures have achieved metastable condition. The NPT-NVT protocols have 

been iterated in an alternate manner until alteration in the successive density values are within 

predefined tolerance. The unswollen polysulfone membrane structure is named PSFTC 



throughout this study, with T being operating temperature of interest (e.g. PSF30C, PSF35C, 

PSF40C, PSF45C, PSF50C and PSF55C). 

 

2.2.1.2 Swollen Polymeric Membrane Structure 

 

Additional membrane structures have been simulated for the swollen polymer system 

with consideration of CO2 at varying operating temperatures. To conform with the PSF 

polymeric chain of 94 repeat units, the respective loading taken from the sorption experiment 

in present work, 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 , which has to be packed in addition to the simulation box, can be 

conveniently computed based on Eq. (5). 

nsim = Abs �x. vcell. �
6.023×1023

22414
��                                                                                        (5) 

In Eq. (5), x  is concentration of the sorbed CO2 swelling agent within the polymeric 

membrane at varying operating temperature measured from our in-house experimental 

pressure decay setup, such as that explained in section 2.1.3, vcell is volume of the simulation 

box, 6.023 × 1023  characterizes the Avogadros number and 22414  is the numerical 

conversion factor for gas at standard operating pressure and temperature. Similarly, 500 CO2 

gas molecules have been included with the PSF polymeric chain into the simulation box 

employing Construction task located within the Amorphous Cell module of Materials Studio 

8.0. The number of CO2 gas molecules at different operating temperature to be incorporated 

within the final packing model to induce the swelling effect at varying operating temperature 

is computed based on Eq. (5). Unlike the unswollen simulation model, deletion of CO2 gas 

molecules have been conducted in a random manner until it reaches the number according to 

Eq. (5). The same molecular treatment and dynamic procedures, as highlighted in section 

2.2.1.1, have been carried out on the swollen polymeric membrane structures. In order to 

simulate the effect of operating temperature to the CO2 plasticization effect, the procedures 

are repeated at temperature of 303.15 K, 308.15 K, 313.15 K, 318.15 K, 323.15 K and 328.15 

K (corresponding to 30, 35, 40, 45, 50 and 55 °C) respectively and at an operating pressure of 

50 bars to comply with laboratory sorption condition. A subscript s has been employed to 

represent all the swollen structures, such as PSFTCs, in which T is the operating temperature. 

The swollen simulation structures for 30, 35, 40, 45, 50 and 55 °C have been referred to as 

PSF30Cs, PSF35Cs, PSF40Cs, PSF45Cs, PSF50Cs and PSF55Cs consistently later in this 

study. By removing the CO2 penetrants molecules within the PSF membrane, simulation 

models are derived for the polymer matrix only, denoted by the index m, such as PSU30Csm, 



PSF35Csm, PSF40Csm, PSF45Csm, PSF50Csm and PSF55Csm. These models would be 

tentatively employed to perform the grand canonical Monte Carlo ensemble (GCME) 

simulation, such as described in section 2.2.2, on the unswollen and swollen polymeric 

membrane at varying operating temperatures to recalculate the respective sorption isotherms, 

as well as to verify applicability of the simulation methodology via comparison with 

experimental densities. 

 

2.2.2 Monte Carlo Sorption 

 

In order to further validate accuracy of the simulated molecular structures, the 

solubility of CO2 has been investigated employing the “fixed loading” task located in 

Sorption module of Materials Studio 8.0. As a whole, the simulation encompasses a series of 

grand canonical Monte Carlo ensemble (GCME), whence fugacity and temperature of the 

hypothetical cell are remained at a fixed value. General speaking, the framework is exposed 

to a reservoir with existence of infinite sorbate at the particular operating conditions assigned 

by end users. The Metropolis methodology [58, 75-77] has been adapted to include CO2 into 

the preferred sorption sites, in which likelihood of inclusion has been calculated according to 

energy change between successive configurations, ∆E, such as that shown in equation S1 of 

the Supplementary Information [78]. Decisive factors that are included in the Metropolis 

algorithm for reception and denial of sorbate molecules include configurational moves 

(rotation and translation) as well as construction and destruction of sorbates [79]. Both van 

der Waals and Columbic electrostatic forces (non-bonded energy terms) are included in the 

sorption simulation. The Metropolis algorithm has been selected in current study since it has 

been demonstrated in previous published molecular simulation works to be an adequate 

characterization for system with relatively small sorbates as compared to pore size of the 

polymeric matrix and inherits low degree of torsion flexibility, which are highly applicable to 

CO2 gas molecules [58, 80].  

 

2.2.3 Glass Transition Temperature 

 

In this study, the temperature cycle in Forcite Module of Materials Studio 8.0 has 

been employed to determine the 𝑇𝑇𝑔𝑔. Firstly, the final PSF membrane structures for unswollen 

and swollen reference states at varying operating temperatures have been entitled to an extra 



10 ps Canonical (NVT) ensemble with a time step of 1 fs, which enabled 10 frames in a 

trajectory file format to be obtained for each membrane structure. In other words, an average 

Tg can be computed to enhance accuracy of the value when the series of thermodynamic 

treatment is repeated while computing a distinct Tg for each frame. In this context, numerous 

cycles of NPT run at different operating temperatures have been conducted on the membrane 

structures, while its density alteration at each independent temperature has been plotted to 

determine the crossover point from glassy to rubbery region, which defines the  𝑇𝑇𝑔𝑔 . The 

independent frame in the PSF trajectory document has been heated from 300.15 K to 500.15 

K via NPT dynamics at different temperature with an interval of 1 K. A NPT dynamic 

simulation run of 1 fs time step and total simulation time of 1000 ps has been implemented at 

each designated temperature and operating pressure (2 bars and 50 bars for unswollen and 

swollen PSF simulation model respectively). After the heating protocol, the membrane 

system is cooled from 500.15 K to 300.15 K with a temperature interval of 1 K employing 

the exact identical NPT molecular dynamics simulation, while determining density at each 

operating condition. The procedure is iterated throughout the frames in the PSF trajectory file 

and the average values are determined when approaching the end of the simulations.  

 

2.2.4 Fractional Free Volume  

 

Two independent states have been recognized in polymeric membranes, which 

encompass a solid phase made up by polymeric chains and an empty space region, which is 

frequently called the free volume [56]. It is vital to provide an understanding towards the void 

space within the polymeric membrane, since it forms the channel for passage of gas 

penetrants [81]. To enumerate the quantity of void region within the membrane matrix, the 

fractional free volume (FFV) is a useful variable with its definition provided in (6). 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑣𝑣𝑔𝑔−𝑣𝑣𝑜𝑜
𝑣𝑣𝑔𝑔

                                                                                                                             (6) 

In equation (6), 𝑣𝑣𝑔𝑔 is specific volume of the polymeric glass at a specific operating condition 

and 𝑣𝑣𝑜𝑜 is occupied volume of the polymer chain.  

 

The Connolly Surface function inherent in Materials Studio 8.0, with an input of 

medium grid resolution and 0.4 Å grid intervals, has been utilized to separate regions of 

occupied polymeric chains and free volume [82, 83]. The Connolly probe radius is altered to 

fit the FFV calculated via Bondi’s methodology for the PSF30C membrane structure, with the 



same value being subsequently employed for all unswollen and swollen structures at different 

operating temperatures. FFV (Bondi) parameter has been generally evaluated based on 

Bondi’s group contribution methodology, such as that depicted in expression (7) [84]. 

𝑣𝑣𝑜𝑜 = 1.3∑ (𝑣𝑣𝑤𝑤)𝑘𝑘                                                                                                                            𝑛𝑛
𝑘𝑘=1     (7) 

In expression (7), 𝑛𝑛 is total number of functional groups into which the repeat unit structure 

of a polymer is divided, while (𝑣𝑣𝑤𝑤)𝑘𝑘 is van der Waals volume of the group, such as that 

proposed by Van Krevelen [85]. The specific volume of the PSF polymer films has been 

computed based on reciprocal of the simulated density from MD simulation, while 𝑣𝑣𝑜𝑜  = 

0.6903 cm3/ g has been employed consistently for all conditions in current work for FFV 

(Bondi) computation.  

 

3. Results and Discussion 

 

This section discusses the results pertinent to CO2 induced swelling within PSF 

polymeric membranes at different operating temperatures obtained from present study, which 

has been broadly subdivided into two major sections, such as those of experimental report 

and simulation analysis.   

 

3.1 Experimental Work 

 

To understand the fabricated membrane morphology, VPFESEM and ATR-FTIR 

have been conducted to analyze the fabricated membrane, with information related to 

characterization instrument found in section 2.1.2. From Figure 2, it is found that the PSF 

membrane is consisted of a dense single polymer layer that is homogenous and defects free in 

all directions. 

 

 

 

 

 

 

 

Figure 2 Cross sectional of PSF dense membrane 



In addition, the functional groups obtained from ATR-FTIR, as demonstrated in Table 2, are 

consistent to the observed repeat unit of PSF (Figure 1). The good accordance demonstrates 

the validity of the synthesized PSF membrane and elimination of any impurities/ solvent that 

can potentially affect the membrane separation performance in later study. 

 

Table 2 Characteristic of FTIR characterizing varying functional groups in fabricated PSF 

membrane 

 

To induce thermal dependence of CO2 swelling in PSF membrane,  the solubility of CO2 

penetrant within the polymer matrix has been measured through employment of the pressure 

decay methodology as outlined in section 2.1.3. Using the apparatus detailed earlier, 

solubility was determined, with CO2 uptake by PSF measured as a function of penetrant 

across a range of temperature from 30 to 55 °C, such as that provided in Figure 3. 

Experimental data by Sada et al. (1988) that studied the effect of operating temperature to the 

solubility of CO2 within PSF has also been provided in Figure 3 as reference [86]. In an 

overall, it is depicted that the collected sorption data of present study is not substantially 

different from the reported values by Sada et al. (1988), which demonstrates that the 

fabricated PSF polymeric membrane and experimental setup are of sufficient realibity to 

obtain defects free expeimental results. The sorption data of present work is consistently 

higher than that reported by Sada et al. (1988) at different operating temperatures, which can 

be deduced via the difference in source of Polysulfone to prepare the membrane samples.  

 

 

Functional group Bands 

Diaryl sulfone 1154, 1295, 1364 

Diaryl ether linkage stretch 1250 

Aromatic rings stretch 1485, 1587 

Aliphatic C-H stretch 2857, 1387 

Aliphatic C-H scissoring and bending 1410 

Phenyl ring substitution band 693, 716, 738, 796, 837, 854 

Aromatic C-H stretch 3037, 3067, 3094 

Amide stretch 1685 

Amines stretch 1081, 1109, 1295 



  

Figure 3 CO2 sorption isotherm for polysulfone. Symbols represent experimental data while solid line depicts the dual model sorption model 

given by Eq. (8) with parameters as summarized in Table 3. Closed symbols characterize data from present study, whereas opened symbols are 

reported values by Sada et al. (1988) (Red – 30 °C; Maroon – 35 °C; Orange – 40 °C; Green – 45 °C; Pink – 50 °C; Purple – 55 °C) 
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 It is depicted from Figure 3 that concentration of CO2 within the polymeric matrix 

increases with increment in pressure regardless of the operating temperature, which has been 

rationalized through higher driving force that promotes the sorption of solvent. Being 

consistent to majority of glassy polymeric membranes, the PSF membrane is measured to 

inherit decreasing solubility with increment in operating temperature [86-90]. The 

observation has been attributed to the nature of gas molecules to sustain in its gas state rather 

than being sorbed within the polymeric matrix at higher operating temperature. In addition, 

the simulated gas sorption for CO2 has been fitted with good accordance to the well-known 

dual mode sorption model correlation, such as that shown in Eq. (9).  

Ci = CDi + CHi = kDip + C′
Hibip
1+bip

                                                                                                                 (9) 

The dual mode sorption model suggests that the total concentration of gas 𝑖𝑖 in a polymer 

matrix is composed of two idealized molecular scale environment, in which Ci is the total 

concentration of gas in the polymer; CDi is equilibrium population existing in the polymer 

matrix under the dissolved mode and is governed by Henry’s Law equation, while CHi is the 

non-equilibrium population existing in excess within the hole-filling environment governed 

by Langmuir parameters [91, 92]. Moreover, kDi  is the Henry's law coefficient that 

characterizes dissolution of a pure gas, 𝑖𝑖, in the polymer, bi and C′
Hi  is the Langmuir hole 

affinity parameter and the capacity parameter respectively, while pi is pressure of the gas 

system [92-94]. The fitted dual mode sorption parameters are provided in Table 3, which has 

been summarized alongside the reported values by Sada et al. (1988) [86]. In has been 

demonstrated from Table 3 that the parameters are in satisfactory agreement with one another, 

attributed to the small distinction of the solubility characteristics as a whole. The good 

compliance with previous published literatures and fit to the commonly employed dual mode 

sorption model demonstrates that the measured solubility data are of adequate dependability 

as input for molecular simulation and model validation, which will be elaborated and 

discussed in subsequent sections through employment of Eq. (5).  

 

 

 

 

 

 



Table 3 Dual-mode sorption parameters for carbon dioxide in polysulfone film as a function 

of operating temperature 

 

Temperature (°C) 
kDi  

(cm3(STP) cm3-1bar1) 
bi (bar-1) 

C′
Hi   

(cm3 (STP) cm3-1) 

30 
0.7202 

(0.646) b 

0.3810 

(0.195) b 

19.33 

(20.5) b 

35 
0.6748  

(0.595) b 

0.3678 

(0.178) b 

18.20 

(19.4) b 

40 
0.6294 

(0.547) b 

0.3546 

(0.168) b 

17.07 

(18.3) 

45 
0.5840 

(0.508) b 

0.3415 

(0.155) b 

15.93 

(17.1) b 

50 0.5386 0.3283 14.81 

55 0.4932 0.3152 13.67 
b  The number in bracket is the experimental value by Sada et al. (1988)  
 

3.2 Molecular Models 

 

This section discusses the results that have been obtained through molecular 

simulation of swollen and unswollen PSF structures at varying operating temperature. It has 

been subdivided into several sections, such as 1) amorphous cell structure 2) glass transition 

temperature and relaxation 3) free volume 4) radial distribution function and 5) interactions 

of CO2-polymer system. All the physical properties have been quantified with respect to 

unswollen membrane at its respective operating temperature to compare the effect of mere 

temperature and simultaneous operating temperature and CO2 gas concentration to the 

relaxation of polymeric chains.   

 

3.2.1 Amorphous Cell Structure 

 

As described in section 2.2.1.1, molecular dynamics simulation has been executed for 

unswollen PSF polymeric films by keeping the operating parameters at the designated values 

while the other structure configurations are constantly updated in quest of determining the 



most probable polymeric membrane with optimized packing and molecular arrangement. On 

the other hand, the swollen structures have been constructed through incorporation of CO2 

loadings, which has been computed based on in-house measured CO2 solubility in PSF 

membranes, such as that in discussed in section 3.1, and the molecular simulation procedure 

outlined in section 2.2.1.2. The number of CO2 molecules employed in present study has been 

summarized in Table 4 [56, 74, 95, 96], whereby the computed value decreases when 

temperature increases, which has been rationalized through the reduction in affinity for 

dissolution within membrane matrix as elaborated in previous section.  



Table 4 Density and specification of simulated and experimentally measured unswollen polysulfone membrane (PSFTC) and swollen 

polysulfone membrane with inclusion of the targeted CO2 gas molecules (PSFTCs), as well as with after removal of CO2 (PSFTCsm) 

Operating 

temperature (°C) 

Unswollen model Swollen model Dilation 

(%) Box length 

(Ǻ) 

𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

(g/cm3)c 

𝜌𝜌 

(g/cm3)d 

Error (%) nsim Box length 

(Ǻ) 

𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

(g/cm3)e 

𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

(g/cm3)f 

30 38.192 1.2373 1.2341 0.2657 83 39.049 1.262 1.1602 6.6454 

35 38.206 1.2360 1.2327 

(1.240)h 

0.2653 81 39.034 1.261 1.1614 6.4233 

40 38.220 1.2347 1.2314 0.2651 76 39.012 1.257 1.1635 6.1195 

45 38.233 1.2333 1.2301 0.2648 71 38.990 1.253 1.1654 5.8263 

50 38.247 1.2320 1.2287 0.2645 65 38.923 1.252 1.1715 5.1643 

55 38.261 1.2307 1.2274 0.2642 60 38.900 1.248 1.1735 4.8743 

 
c  Density of simulated unswollen PSF membrane at varying operating temperature 
d  Density of unswollen PSF membrane predicted through Tait’s empirical models [95] obtained from Zoller’s experimental data [74, 96] 
e  Density of swollen PSF membrane packing with inclusion of targeted number of CO2 molecules 
f  Density of swollen PSF membrane matrix after removal of CO2 molecules 
h Experimental value by Ahn et al. (2008) [56] 

 

 

 



Examples of the unswollen and swollen PSF amorphous simulation cell are provided 

in Figure 4.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Molecular structure of unswollen and swollen PSF membrane structure at varying 

operating temperatures through input of different number of CO2 gas molecules in 

accordance to experimental data obtained through molecular simulation in Materials Studio 

8.0 software 

 

As can be seen from Figure 4, for the swollen PSF structures, the CO2 gas molecules are 

randomly dispersed throughout void space within the PSF polymeric matrix, with the 

configuration corresponding to the optimized and most probable intermolecular interactions 

between the penetrants and polymeric chains.  

 

Since the system has been initialized from lower density without setting any 

constrictions throughout the molecular dynamics treatment, the evolution of structure (e.g. 

energy and density) to a stable value provides intuitive reasoning that the polymeric 

membrane has converged towards the most plausible configuration. Hence, by analyzing 

physical property of the finalized molecular structure to theoretically attained value, which 

has been measured through published experimental simulation work, accuracy of the 

molecular simulation methodology can be validated.  Example of density and energy 

Unswollen PSF Swollen PSF at varying operating 
temperatures with different number of CO2 
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alternation during the course of one cycle of NPT molecular treatment for unswollen PSF 

membrane film has been provided in Figure 5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5 Evolution change during molecular dynamics simulation for density, non-bonded 

and potential energy for unswollen PSF membrane structure (Example of a one cycle 25000 

ps NPT molecular treatment has been provided to guide the reader) 

 

From Figure 5, it is found that the total potential energy and non-bonded contribution are 

found to experience decrement since the most plausible molecular structure is the one with 

the least energy configuration. When the molecular system surpasses approximately 5000 ps 

time steps, the energy parameters are reduced to values of approximately -8500 kJ/ mol and 

9700 kJ/ mol (versus -8700 kJ/ mol and -9000 kJ/ mol in Golzar et al. (2014) study for 

molecular simulation of bulk PSF membranes in their study) [58], whence the amount of 

fluctuations is minimized when the NPT run proceeds, suggesting that the systems have 

reached thermodynamic equilibrium. In addition, it is also depicted that the density curves are 

nearly fixed within the range of 1.235 g/ cm3 after 5000 ps of molecular treatment. 

 

In order to validate accuracy of the developed PSF structures, densities of the 

simulated membrane, (e.g. PSFTC), with T being the studied operating temperature, have 



been compared to experimentally measured values. To quantify accuracy of the simulation 

methodology, the percentage errors between the simulated and measured density, ∈, has been 

provided for PSF membranes at varying operating temperatures, whereby the definition has 

been provided in (10). 

∈= 𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝜌𝜌
𝜌𝜌

× 100%                                                                                                             (10) 

In (10), 𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 describes density of the simulated unswollen membranes at varying operating 

temperature T, while 𝜌𝜌 characterizes the computed density from Tait’s empirical models [95] 

obtained via Zoller’s experimental data [74, 96]. The equation has been provided in (11), 

which has been demonstrated to be particularly successful to provide a convenient 

mathematical characterization of pressure-volume-temperature (PVT) behavior for PSF 

membranes over a wide range of operating conditions. In (11), T characterizes the 

temperature in °C while P is the pressure in kg/ cm2. In addition, previously reported 

experimental density of bulk PSF with a value of 1.24 g/cm3 by Ahn et al. (2008) at 35 °C 

has also been provided as reference [56]. 

𝜌𝜌 = 1

(0.8051+1.756×10−4𝑇𝑇)�1−0.0894𝑙𝑙𝑙𝑙�1+ 𝑃𝑃

4408𝑒𝑒𝑒𝑒𝑒𝑒�−1.543×10−3𝑇𝑇�
��

                                                             (11) 

 

The good compliance between simulated and experimentally observed condition as 

demonstrated in Table 4 supports the claim that the unswollen PSF polymeric structure has 

been constructed via high accuracy simulation procedure since the system has been ramped 

from a low density configuration without confining any constraints and boundaries 

throughout the molecular dynamics process. Percentage error between simulated and 

experimentally observed PSF density from Tait-Zoller’s expression and experimentally 

measured density by Ahn et al. (2008) can be rationalized through the assumption in 

molecular simulation, whence cut off distance has been applied throughout the simulation 

cell that deemed long range molecular interaction to be negligible.  Tentatively, it is found 

that the molecular simulation tool is of sufficient capability to capture the trend 

characterizing effect of operating temperature to the density of molecular structure, such that 

the density decreases with increment in temperature. The observation can be rationalized 

through expansion of the simulation cell when operating temperature is raised attributed to 

higher activation energy for relaxation [96, 97]. 

 

 



The physical properties of the final optimized and equilibrated structures for swollen 

PSF30Cs, PSF35Cs, PSF40Cs, PSF45Cs, PSF50Cs and PSF55Cs are also provided in Table 

4. It has been depicted in Table 4 that the packing density of molecular structure increases 

with increment in CO2 loadings, which is in the order of PSF55Cs < PSF50Cs < PSF45Cs < 

PSF40Cs < PSF35Cs < PSF30Cs. The observation tallies with characteristic of single 

packing models of PSF, as reported by Heuchel et al. (2006) [28], whereby PSF molecular 

structure with higher CO2 loading exhibits greater packing density attributed to the presence 

of CO2 that increases weight of the entire molecular system. Furthermore, density of the 

membrane matrix has been calculated after removal of the randomly distributed CO2, whence 

the chronological sequence is in the order of PSF30Csm < PSF35Csm < PSF40Csm < 

PSF45Csm < PSF50Csm < PSF55Csm. Density of the membrane matrix experiences a 

decrement when CO2 loadings are further increased in polysulfone located within lower 

operating temperature. The reduction in density of membrane matrix has been acclaimed 

through enhanced interaction between increased number of CO2 gas molecule and polymeric 

matrix, which contributes to augmented swelling and relaxation in polymeric membrane 

structure [98]. The extend of relaxation has been quantified through the percentage dilation, 𝜀𝜀, 

whence it has been computed based upon equation (13). 

𝜀𝜀 = � 𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

− 1� × 100%                                                                                                  (13) 

It is found that the percentage dilation rises with number of CO2, which has been computed 

and tabulated in Table 4 as well, in which it is the lowest at operating temperature of 55 °C 

and increases with decrement in temperature. It is found that the dilation is especially 

apparent beneath operating temperature of 45 °C, whereby the percentage dilations achieves 

approximately 6 %. The observation can be rationalized through the proposal that a critical 

concentration of CO2 is present in order to induce augmented swelling in polymeric 

membranes [98]. At higher operating temperature, majority of the CO2 remains in it gaseous 

state, whereby the threshold to invoke the enhanced swelling effect has not been reached yet.  

This claim would be studied in an in-depth level through section 3.2.5 to provide insights 

from an atomistic level towards the interaction between CO2 and varying functional groups of 

PSF.  The smaller percentage dilation between the swollen and unswollen membrane state at 

higher operating temperature suggests that the concentration parameter is a more dominant 

parameter that governs the swelling phenomena in comparison to operating temperature, 

owing to the fact that it exhibits a lower density at the unswollen state but is expanded to the 

least extent in swollen condition with inclusion of less concentration of CO2. The proposal 



will be further affirmed through study of molecular structure and membrane morphology at 

subsequent sections.  

 

3.2.2 Monte Carlo Sorption 

 

It has been well addressed in previous sections that the sorption of CO2 gas molecules 

at elevated pressure of 50 bars is accompanied by swollen and dilation of membrane structure 

as compared to its pristine unswollen counterpart. Therefore, in this section, the sorption 

capacity of the unswollen (PSFTC) and swollen polysulfone membranes at varying operating 

temperatures with removal of all gas penetrants (e.g. PSFTCsm) have been conducted 

according to the GCMC algorithm in order to study the effect of CO2 induced swelling 

towards the transport property, as well as to further verify accuracy of the simulated 

structures through comparison with in-house measured experimental results. Similar 

approach has been adapted in previous works by Heuchel et al. (2006) [28], Hölck et al. 

(2006) [29], Zhang et al. (2010) [18] and Velioğlu et al. (2012) [32] to achieve the objective 

of understanding the influence of CO2 swelling to sorption behaviour of varying glassy 

polymers, while validating applicability of the unswollen and swollen polymeric membrane 

as reference points. Example of the sorption behaviour based upon the PSFTC and PSFTCsm 

membrane matrix structure at 30 °C is provided in Figure 6, while the other operating 

temperatures have been provided in Figure S2 of supplementary information for reader’s 

guidance. 
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Figure 6 Sorption isotherm at 30 °C calculated for unswollen Polysulfone - PSF30C (  ) and 

swollen Polysulfone - PSF30Csm (  ) packing models; experimental data (  ); dual mode 

sorption model (     ); linearly weighted average fit (    ) 

 

It is seen from Figure 6 that the unswollen model (PSF30C) only shows good 

compliance to the experimental data in the low pressure range (< 2 bars), while the opposite 

is demonstrated in the swollen model (PSF30Csm), whereby overestimation of prediction has 

been observed. Only the point at 50 bars, the swollen membrane depicts good accordance to 

experimental results since the structure is designed to accommodate actual experimental 

condition at the indicated pressure. The observation can be rationalized through dilation of 

the membrane structure when exposed to CO2 gas penetrants from low to high pressure, 

whereby CO2 interacts with functional group of the PSF polymeric chain. The interaction 

contributes to likelihood of lack of efficient packing in polymeric membrane with increment 

in operating pressure, which acts as site for absorption of gas molecules. On the other hand, 

the smaller number and size in cavities that are created in the denser PSF polymeric 

membrane structures at unswollen state, behave as potential barrier against the entrance of 

sorbents by means of causing molecular hindrance to allow smaller number of gas molecules 

that have surpassed the minimum energy requirement to pass through the impediments and 

finally being sorbed into the membranes. The claim in free volume morphological alterations 

from unswollen to swollen structures at varying operating temperature would be further 

discussed in section 3.2.4. Difference between the sorption isotherm of the unswollen and 

swollen state is most apparent at lowest operating temperature of 30 °C, whereby the effect 

levels off with increment in operating temperature. This observation supports the claim that 

gas concentration is a more prominent factor in determining swelling effect in polymeric 

membrane as compared to operating temperature since the deviation at lower temperature 

(lower activation energy and relaxation) and higher CO2 concentration is more obvious. 

 

In is found that mere slight deviation (< 4%) is observed between the experimentally 

measured and simulated sorption at 50 bars based upon PSFTCsm, whereby the simulated 

extend of sorption is found to be consistently larger than the experimental measurement, such 

as that summarized in Table 5. 

 



Table 5 Validation through good compliance observed between simulated and experimental 

obtained sorption data for unswollen and swollen PSF membranes at varying operating 

temperature 

Simulated structure Simulated 

concentration (cm3 

(STP)/ cm3 

(polymer)) 

 

Experimental 

measured 

concentration (cm3 

(STP)/ cm3 

(polymer)) 

Error (%) 

PSF30Csm 54.2 53.1 2.07 
PSF35Csm 52.2 50.8 2.76 
PSF40Csm 49.2 47.5 3.58 
PSF45Csm 46.0 44.3 3.84 
PSF50Csm 41.5 40.3 2.98 
PSF55Csm 38.4 37.5 2.40 

 

Similar observation has been reported in Zhang et al. (2010) [18] simulation work as a 

consequence of several plausible reasoning. The first constraint is related to the time scale of 

MD simulation, whence it is merely restricted to relatively short simulation times (roughly in 

the regime of several pento to nanoseconds) to resolve atomic vibrations. On the other hand, 

relaxation rate has a strong effect on the resulting properties attributed to the time-dependent 

response of amorphous polymers, which needs to be accounted for when comparing MD 

simulations and experiments [99]. Consequently, relaxation rates are many orders of 

magnitude faster than those normally used in experiments, which constitute to deviation 

between simulation and actual laboratory observation. Secondly, the rates of reaching steady 

state between molecular simulation and experimental are considerably distinct. In the 

simulation condition, CO2 gas molecules are directly inserted into the favourable sites of 

membrane matrix, while in actual membrane transport mechanism, it is based upon the 

solution diffusion theory, whereby gas components dissolve within a particular membrane 

material at the high pressure side, permeate across the membrane through a driving force and 

finally evaporate from the low pressure end [100]. All these contributed to possible 

deviations between simulated and experimentally observed conditions but the errors are 

within predefined tolerance to be employed for elucidation of operating temperature effect in 

CO2 swelling of PSF membranes. In addition, trend with respect to effect of operating 



temperature to the induced sorption effect, such as augmented solubility in swollen PSF 

structures as compared to its respective unswollen state and reduced solubility in swelled PSF 

membrane with increment in operating temperature, has been captured effectively by the 

simulation models. 

 

 For intermediate pressures, the assumption of a linear change in density with pressure 

has been adapted to describe the transition from PSFTC to PSFTCsm, in which the evolution 

can be quantified through a linearly weighted average correlation between both the isotherms 

[18, 32], such as that depicted in Eq. (14).  

C(p) = �1 − p
pPSFTCsm

�CPSFTC(p) + p
pPSFTCsm

 CPSFTCsm(p)                                                 (14) 

In this context, C(p) is concentration of CO2 gas penetrants within the polymeric matrix at 

that study (50 bars), CPSFTC(p) and CPSFTCsm(p)  are the calculated concentration solubility 

data points at unswollen and swollen conditions at each operating temperature 𝑇𝑇 respectively. 

All the sorption behavior at different operating temperatures, regardless of being the 

unswollen or swollen membrane structures at 50 bars, can be conveniently described through 

employment of the dual mode sorption model, as depicted in Eq. (9). It has been proposed 

that the dual mode parameters are a function of temperature through the Van’t Hoff 

expression [38, 98, 101, 102]. By incorporating the temperature dependent dual mode 

parameters into expression (14), the correlation as a function of temperature is presented in 

equation (15).  

C(p) = �1 − p
pPSFTCsm

� �kDi,0(u)exp (∆HD(u)

RT
)p +

C′
Hi,0(u)exp (

∆HC(u)
RT )bi,0(u)exp (

∆Hb(u)
RT )p

1+bi,0(u)exp (
∆Hb(u)
RT )p

� +

p
pPSFTCsm

 �kDi,0(s)exp (∆HD(s)

RT
)p +

C′
Hi,0(s)exp (

∆HC(s)
RT )bi,0(s)exp (

∆Hb(s)
RT )p

1+bi,0(s)exp (
∆Hb(s)
RT )p

�                         (15) 

In equation (15), kDi,0(u) and kDi,0(s) are the pre exponential Henry's law coefficient, ∆HD(u) 

and ∆HD(s) are the enthalpy of a penetrant molecule in the Henry's law sorbed state, C′
Hi,0(u) 

and C′
Hi,0(s)  characterizes the pre exponential Langmuir capacity parameter, ∆HC(u)  and 

∆HC(s) are the apparent enthalpy characterizing the temperature dependence of C′
Hi, bi,0(u) 

and bi,0(s) represent the pre exponential Langmuir hole affinity parameter, while ∆Hb(u) and 

∆Hb(s)  are the enthalpy of penetrant in the Langmuir sorbed state. Subscript (u) and (s) 

denote unswollen state and swollen states respectively. The parameters are summarized in 



Table 6, while prediction to the dual mode sorption behavior over a wide range of operating 

temperatures is provided in Figure 6 and Figures S2 of Supporting Information.  
 

Table 6 Dual mode sorption parameters as a function of temperature 

Parameters Unswollen Swollen 

kDi,0 (cm3(STP) cm3-1bar1) 5.295×10-6 2.315×10-5 
∆HD (J/ mol K) 2.672×104 2.319×104 
bi,0 (bar-1) 2.148×10-1 1.881×10-9 
∆Hb (J/ mol K) 1.116×104 4.978×104 
C′
Hi,0 (cm3 (STP) cm3-1) 2.358×10-3 4.247 

∆HC (J/ mol K) 1.149×104 6.024×103 
 

 

3.2.1 Glass Transition Temperature 

 

The variations in specific volume versus temperature for unswollen and swollen PSF 

polymeric membranes at varying operating temperature have been plotted and provided as 

examples in Figure 7. In this study, in order to emphasize the findings on operating 

temperature induced swelling by CO2 within PSF polymeric membranes as compared to the 

unswollen state, the evolution change of unswollen structures at different operating 

temperatures (PSFTC) has been computed, whereby the average value has been reported as 

reference. In addition, the swollen membrane structures have been treated with the glass 

transition temperature molecular procedure as highlighted in section 2.2.3 after removal of 

different number of CO2 molecules. The alteration in specific volume for swollen PSF 

membranes at 35 °C, 45 °C and 55°C (PSF35Csm, PSF45Csm and PSF55Csm) has been 

calculated and tabulated in Figure 7 as well.  
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Figure 7 Effect of CO2 induced swelling at varying operating temperature on specific volume of the polymeric film with respect to alteration in 

temperature, whereby T1 (PSF35Csm) = 110.1 °C, T2 (PSF45Csm) = 132.4 °C, T3 (PSF55Csm) = 168.2 °C, T4 (PSFTC) = 184.1 °C,     specific 

volume at the glassy state,      specific volume at the reubbery state  

 

PSF35Csm 
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As it can be seen from Figure 7, all the polymeric membranes experience similar 

behavior with changes in temperature regardless of swelling state. Initially, the specific 

volume increases linearly with increment in temperature, and then shows an abrupt alteration 

in the value before continuing to embark in another linear region. Change in linear 

relationship is demonstrated through the difference in slope between the two curves, whereby 

the first at lower temperature is representative of the glassy state region, while the latter 

describes the rubbery state.  The point at which the glassy and rubbery linear correlation 

meets to form an intercept provides graphical representation of the glass transition 

temperature, gT . The simulated behavior is consistent to experimental observation reported 

by Zoller et al. (1978), who investigated the pressure-temperature-volume relationships in 

bulk PSF over a wide range of operating conditions [74]. A gT  of 184.1 °C is obtained from 

current simulated work for unswollen PSF state. When comparing the obtained gT  through 

this simulation to literature record of 186 °C [36, 103-105], the error is at -1.02%. The 

simulated and experimental measured gT  are not significantly different from each other. 

Thus, it can be proved once again that the proposed methodology is reliable to obtain 

molecule structures of high accuracy.  

 

 Viewing from the effect of CO2 swelling to gT , all the swollen structures are 

demonstrated to inherit a depressed effect in comparison to its unswollen counterpart, which 

is consistent to measurement of glass transition temperature in actual experimental of swelled 

polymers [106-108]. The reduction in gT  is typically apparent within the swelled PSF 

structures exposed to lower operating temperature, in which the gT s are in the sequence of 

PSF35Csm < PSF45Csm < PSF35Csm. The observation has been attributed to sorption of 

higher number of CO2 within the polymeric matrix when operating temperature is reduced, 

which consequently enhances the relaxation of polymeric chain within the membrane matrix. 

The depression in glass transition temperature attributed to enhanced relaxation of polymeric 

chain is found to be exceptionally evident below operating temperature of 45 °C, which has 

been supported via the observation of augmented swelling and dilation through membrane 

specification and physical properties in previous section. 

 

In order to substantiate further understanding towards the relaxation characteristics of 

the polymeric chains, the mean squared displacement (MSD) has been investigated 

employing built-in analytical tool located within Materials Studio 8.0, whence the results 



have been summarized in Figure 8. Figure 8 (a) shows the MSD for unswollen membrane 

state, while ∆MSD for swollen membrane (difference in MSD with respect to the reference 

unswollen state at its designated operating temperature) has been summarized in Figure 8 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Mean-squared displacements of polymer chains as a function of time in (a) 

unswollen and (b) swollen PSF at different operating temperatures (Red – 30 °C; Maroon – 

35 °C; Orange – 40 °C; Green – 45 °C; Pink – 50 °C; Purple – 55 °C) 
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From Figure 8, it is found that the MSD of the unswollen membranes in (a) are comparatively 

lower than its counterpart in (b) at all operating temperatures, which is intuitively reasonable, 

since no condensable CO2 gas molecules are included. For unswollen structures in Figure 8 

(a), MSD is found to increase with operating temperature, whereby MSD is in the sequence 

of PSF55C > PSF50C > PSF45C > PSF40C > PSF35C > PSF30C. The enhancement in MSD 

has been attributed to higher energy state for relaxation with increment in temperature since a 

smaller MSD indicates confined mobility of the polymeric chains. The MSD of the swollen 

PSF55Csm, PSF50Csm, PSF45Csm, PSF40Csm, PSF35Csm and PSF30Csm membrane 

structures are found to exhibit augmented values during the course of molecular treatment in 

a chronological order, which supported the theoretical claim that interaction between the PSF 

polymeric chain and CO2 contributes to ease of movement for chain molecules to slip over 

one another and thus causing polymer softening [19, 20]. As the number of CO2 loading 

increases within the swelled structures from 55°C to 30°C, the mobility has been enhanced, 

which has been proven through the higher MSD pattern. Similarly, the MSD behaviour 

within the PSF45Csm, PSF40Csm, PSF35Csm and PSF30Csm membranes are found to 

increase in a considerable significant manner with time as compared to the PSF55Csm and 

PSF50Csm structures, which is consistent to the observation of enhanced depression in glass 

transition temperature in these molecular structures, such as that demonstrated in Figure 7. 

The MSD pattern further confirms the theory that dilation attributed to operating temperature 

is less vital in determining the relaxation since the MSD at higher operating temperature 

starts off with a higher value at the unswollen condition, but further exhibits the least 

deviation from the reference unswelled state since it has the least number of CO2. The 

simultaneous effect of operating temperature and CO2 concentration under the swollen state 

confirms that concentration parameter is the more prevailing factor in swelling phenomena.   

 

3.2.2 Free Volume  

 

In this section, the free volume within the unswollen and swollen PSF membranes at 

varying operating temperatures have been elucidated through adaptation of procedure as 

highlighted in section 2.2.3. Figure 9 depicts examples of simulated cell for pure PSF at the 

unswollen and swollen states of different operating temperature.  
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Figure 9 2 dimensional view for simulation cells of unswollen and swollen PSF membranes 

at different operating temperature, the grey indicates the occupied region of polymeric chains 

while the blue characterizes those of the free space 
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As shown in Figure 9, the ratio of blue to grey area is found to be increasing for swollen as 

compared to the unswollen membrane structures, and with decrement in operating 

temperature for swollen amorphous cell, in which the sequential blue to grey proportion is in 

the order of PSF35C < PSF55Csm < PSF50Csm < PSF45Csm < PSF40Csm < PSF35Csm < 

PSF30Csm. This phenomenon has been rationalized through enhanced mobility of PSF 

polymeric chains in the vicinity of CO2 gas molecules, whereby the sorbed CO2 swells the 

polymeric matrix, which further contributes to volume dilation and more free space within 

the membrane. By employing Connolly Surface module in Materials Studio and a probe 

radius of 1.8 Ǻ, the occupied, free and total volume of each PSF structure are conveniently 

computed, which have been adopted to calculate the FFV (MS) and summarized in Table 7. 

Similarly, FFV (Bondi) has been computed and tabulated in Table 7 as well to provide 

comparison with FFV (MS). 

 



Table 7 Free volume characteristic of simulated unswollen and swollen Polysulfone membranes at different operating temperature 

 

Operating 

temperature (°C) 

Unswollen model (PSFTC) Swollen model (PSFTCsm) 

Occupied 

Volume (Ǻ3) 

Free Volume 

(Ǻ3) 

FFV (MS) FFV (Bondi) Occupied 

Volume (Ǻ3) 

Free Volume 

(Ǻ3) 

FFV (MS) FFV (Bondi) 

30 47686.28 8021.67 0.1440 0.1459 47541.10 11956.04 0.2010 0.1991 

35 47737.14 8150.42 0.1458 0.1468 47965.00 11509.28 0.1990 0.1983 

40 47515.09 8313.91 0.1489 0.1477 47743.09 11630.68 0.1959 0.1968 

45 47470.38 8419.12 0.1506 0.1486 47797.77 11475.61 0.1936 0.1955 

50 47369.55 8580.45 0.1534 0.1496 47910.31 11058.03 0.1875 0.1913 

55 47217.83 8792.67 0.1570 0.1505 47984.38 10879.49 0.1848 0.1899 

 

 

 

 

 

 

 



FFV deduced from the Bondi’s manner demonstrates a remarkably similar trend with 

the effect of operating temperature on CO2 induced swelling found through FFV of Materials 

Studio, which confirms applicability of the methodology. The good accordance in trending 

stimulates further adaptation of the methodology to determine quantitative analysis of 

polymeric membrane free volume in material mathematical modelling in future work. In an 

overall, the FFVs demonstrate an increment with decrement in operating temperature, 

attributed to the amplified sorption of CO2 gas molecules, while the pristine PSF membrane 

has the lowest FFV value. 

 

The observation of cavity size distribution is consistent to those observed through 

molecular simulation work as summarized in Figure 9. As depicted in Figure 9, the blue areas 

in the unswollen PSF35C structure are agglomerated into smaller individual cavities, while 

that of swollen PSF30Csm, PSF35Csm, PSF40Csm, PSF45Csm, PSF50Csm and PSF55Csm 

are found to inherit bigger and more continuous characteristics. Nonetheless, the 

agglomeration of blue areas is found to be typically prominent within the molecular structure 

less than 45 °C. The observation of larger void elements in PSF polymeric membranes with 

packing of CO2 gas molecules have been rationalized through swelling induced effect, 

whence presence of CO2 that interacts with the polymeric chains causes insufficient polymer 

chain packing. In other words, the polymeric chains are packed less efficiently and more 

sparsely with respect to one another, subsequently contributes to formation of bigger cavity 

sizes. At lower operating temperature, the tendency of CO2 to be absorbed within the 

polymeric membrane matrix is higher, constituting to the inhabitancy of a larger number of 

CO2 that contributes to enhanced relaxation effect that induces larger free channels along the 

polymeric chains. Typically when the concentration of CO2 exceeds the threshold of critical 

concentration, the dilation effect becomes more prominent, evident through larger and more 

continuous channels and void spaces. 

 

3.2.3 Radial Distribution Function 

 

The radial distribution functions (RDFs) can be employed to acquire an in-depth 

analysis of interaction between a certain gas penetrant and polymeric chain within the 

membrane matrix. Theoretically, the accessibility and affinity of a gas species within the 

membrane matrix can be evaluated based on the location and intensity of the peaks in RDF, 

with a shorter distance and higher peak resembling greater interaction between the gas 



molecules and functional group of polymeric chain. The RDF has been determined 

conveniently through embedded analytical tool located within Forcite module of Materials 

Studio. Through the software, the RDF, 𝑔𝑔𝑃𝑃−𝐶𝐶𝑂𝑂2(𝑟𝑟), represents the probability of finding a 

pair of CO2 molecule at a distance r with respect to the bulk polymer, 𝑃𝑃  , phase in a 

completely random distribution, whereby the definition is provided in Eq. (16).  

𝑔𝑔𝑃𝑃−𝐶𝐶𝑂𝑂2(𝑟𝑟) = 1
𝜌𝜌𝑃𝑃−𝐶𝐶𝑂𝑂24𝜋𝜋𝑟𝑟

2

∑ ∑ ∆𝑁𝑁𝑃𝑃−𝐶𝐶𝑂𝑂2(𝑟𝑟→𝑟𝑟+𝛿𝛿𝛿𝛿)
𝑁𝑁𝑃𝑃−𝐶𝐶𝑂𝑂2
𝑗𝑗=1

𝐾𝐾
𝑡𝑡=1

𝑁𝑁𝑃𝑃−𝐶𝐶𝑂𝑂2×𝐾𝐾
                                                            (16) 

In Eq. (16), 𝑁𝑁𝑃𝑃−𝐶𝐶𝑂𝑂2 is the total number of polymer molecules, 𝑃𝑃, and 𝐶𝐶𝑂𝑂2 in the system, 𝐾𝐾 

the number of time steps, 𝛿𝛿𝛿𝛿  the distance interval, ∆𝑁𝑁𝑃𝑃−𝐶𝐶𝑂𝑂2  the number of 𝐶𝐶𝑂𝑂2  (or 𝑃𝑃 ) 

molecules between 𝑟𝑟 + 𝛿𝛿𝛿𝛿 around a 𝑃𝑃 (or 𝐶𝐶𝑂𝑂2) molecule, and 𝜌𝜌𝑃𝑃−𝐶𝐶𝑂𝑂2 the bulk density. In this 

work, the RDF of CO2 around three typical atoms of the PSF repeat unit is investigated, 

typically oxygen in the sulfone functional group, carbon in the methyl group and oxygen in 

the ether group, denoted as O1, C1 and O2 respectively, such as that depicted in Figure 1. 

The results pertaining to the RDF that characterizes interaction between varying functional 

groups in PSF and CO2 gas molecules are provided in Figure 10. 
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Figure 10 Radial distribution function g(r) of CO2 around (a) O1 (b) C1 and (c) O2 atoms 

respectively in unswollen polysulfone (PSF35C) and swollen PSF at operating temperature of 

35 °C (PSF35sm) 
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 From Figure 10, for unswollen PSF membrane structure, peaks are observable in the 

g(r) of CO2 – O1 at ~ 4 Å in (a), which indicates that the O1 of sulfone groups are 

preferential sorption sites for CO2. The atoms that are highly accessible have been postulated 

to exhibit specific interaction with CO2 (e.g. hydrogen bonding or Lewis acid–base complex 

formation) [109-111].  Nonetheless, no distinct peak is distinguished in g(r) of CO2 – C1 and 

CO2 – O2, which is represented in Figure 10 (b) and (c). The C1 site has minimal interaction 

with CO2, which can be rationalized through the bulky methyl group that constitutes to 

creation of local voids, whereby potential field is not sufficiently strong enough that hinders 

the accessibility to CO2 [18]. On the other hand, the O2 sorption sites is not highly attractive 

to CO2 gas penetrants since they are restricted between two phenyl rings, which confine their 

availability to sorbate molecules.  

 

For swollen PSF membrane structure, similar behavior has been clearly seen for the 

g(r) characterizing interaction of CO2 – O1, whereby prominent peak is seen at ~4 Å in 

Figure 10 (a). The peaks of these sorption sites are considerably higher than its counterpart at 

the unswollen state attributed to higher concentration of CO2 in the swollen structure. 

Viewing from the aspect of g(r) of CO2 – C1, no apparent peak has been observed for the 

swollen PSF membrane structure. The observation has been attributed to the bulky methyl 

group that constitutes to great impediment for CO2 sorbates to access it as elaborated earlier. 

As for CO2 – O2 functional group, a clear peak is seen for the swollen membrane structure at 

~5.5 Å, which indicates that the O2 ether group demonstrates binding affinity with CO2 as 

compared to the pristine PSF membrane. The distinction in g(r) between the unswollen and 

swollen PSF membrane suggests that interaction between CO2 and O2 atom in the ether 

group is responsible upon onset of enhanced dilation observed. The lone pair electrons in the 

O2 ether are coupled with the inter-segmental phenyl rings, whereby the charge transfer with 

the phenyl rings is reduced with occupation of CO2 gas molecules. As a result, the oxygen-

phenyl ring bond inherits a more favorable rotational characteristic, which consequently leads 

to less intersegment rigidity and more flexible polymeric chains, further minimizing the steric 

hindrance for CO2 to reach the ether oxygen and hence enhanced relaxation behavior. 

 

 

 

 



3.2.4 Quantification of Specific Interaction between CO2 and Polymer Chain 

 

In this section, the specific interaction between CO2 and PSF polymeric chain has 

been quantified through proposal of associating relationship between the two, whereby the 

reversible equation governing the process is presented in (17). 

𝜇𝜇𝐶𝐶𝐶𝐶2 + 𝑃𝑃 <=> 𝑃𝑃… (𝐶𝐶𝐶𝐶2)𝜇𝜇                                                                                                  (17) 

In (17), 𝜇𝜇 is the CO2/ polymer binding ratio, 𝐶𝐶𝐶𝐶2 is the plasticizer, 𝑃𝑃 is the polymer segment 

and 𝑃𝑃… (𝐶𝐶𝐶𝐶2)𝜇𝜇 is the polymer-CO2 complex that is formed during the association reaction. 

The equilibrium constant, Keq, for the aforementioned chemical reaction is given by Eq. (18). 

Keq = �𝑃𝑃…(𝐶𝐶𝐶𝐶2)𝜇𝜇�
[𝑃𝑃][𝐶𝐶𝐶𝐶2]𝜇𝜇                                                                                                                       (18) 

For a system containing xNp polymer segments, whereby x is the number of repeat unit of the 

polymer chain, and NCO2 solvent molecules, of which nP−CO2(rc)are associated, which is the 

coordination number of 𝑃𝑃 and 𝐶𝐶𝑂𝑂2 molecules, the equilibrium constant is translated to the 

following in Eq. (19). 

Keq =
�

nP−CO2(rc)

NCO2+xNp−nP−CO2(rc)�

�
xNp−nP−CO2(rc)

NCO2+xNp−nP−CO2(rc)��
NCO2−nP−CO2(rc)

NCO2+xNp−nP−CO2(rc)�
𝜇𝜇                                                                    (19) 

The coordination number of 𝑃𝑃 and 𝐶𝐶𝑂𝑂2 molecules, nP−CO2(rc), can be integrated from the 

radial distribution function pattern, in which rc can be assumed to be the minimum after the 

peak in RDF that characterizes the commencement of distance, whereby the 𝑃𝑃 − 𝐶𝐶𝐶𝐶2 

interaction becomes insignificant, such as that shown in Eq. (20). 

nP−CO2(rc) = NP−CO2
vcell

∫ gP−CO2
rc
0 4πr2dr                                                                                (20) 

In present study, the RDF has been integrated by computing area under the curve via 

employment of numerical integration (trapz) in Matlab® 2013. 

 

 As such,  𝐾𝐾𝑒𝑒𝑒𝑒 , can be characterized through a temperature dependent correlation 
described by Van 't Hoff , as shown in Eq. (21) [112]. 

𝑙𝑙𝑙𝑙 𝐾𝐾𝑒𝑒𝑒𝑒
𝐾𝐾𝑒𝑒𝑒𝑒∗

= −∆𝐻𝐻𝑃𝑃,𝐶𝐶𝑂𝑂2
𝑅𝑅

�1
𝑇𝑇
− 1

𝑇𝑇∗
�                                                                                                      (21) 

In Eq. (21), 𝐾𝐾𝑒𝑒𝑒𝑒∗ describes the equilibrium constant for association at a specific reference 

temperature,  𝑇𝑇∗ , while ∆𝐻𝐻𝑃𝑃,𝐶𝐶𝐶𝐶2  represents the enthalpy of association. In the above 

expression, ∆𝐻𝐻𝑃𝑃,𝐶𝐶𝐶𝐶2 has been assumed to be independent of 𝑇𝑇 over the range of temperature 



of interest. Therefore, by determining 𝐾𝐾𝑒𝑒𝑒𝑒 at several operating temperatures, 𝑇𝑇s, ∆𝐻𝐻𝑃𝑃,𝐶𝐶𝐶𝐶2 can 

be calculated and subsequently be employed to predict 𝐾𝐾𝑒𝑒𝑒𝑒 that characterizes the extend of 

interaction between CO2 and polymer at a different temperature of interest.  

 

 The RDF of CO2 around O2 atoms of ether group in molecular structures of 

PSF30Csm, PSF35Csm, PSF40Csm and PSF45Csm has been provided in Figure 11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Radial distribution function g(r) of CO2 around O2 atoms of ether group in 

PSF30Csm, PSF35Csm, PSF40Csm and PSF45Csm respectively 

 

It has to be noted that no distinct peak has been observed for molecular structures of 

PSF50Csm and PSF55Csm between the RDF of CO2 and O2 atoms of ether group, whereby 

the only peak is merely noticeable at ~ 4 Ǻ with O1 atoms of the sulfone group within the 

polymeric chain backbone. The RDF in PSF50Csm and PSF55Csm has been provided in 

Figure S3 of Supplementary Information. From the RDF, it can be concluded that the lower 

sorption of CO2 at higher operating temperature causes the invisibility of peaks in O2 atoms 

of ether group since all the sorbed CO2 occupy the favourable sites of O1 sulfone group. With 

increment in the number of CO2 sorbates, the favourable sites become saturated and start to 

attack the less preferential groups, such as C1 and O2 in present study, which contributes to 
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lower peaks in CO2 and O1 sulfone group in PSF35Csm membrane structure in Figure 10 as 

compared to PSF50Csm and PSF55Csm in Figure S3. It has been hypothesized the 

interaction between CO2 and O2 ether group contributes to augmented swelling and dilation 

effect, which is only observable within molecular structures of PSF30Csm, PSF35Csm, 

PSF40Csm and PSF45Csm. The enhanced dilation due to the ether group contributes to 

increment in void passages that may constitute to increment in gas permeability of all gas 

species with pressure, which is known as plasticization. Under this condition, the ability of 

polymeric material to sieve gas molecules for permeation becomes weaker and hence causes 

reduction in selectivity. This hypothesis requires more study and evident to support the claim, 

typically those involving gas transport properties, and shall be dealt with in a subsequent 

publication.  

 

From Figure 11, it is found that the RDF at 30 °C demonstrates a higher and broader 

peak spectrum in comparison to the other structures at higher operating temperature attributed 

to a larger number of sorbed CO2 gas molecules that exhibit greater interaction with the 

polymeric chain. Intuitively, the molecular structure with a greater CO2 loading at lower 

operating temperature demonstrates a greater Keq  value. Viewing from the aspect of plot of 

ln Keq  versus 1/T in  

Figure 12, a relatively linear correlation with a good fit (R2 = 0.9848) has been 

obtained.  

 
Figure 12 Linear plot of ln Keq versus 1/ T 
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From slope of the linear relationship, a ∆𝐻𝐻𝑃𝑃,𝐶𝐶𝐶𝐶2 of -16.74 kJ/ mol has been computed based 

on present study. This value is found to be in good compliance with published literature by 

Kilic et al. (2007), who reported interaction energies of ether group with CO2 to be from the 

range of -14.8 to -18.6 kJ/ mol in varying chemical structures [113]. The satisfactory 

accordance demonstrates that the proposed methodology in present study is of sufficient 

accuracy to characterize specific interaction between CO2 and functional groups of polymeric 

chain. This study demonstrates that the findings of atomistic behaviour at a microscopic scale 

can be extended to extrapolation of material properties applied to new applications and 

operation windows at a macroscopic level [114-116], which emphasizes the importance of 

molecular modelling in present study.  

 

4. Conclusion 

 

In current work, molecular simulation has been conducted to construct unswollen and 

swollen polysulfone membranes at different operating temperatures in accordance to input 

from actual experimental measurement and conditions. Accuracy of the developed molecular 

structures has been validated with experimental measured physical property and in-house 

experimental set up for sorption measurement of gas molecules within polysulfone membrane, 

whereby only a small deviation between simulation prediction and experimental 

measurement has been observed. The developed molecular structures have been employed to 

elucidate the effect of operating temperature to CO2 induced dilation within polysulfone 

membrane to determine the most dominant parameter that governs swelling phenomena since 

in-situ observation at the laboratory scale is costly and nearly impossible. For unswollen 

polymeric membranes, it is found to demonstrate enhanced relaxation characteristic with 

increment with temperature, such as greater cell dimension, lower density of the membrane 

matrix and greater MSD. The swollen structure is found to exhibit dilated characteristic 

demonstrated through, depression in glass transition temperature and bigger free volume as 

compared to the pristine unswollen polysulfone membrane. Nonetheless, the effect of CO2 

induced swelling is found to be typically substantial within molecular structure at lower 

operating temperature (PSF30Csm > PSF35Csm > PSF40Csm > PSF45Csm > PSF50Csm > 

PSF45Csm) since the CO2 gas molecules has a higher affinity to be sorbed within the 

polymeric matrix. The CO2 gas molecules interact with the polymeric chain, which 



contributes to enhanced relaxation effect as end effect, which further surpasses the effect of 

operating temperature.  Through elucidation of radial distribution function between CO2 and 

functional groups within the polysulfone polymeric chain, it is found that interaction of CO2 

with the oxygen ether group is in charge of the augmented swelling, whence CO2 causes the 

oxygen-phenyl ring bond to inherit a more favourable rotational characteristic and therefore 

augmented dynamics of the polymer. In PSF50Csm and PSF55Csm molecular structures, 

whereby the CO2 has a lower affinity to be condensed within the polymeric membrane matrix 

and does not exceed a certain critical concentration, interaction of CO2 with ether group of 

PSF polymeric chain is not evident, which explains the dilation but at much smaller extend in 

comparison to their counterpart at lower operating temperatures. Finally, a series of 

association equations has been proposed to quantify the specific energy of interaction 

between CO2 and ether group of polysulfone, whereby a value of -16.74 kJ/ mol has been 

computed from present study. It is expected that the findings from current work can be 

sufficiently employed to overcome the barrier, cost and time in preparation and testing of gas 

permeation in membrane at the laboratory scale to predict CO2 swelling phenomena since it 

appears to be relatively convenient and straightforward to control operating conditions of the 

simulation.  

 

Acknowledgement 

 

This work is done with the financial support from Universiti Teknologi PETRONAS. 

 

Abbreviation 

 

 𝑛𝑛1   Amount of gas presents in the reservoir chamber 

𝑉𝑉𝐶𝐶1   Inner volume of the reservoir chamber 

𝑃𝑃1    Pressure of gas introduced into reservoir chamber  

𝑛𝑛1+2  Amount of gas residing in reservoir and membrane chamber after equilibration 

𝑉𝑉𝐶𝐶2  Inner volume of the membrane chamber 

𝑃𝑃2  Equilibration pressure when membrane sample is saturated  

𝑍𝑍1, 𝑍𝑍2  Compressibility factor of the real gas under the designated operating condition, 
 𝑃𝑃1 and 𝑇𝑇, and  𝑃𝑃2 and 𝑇𝑇 respectively 



𝑉𝑉𝑠𝑠  Volume of the polymeric sample 

𝑛𝑛𝑝𝑝 The amount of gas dissolved into the polymeric sample 

𝑇𝑇   Temperature of the system 

x   The concentration of gas molecule sorbed within the polymer membrane 

Vp    Volume of the polymer sample in the membrane chamber 

𝑛𝑛�  Refractive index of the polymer sample 

𝜌𝜌𝑝𝑝  Density of the polymer sample  

𝑁𝑁𝑎𝑎𝑎𝑎  Avogadro’s number 

𝛼𝛼� Average polarizabiliy of the ith type chemical bond, which is dependent upon 
the wavelength parameter 

𝑘𝑘𝑖𝑖  Number of such bonds per repeat unit of polymer 

𝑀𝑀0 Molecular weight of the polymer repeat unit  

𝜀𝜀0  Permittivity constant of free space 

C Material constant that relates refractive index to polymer density 

nsim   Number of CO2 loading taken from sorption experiment in present work 

vcell   Volume of simulation box in Materials Studio 

Tg   Glass transition temperature 

𝐹𝐹𝐹𝐹𝐹𝐹   Fractional free volume 

𝑣𝑣𝑔𝑔   Specific volume of polymeric glass at a specific temperature  

 𝑣𝑣𝑜𝑜   Occupied volume of polymeric chain 

(𝑣𝑣𝑤𝑤)𝑘𝑘    Van der Waals volume of each group into which a polymeric chain is divided 

Ci   Total concentration of gas 𝑖𝑖 in a polymer matrix 

CDi  Equilibrium population of gas 𝑖𝑖  existing in the polymer matrix under the 
dissolved mode and is governed by Henry’s Law equation 

CHi  Non-equilibrium population of gas 𝑖𝑖 existing in excess within the hole-filling 
environment governed by Langmuir parameters 

kDi   Henry's law coefficient that characterizes dissolution of gas  𝑖𝑖 in the polymer 

bi   Langmuir hole affinity parameter of gas  𝑖𝑖 in the polymer 



C′
Hi   Capacity parameter of gas  𝑖𝑖 in the polymer 

fi   Fugacity of gas 𝑖𝑖 in the system 

〈y〉  Average cavity size 

y   Cavity size  

P(v)   Probability distribution of cavity sizes 

𝑃𝑃   Polymer segment 

𝐶𝐶𝐶𝐶2   Carbon dioxide plasticizer 

𝑔𝑔𝑃𝑃−𝐶𝐶𝑂𝑂2(𝑟𝑟) Probability of finding a pair of CO2 molecule at a distance r with respect to the 
bulk polymer, 𝑃𝑃, phase in a completely random distribution 

𝑁𝑁𝑃𝑃−𝐶𝐶𝑂𝑂2  Total number of polymer molecules, 𝑃𝑃, and 𝐶𝐶𝑂𝑂2 in the molecular system 

 𝐾𝐾   Number of time steps 

𝛿𝛿𝛿𝛿   Distance interval  

∆𝑁𝑁𝑃𝑃−𝐶𝐶𝑂𝑂2  Number of 𝐶𝐶𝑂𝑂2 (or 𝑃𝑃) molecules between 𝑟𝑟 + 𝛿𝛿𝛿𝛿 around an 𝑃𝑃 (or 𝐶𝐶𝑂𝑂2) atom 

𝜌𝜌𝑃𝑃−𝐶𝐶𝑂𝑂2  Bulk density of the polymer, 𝑃𝑃, and 𝐶𝐶𝑂𝑂2 system 

𝜇𝜇   CO2/ polymer binding ratio 

𝑃𝑃… (𝐶𝐶𝐶𝐶2)𝜇𝜇  Polymer-CO2 complex that is formed during the association reaction 

 Keq   Equilibrium constant of polymer-CO2 association reaction 

Np   Number of polymer segments 

NCO2   Number of CO2 solvent molecules 

x   Number of repeat unit of the polymer chain 

nP−CO2(rc)  The coordination number of 𝑃𝑃 and 𝐶𝐶𝑂𝑂2 molecules 

𝐾𝐾𝑒𝑒𝑒𝑒∗   Equilibrium constant for association at a specific reference temperature, 𝑇𝑇∗ 

∆𝐻𝐻𝑃𝑃,𝐶𝐶𝐶𝐶2  The enthalpy of association of polymer-CO2 reaction 
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