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Abstract

Game theory studies situations in which strategic players can modify the state of a given system, in the
absence of a central authority. Solution concepts, such as Nash equilibrium, have been defined in order to predict
the outcome of such situations. In multi-player settings, it has been pointed out that to be realistic, a solution
concept should be obtainable via processes that are decentralized and reasonably simple. Accordingly we look at
the computation of solution concepts by means of decentralized dynamics. These are algorithms in which players
move in turns to decrease their own cost and the hope is that the system reaches an “equilibrium” quickly.

We study these dynamics for the class of opinion games, recently introduced by Bindel et al. [10]. These
are games, important in economics and sociology, that model the formation of an opinion in a social network.
We study best-response dynamics and show upper and lower bounds on the convergence to Nash equilibria. We
also study a noisy version of best-response dynamics, called logit dynamics, and prove a host of results about its
convergence rate as the noise in the system varies. To get these results, we use a variety of techniques developed
to bound the mixing time of Markov chains, including coupling, spectral characterizations and bottleneck ratio.
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1 Introduction
Social networks are widespread in physical and digital worlds. The following scenario therefore becomes of
interest. Consider a group of individuals, connected in a social network, who are members of a committee, and
suppose that each individual has her own opinion on the matter at hand. How can this group of people reach
consensus in a decentralized way, that is without a centralized authority dictating the actions of each individual?
This is a central question in economic theory, especially for processes in which people repeatedly average their
own opinions. This line of work, see e.g. [1, 16, 27, 28], is based on a model defined by DeGroot [15]. In this
model, each person i holds an opinion equal to a real number xi, which might for example represent a position
on a political spectrum. There is an undirected weighted graph G = (V,E,w) representing a social network, and
node i is influenced by the opinions of her neighbors in G (the influence of neighbor j is stronger the higher wij
is). At each time step, node i updates her opinion to be a weighted average of her current opinion with the current
opinions of her neighbors. A variation of this model of interest to our study is due to Friedkin and Johnsen [25].
In [25] it is additionally assumed that each node i maintains a persistent internal belief bi, which remains constant
even as node i updates her overall opinion xi through averaging. (See Section 2 for the formal framework.)

However, as recently observed by Bindel et al. [10], consensus is hard to reach, the case of political opinions
being a prominent example. The authors of [10] justify the absence of consensus by interpreting repeated aver-
aging as a decentralized dynamics for selfish players. Consensus is not reached as players will not compromise
further when this increases their cost, defined to measure the distance between a player’s opinion and (i) her own
belief; (ii) her neighbors’ opinions. Therefore, these dynamics will converge to an equilibrium in which players
might disagree; Bindel et al. study the cost of disagreement by bounding the price of anarchy in this setting.

In this paper, we continue the study of [10] and ask the question of how quickly equilibria are reached by
decentralized dynamics in opinion games. We focus on finite opinion games, in which players have only a finite
number of opinions available: that is, the opinions do not correspond to real numbers as in [15], but they can be
chosen only from a set of finitely many alternatives. This is motivated by the fact that in many cases although
players have personal beliefs which may assume a continuum of values, they only have a limited number of
strategies available. For example, in political elections, people have only a limited number of parties they can vote
for and usually vote for the party which is closer to their own opinions. Here we simplify further and consider
the case where only two opinions are available, possibly corresponding to an individual’s voting intention in a
referendum that aims to make a binary decision. This setting already has various novel and interesting technical
challenges as outlined below. The restriction to two opinions avoids the issue of different costs associated with
different pairs of rival opinions; when more than two opinions are considered, different metrics can be used and
for each of them different results can be obtained (see, e.g., [14]).

1.1 Our contribution
We firstly note that finite opinion games are potential game [35, 32] thus implying that these games admit pure
Nash equilibria. The set of pure Nash equilibria is then characterized (cf. Lemma 2.4). We also notice the
interesting fact that while the games in [10] have a price of anarchy of 9/8, our games have unbounded price of
anarchy: indeed, with only finite alternatives, it is clearly more difficult (and sometimes impossible) to find an
opinion that is able to balance the distance from neighbors and from the internal belief. We additionally prove
that the socially optimal profile is always a Nash equilibrium when the weights of the social network are at least
1, thus implying that the Price of Stability is 1 in this case, and in general give a tight bound of 2 for the Price of
Stability when edges have fractional weights.

We then study decentralized dynamics for finite opinion games, where players autonomously update their
opinions, without the intervention of a central authority. We first consider the best-response dynamics, where at
each time step a single player chooses the opinion that minimizes her cost. We prove that this dynamics quickly
converges to pure Nash equilibria in the case of unweighted social networks. For general weights, we prove that
the convergence rate is polynomial in the number of players but exponential in the representation of the weights.
We also prove that for a specific finite opinion game, there exists an exponentially-long sequence of best responses
thus implying that convergence may be exponential in general. The upper bounds are proved by “reducing” a finite
opinion game to a version of it in which the internal beliefs can only take certain values. The reduced version is
equivalent to the original one, as long as best-response dynamics is concerned. Note that the convergence rate for
the version of the game considered in [10] is unknown.

In real life, however, there is some noise in the decision process of players. Arguably, people are not fully
rational. Alternatively, even if they were, they might not know exactly what strategy represents the best response
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to a given strategy profile due to the incapacity to correctly determine their cost functions. To model this, we study
logit dynamics [11] for finite opinion games. Logit dynamics features a rationality level β ≥ 0 (equivalently,
a noise level 1/β) and each player is assumed to play a strategy with a probability which is proportional to the
corresponding cost to the player and β. So the higher β is, the less noise there is and the more the dynamics is
similar to best-response dynamics. We remark that the parameter β is assumed to describe the noise level in the
system, and thus every single player is assumed to have the same rationality level. This is aligned with similar
models in Physics, where β represents the temperature in the environment that influences the behavior of particles
in that environment.

Logit dynamics for potential games defines a Markov chain that has a nice structure. As in [5, 3] we exploit
this structure to prove bounds on the convergence rate of logit dynamics to the so-called logit equilibrium. The
logit equilibrium corresponds to the stationary distribution of the Markov chain. Intuitively, a logit equilibrium
is a probability distribution over strategy profiles of the game; the distribution is concentrated around pure Nash
equilibrium profiles1. It is observed in [5] how this notion enjoys a number of desiderata of solution concepts.

We prove a host of results on the convergence rate of logit dynamics that give a pretty much complete picture
as β varies. We give an upper bound in terms of the cutwidth of the graph modeling the social network. The
bound is exponential in β and the cutwidth of the graph, thus yielding an exponential guarantee for some topology
of the social network. We complement this result by proving a polynomial upper bound when β takes a small
value. We complete the preceding upper bound in terms of the cutwidth with lower bounds. Firstly, we prove
that in order to get an (essentially) matching lower bound it is necessary to evaluate the size of a certain subset of
strategy profiles. When β is big enough relative to this subset then we can prove that the upper bound is tight for
any social network (specifically, we roughly need β bigger than n log n divided by the cutwidth of the graph). For
smaller values of β, we are unable to prove a lower bound which holds for every graph. However, we prove that
the lower bound holds in this case at both ends of the spectrum of possible social networks. In detail, we look at
two cases of graphs encoding social networks: cliques, which model monolithic, highly interconnected societies,
and complete bipartite graphs, which model more sparse “antitransitive” societies. For these graphs, we firstly
evaluate the cutwidth and then relate the latter to the size of the aforementioned set of states. This allows us to
prove a lower bound exponential in β and the cutwidth of the graph for (almost) any value of β. As far as we
know, no previous result was known about the cutwidth of a complete bipartite graph; this might be of independent
interest. The result on cliques is instead obtained by generalizing arguments in [31].

To prove the convergence rate of logit dynamics to logit equilibrium we adopt a variety of techniques developed
to bound the mixing time of Markov chains. To prove the upper bounds we use some spectral properties of the
transition matrix of the Markov chain defined by the logit dynamics, and coupling of Markov chains. To prove the
lower bounds, we instead rely on the concept of bottleneck ratio and the relation between the latter and mixing
time. (The interested reader might refer to [31] for a discussion of these concepts. Below, we give a quick overview
of these techniques and state some useful facts.)

1.2 Related works
Best response dynamics and logit dynamics are prominent examples of decentralized dynamics. We refer the
interested reader to [18] for an ampler treatment of decentralized dynamics.

A number of papers study the efficient computation of (approximate) pure Nash equilibria for 2-strategy
games, such as party affiliation games [21, 6] and cut games [8]. The class of games we study here contrasts with
those in that for the games considered here, Nash equilibria can be found in polynomial time (Observation 2.2),
so that our interest is in the extent to which equilibria can be found easily with simple decentralized dynamic
processes. Similarly to these works, we focus on a class of 2-strategy games and study efficient computation of
pure Nash equilibria; additionally we also study the convergence rate to logit equilibria.

Recently, much attention has been devoted to games played on social networks. In particular, Dyer and
Mohanaraj [17] introduced a class of graphical games, called pairwise-interaction games, in which players are
placed on vertices of a graph and there is a unique game being played on the edges of this graph. They prove,
among other results, quick convergence of best-response dynamics for these games. For special cases of pairwise-
interaction games where the edge game is a coordination games, hence called graphical coordination games, there
are several results about the behavior of the logit dynamics [19, 34, 33]. However, none of these works evaluates
the time the logit dynamics takes in order to reach the stationary distribution: this line of research is conducted in
[5, 3]. The finite opinion games studied here closely resemble these graphical coordination games. However, we

1Thus, the solution concept of logit dynamics is different from the one associated with best-response dynamics.
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highlight that finite opinion games are not pairwise-interaction games. Indeed, in order to encode the belief of a
player we need a different game on every edge (see Section 2 for details).

Several relevant works about opinion formation games appeared recently [14, 26, 9, 2]. In particular, Chierichetti
et al. [14] also consider finite opinion games, but they try to extend the model to more than two available opin-
ions. Ghaderi and Srikant [26] consider instead the original model of [25] with an unlimited number of available
opinions, but, as in this work, they investigate the behavior of decentralized dynamics (specifically, they consider
concurrent best-response dynamics).

2 The game
Let G = (V,E) be a connected undirected graph with |V | = n and for each edge e = (i, j) ∈ E let wij > 0 be
its weight. We set wij = 0 if (i, j) is not an edge of G. Every vertex of the graph represents a player. Each player
i has an internal belief bi ∈ [0, 1].

In the original model of [25] considered by [10], it is assumed that each player can choose an opinion xi ∈
[0, 1] and the cost of player i in a strategy profile x ∈ {0, 1}n is

ci(x) = (xi − bi)2 +
∑

(i,j)∈E

wij(xi − xj)2. (1)

In this work we instead assume that for each player there are only two available strategies or opinions, namely
0 and 1. However, the cost of player i in a strategy profile x ∈ {0, 1}n is still computed according to (1). We call
such a game an n-player finite opinion game on a graph G. Let Di(x) =

∑
j : xi 6=xj wij be the sum of the weights

of edges going from i to players with the opposite opinion to i. Then

ci(x) = (xi − bi)2 +Di(x).

We note that finite opinion games can be alternatively defined as follows: For every edge e = (i, j), we
consider the following two-player two-strategy game:

Player i

Player j

0 1

0
b2i
∆i
,
b2j
∆j

b2i
∆i

+ wij ,
(1−bj)2

∆j
+ wij

1 (1−bi)2

∆i
+ wij ,

b2j
∆j

+ wij
(1−bi)2

∆i
,

(1−bj)2

∆j

where ∆i represents the degree of i and the values in each cell are the cost of i and j, respectively. It is not too
hard to see that the cost ci of player i is the total cost resulting from each subgame in which she is involved.

We remark that, since costs depend on the identity of the endpoints of the edge, we have a different game
played on every edge. Hence, finite opinion games are not pairwise-interaction games.

A (pure) Nash equilibrium of a finite opinion game is a profile x such that for every player i and every
yi ∈ {0, 1}, it holds that ci(x) ≤ ci(x−i, yi), where x−i = (x1, . . . xi−1, xi+1, . . . , xn).

2.1 Potential Function and Social Cost
A finite opinion game has an exact potential function Φ if for every profile x, every player i and every strategy
yi ∈ {0, 1}, it holds that ci(x)− ci(x−i, yi) = Φ(x)− Φ(x−i, yi). Note that every local minimum of a potential
function corresponds to a Nash equilibrium of the game.

Let D(x) =
∑
i,j : xi 6=xj wij be the sum of the weights of discording edges in the strategy profile x, that is

the weight of all edges in G whose endpoints have different opinions. Thus, D(x) = 1
2

∑
iDi(x).

Lemma 2.1. The function
Φ(x) =

∑
i

(xi − bi)2 +D(x) (2)

is an exact potential function for the finite opinion game described above.
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Proof. Given a strategy profile x, player i experiences a non-negative cost. We show that in a finite opinion game
if players minimize their cost, then the function Φ defined in (2) decreases. The difference in the cost to player i
when she switches from strategy xi to strategy yi is

ci(x)− ci(x−i, yi) = (xi − bi)2 − (yi − bi)2 +Di(x)−Di(x−i, yi).

The difference in the potential function between the two corresponding profiles is

Φ(x)− Φ(x−i, yi) =
∑
j

(xj − bj)2 +D(x)−
∑
j 6=i

(xj − bj)2 − (yi − bi)2 −D(x−i, yi)

= (xi − bi)2 − (yi − bi)2 +D(x)−D(x−i, yi).

Discording edges not incident on i are not affected by the deviation of player i. That is, if we let Ki(x) =∑
j,k 6=i; xj 6=xk wjk be the sum of the weights of these edges, then Ki(x) = Ki(x−i, yi). The claim then follows

since D(x) = Ki(x) +Di(x) and D(x−i, yi) = Ki(x−i, yi) +Di(x−i, yi).

We remark that a similar function has been used in [10] for analyzing the original opinion games with unlimited
opinions.

Notice that the potential function Φ looks similar to (but is not the same as) the social cost

SC(x) =
n∑
i=1

ci(x) =
∑
i

(xi − bi)2 + 2D(x). (3)

2.2 Computational Complexity
In this section we make a couple of observations about the time that it is necessary for a centralized algorithm,
i.e., one that is run by a central authority, to compute Nash equilibria and profiles minimizing the social cost.

Observation 2.2. Nash equilibria of the finite opinion games can be computed by a centralized algorithm in
polynomial time.

Specifically, consider the following simple greedy algorithm. Start with the pure profile x where everyone
plays 0. As long as the current profile is not an equilibrium take an arbitrary player that prefers to take opinion 1
and let her to play her best response.

Notice that if at some time t during the algorithm player i switches her opinion from 0 to 1, then she will prefer
1 in every t′ > t. This is because from time t onward, the cost of player i decreases as long as the number of her
neighbors with opinion 1 increases. Since during the algorithm the neighbors of i can only switch their opinion
from 0 to 1, then i will not have any incentive to change her choice at every time t′ > t. Hence, the algorithm in
at most n steps will reach a Nash equilibrium.

Notice that this algorithm finds an equilibrium that maximizes the number of players playing 0, and we could
similarly find one that maximizes the number of players playing 1. It does not necessarily find a socially optimal
equilibrium, although it follows from Theorem 2.7 and Observation 2.3 below that when edge weights are at least
1, the lowest-cost equilibrium is computable in polynomial time.

As for the computation of the socially optimal profile, we have the following result.

Observation 2.3 ([20, Theorem 2]). The profile minimizing the social cost can be computed by a centralized
algorithm in polynomial time.

(A proof of this result can also be found in [23].) Specifically, Escoffier et al. [20] showed that it corresponds
to the (s, t)-cut of minimum weight in a suitably built graph. This argument can be extended to prove the effi-
cient computation (by a centralized algorithm) of the equilibrium that minimizes the potential function (but not
necessarily the social cost).

2.3 Nash equilibria, Price of Anarchy and Price of Stability
We next give a characterization of Nash equilibria. Let Bi be the integer closer to the internal belief of the player
i: that is, Bi = 0 if bi ≤ 1/2, Bi = 1 if bi > 1/2. Moreover, let Wi =

∑
j wij be the total weight of edges
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incident on i and W s
i (x) =

∑
j : xj=s

wij be the total weight of edges going from i to players playing strategy s
in the profile x.

The following lemma shows that, for every player, it is preferable to select the opinion closer to her own belief
if and only if more than (almost) half of her (weighted) neighborhood has selected this opinion.

Lemma 2.4. In a Nash equilibrium profile x, it holds that for each player i

xi =

{
Bi, if WBi

i (x) ≥ Wi

2 − δ;
1−Bi, if WBi

i (x) ≤ Wi

2 − δ;

where δ = 1
2 − |Bi − bi|.

Proof. Let us start by observing that |Bi − bi| = Bi + bi − 2biBi and then

(1−Bi − bi)2 = (Bi − bi)2 − 2|Bi − bi|+ 1. (4)

Now, we first prove that a profile for which the above conditions hold is a Nash equilibrium, and then we prove
that every other profile is not in equilibrium.

Let x be a profile for which the above conditions hold for every player and i be one such player. We consider
first the case that WBi

i (x) ≥Wi/2− δ: then we have xi = Bi. There is no incentive for i to play 1−Bi since

ci(x−i, 1−Bi) = (1−Bi − bi)2 +WBi
i (x)

≤ (Bi − bi)2 +

(
Wi

2
+ δ

)
≤ (Bi − bi)2 +

(
Wi −WBi

i (x)
)

= ci(x),

where we used (4) for the first inequality. Similarly, we can prove that if WBi
i (x) ≤ Wi

2 − δ, and thus xi =
1 − Bi, then ci(x−i, Bi) ≥ ci(x). Hence, no player has incentive to switch her opinion in x ad thus x is a Nash
equilibrium.

Now consider a profile y for which the conditions above do not hold for some player i. It must be the case that
WBi
i (y) 6= Wi/2− δ. If WBi

i (y) > Wi/2− δ, this means that yi = 1−Bi; similarly, if WBi
i (y) < Wi

2 − δ, we
have that yi = Bi. However, it is immediate to check that in the former case ci(y) > ci(y−i, Bi) and in the latter
case ci(y) > ci(y−i, 1−Bi).

Informally, Lemma 2.4 identifies the point at which a player’s neighbors dictate her strategy and overcome her
internal belief.

Price of Anarchy and Stability. Next we evaluate the performance of Nash equilibria with respect to minimiza-
tion of the social cost. To this aim, we analyse the Price of Anarchy and the Price of Stability of Nash equilibria in
finite opinion games. These concepts measure the performance of Nash equilibria by comparing the social cost of
an equilibrium with the optimal social cost. Specifically, the Price of Anarchy [30] is defined as the ratio between
the maximum social cost among the ones achieved in a Nash equilibrium and the optimal social cost. The Price
of Stability is instead the ratio between the minimum social cost achieved by a Nash equilibrium and the optimal
social cost.

Observation 2.5. The price of anarchy of finite opinion games is unbounded.

To see this, consider the finite opinion game on a clique where each player has internal belief 0 and each edge
has weight 1: the profile where each player has opinion 0 has social cost 0. By Lemma 2.4, the profile where each
player has opinion 1 is a Nash equilibrium and its social cost is n > 0. This is in sharp contrast with the bound 9/8
proved in [10], and this difference is motivated by the fact that with limited available opinions, it is more difficult
(and, sometimes, as in the above example, impossible) to find an opinion that compromises between the opinion
of the neighbors and the internal belief.

We complete this section by proving bounds on the Price of Stability.

Theorem 2.6. The price of stability of finite opinion games is 2.
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Proof. We begin by proving the upper bound of 2 on the price of stability for any finite opinion game G. Let x? be
the profile of G minimizing the potential function and OPT be the profile minimizing the social cost. Therefore,
we have

SC(x?) = Φ(x?) +D(x?) ≤ 2 · Φ(x?) ≤ 2 · Φ(OPT ) ≤ 2 · SC(OPT ).

where the first equality and the last inequality follow from the definitions of SC and Φ given in (3) and (2), the first
inequality uses that Φ(x) =

∑
i(xi− bi)2 +D(x) ≥ D(x), and the second inequality follows from the definition

of x? and OPT . The price of stability then follows since x? is a Nash equilibrium.
For the lower bound, consider a finite opinion game G defined on a star-shaped social network with n + 1

nodes, with n > 4, where each edge is weighted 1/n. Let each external node, but one, have belief 1. The center
and the remaining external node have instead belief 0.

We now argue that the social cost is minimized by the profile in which all nodes apart from the center play their
own belief. Indeed, its cost is 1 + 2/n = (n+ 2)/n (we have one discording edge weighted 1/n and additionally
the center has a cost of 1 since she is playing the strategy opposite to her own belief). All profiles in which at least
two nodes play the strategy opposite to their belief have cost at least 2 > 1 + 2/n. All profiles in which there is
only one player, different from the center, playing opposite to her belief will have k > 1 discording edges and then
a cost of 1 + 2k/n > (n + 2)/n. Finally, the profile in which each player plays her belief has n − 1 discording
edges for a social cost of 2(n− 1)/n = (2n− 2)/n > (n+ 2)/n.

Now we note that the latter profile, that we will call x, is the unique Nash equilibrium of the game. Indeed, for
all nodes but the center, it is a dominant strategy to play their belief (by doing so, they will have a cost of at most
1/n while by switching their cost would be at least 1). But then by Lemma 2.4, the center has a strict incentive to
play her belief as well since, letting i be the center, W 0

i (x) = 1/n > 0 = Wi/2− δ.
Therefore, the price of stability of this game is 2(n− 1)/(n+ 2), which approaches 2 as n increases.

We show that above bound can be improved when edge weights are at least 1. Indeed, it turns out that, in
this special case, the profile that minimizes the social cost is always a Nash equilibrium. Intuitively, this result
follows from the fact that high edge weights make the contribution of the term D(x) prevalent with respect to that
of
∑
i(xi − bi)2 in both the potential function and the social cost. A formal proof is given in the next theorem.

Theorem 2.7. For a finite opinion game with weights at least 1, the price of stability is 1.

Proof. Let G be an n-player finite opinion game and let x be the profile that minimizes the social cost of G.
Assume for a contradiction that x is not a Nash equilibrium. This means there is a player i for which the condition
of Lemma 2.4 does not hold, i.e., either xi = 1−Bi andWBi

i (x) > Wi/2−δ or xi = Bi andWBi
i (x) < Wi/2−δ.

Let us consider the first case (the second one can be handled similarly): we will show that the profile (x−i, Bi)
achieves a social cost lower than x and thus a contradiction. We evaluate the difference between cj(x−i, Bi) and
cj(x) for each player j. If j = i, then

ci(x−i, Bi)−ci(x) = Wi−WBi
i (x)+(Bi−bi)2−WBi

i (x)−(1−Bi−bi)2 = Wi−2WBi
i (x)+2|Bi−bi|−1,

where we used (4). Consider now a neighbor j of i such that xj = Bi. Then,

cj(x−i, Bi)− cj(x) = Wj −WBi
j (x)− wij + (Bi − bj)2 −Wj +WBi

j (x)− (Bi − bj)2 = −wij .

For a neighbor j of i such that xj = 1−Bi, we obtain

cj(x−i, Bi)− cj(x) = WBi
j (x) + wij + (1−Bi − bj)2 −WBi

j (x)− (1−Bi − bj)2 = wij .

Finally, note that players that are not in the neighborhood of i have the same cost in both profiles. Thus, the
difference between social costs is:

SC(x−i, Bi)− SC(x) = Wi − 2WBi
i (x) + 2|Bi − bi| − 1−

∑
j : (i,j)∈E
xj=Bi

wij +
∑

j : (i,j)∈E
xj=1−Bi

wij

= 2
(
Wi − 2WBi

i (x) + |Bi − bi|
)
− 1.

Observe that by definition of Bi, |Bi − bi| ≤ 1/2. We now distinguish two cases.
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If |Bi − bi| < 1/2 then WBi
i (x) > Wi/2 − δ implies WBi

i (x) ≥ Wi/2 whenever weights are at least one.

Therefore, SC(x−i, Bi)−SC(x) = 2
(
Wi − 2WBi

i (x) + |Bi − bi|
)
−1 ≤ 2|Bi−bi|−1 < 0 and this concludes

the proof in this case.
If |Bi−bi| = 1/2 thenWBi

i (x) > Wi/2−δ is equivalent toWBi
i (x) > Wi/2 and similarly to the case above

we can conclude SC(x−i, Bi)− SC(x) < 0.

3 Best-response dynamics
In this section, we analyze the behavior of the best-response dynamics for finite opinion games. Best-response
dynamics are a prominent decentralized dynamics in which at each time step a player among the ones that can
decrease their cost changes her opinion.

We will evaluate the time that this decentralized dynamics takes for converging to a Nash equilibrium. We
will show that this time can be exponential in the representation of the weights. We note that this result is in stark
contrast with Observation 2.2 that shows that centralized algorithms compute an equilibrium in polynomial time,
regardless of the weights’ representation.

In order to bound the convergence time of best-response dynamics, we adopt a quite standard approach (see,
e.g., [21] and [13]): namely, we bound the minimum decrease of the potential function in each step. Unfortunately,
a naive application of this technique does not work: indeed, it may be the case that the decrease in the cost of a
player is very small (for example, when a player has the same number of neighbors with opinion 0 and 1 and
her belief bi is close to 1

2 ). To address this issue we will not apply the technique on the original game but on an
“equivalent” game. Specifically, we use the following definition, previously used in [17].

Definition 3.1. Two games G,G′ are pure best-response equivalent2 if they have the same sets of players and
pure-strategies, and for any player and pure-strategy profile, that player’s best response is the same in G as in G′.

We prove bounds on the time the best-response dynamics for a game G takes to converge by analyzing the
dynamics on a game G′ that is pure best-response equivalent to G but such that beliefs are “nicely” distributed. To
describe these beliefs we need the following definitions.

Definition 3.2. We say that a belief b ∈ [0, 1] is threshold for player i in finite opinion game G if player i with
belief b in G is indifferent between playing strategy 0 and strategy 1 for some strategies of the players other than i.

Given a finite opinion game G and a player i in G, we then define a finite3 set Bi of numbers in [0, 1] as follows:
Let B′i contain 0 and 1 together with every threshold belief of player i; Let Bi contains every element of B′i, and
in addition, for every pair of consecutive elements b′1, b′2 of B′i, let Bi contain at least one element in the interval
(b′1, b

′
2) (for example, 1

2 (b′1 + b′2)).

For example, consider a player i with three neighbors each one connected with i with an edge of weight 1/3.
For this player there are two threshold beliefs: 1/3 and 2/3. Indeed, if b = 1/3, then i becomes indifferent
between opinion 0 and opinion 1, whenever there is exactly one neighbor with opinion 0. Similarly, if b = 2/3,
then i becomes indifferent between opinion 0 and opinion 1, whenever there is exactly one neighbor with opinion
1. It is not difficult to see that for every other value of b, player i either strictly prefers opinion 0 over opinion 1 or
vice versa. Thus, in this case we will have B′i = {0, 1/3, 2/3, 1} and Bi can be {0, 1/6, 1/3, 1/2, 2/3, 5/6, 1}.

Then we have the following lemma.

Lemma 3.3. Any finite opinion game G is pure best-response equivalent to a finite opinion game G′ in which the
beliefs of every player i in G have been replaced by an element of Bi.

Proof. Fix a finite opinion game G and player i. Let G′ be a finite opinion game defined on the same social
network as G. For each player i in G, if her belief bi is threshold, then it belongs to Bi, and we keep it the same in
G′. If bi is not a threshold belief, then in G′ it is replaced by one of the elements of Bi that lies in the subinterval
bounded by 2 consecutive elements of B′i containing bi.

We claim that G′ constructed this way, is pure best-response equivalent to G. Consider a player i, and note that
for a pair of beliefs bi and b′i to result in different best responses, there must be a strategy profile for the remaining
players for which the best response under belief bi is opposite to the one under belief b′i. Note however that a
player’s beliefs have been changed in a way that ensures that there is no such pair of pure-strategy profiles.

2In [17] they just use “equivalent”.
3Note that for every set of strategies played by the neighbors of i, there is a unique threshold whose value is defined by the edge weights

(and, clearly, those strategies). Since there are 2∆i different strategy profiles for i’s neighbors, then it is always possible to define a finite Bi.
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3.1 A special case: unitary weights
We start by considering the special case in which wij = 1 for each edge (i, j). This helps to develop the ideas that
we use to prove a bound for more general weights.

For a player i, consider B′i as defined in Definition 3.2. In this special case, it is easy to see that B′i = {0, 1}
if the neighborhood of i has odd size and B′i = {0, 1

2 , 1}, otherwise. Thus, by Lemma 3.3, in both cases, G is
pure best-response equivalent to a finite opinion game G′ where each player i has belief in Bi =

{
0, 1

4 ,
1
2 ,

3
4 , 1
}

.
The following theorem shows that the best-response dynamics quickly converges to a Nash equilibrium in G′ and
hence in G.

Theorem 3.4. The best-response dynamics for an n-player finite opinion game converges to a Nash equilibrium
after a number of steps that is polynomial in n.

Proof. Let G be an n-player finite opinion game and let G′ be a pure best-response equivalent game having beliefs
in the set Bi =

{
0, 1

4 ,
1
2 ,

3
4 , 1
}

. We show that best-response dynamics converges quickly on G′.
We begin by observing that for every profile x, we have 0 ≤ Φ(x) ≤W +n, whereW =

∑
(i,j)∈E wij ≤ n2.

Thus, the theorem follows by showing that at each time step the cost of a player decreases by at least a constant
value. Fix x−i, the opinions of players other than i, and let xi be the strategy currently played by player i and s
be her best response. By definition of best response, we have ci(x) > ci(s,x−i). We will show that

1

2
≤ Φ(x)− Φ(s,x−i) = ci(xi,x−i)− ci(s,x−i) = (xi − bi)2 − (s− bi)2 +Di(x)−Di(s,x−i)

= 2|xi − bi| − 1 + ∆D,
(5)

where the last equality follows by (4) (with xi in place of Bi) and by using ∆D as a shorthand for Di(x) −
Di(s,x−i). We distinguish three cases based on the value of ∆D.
If ∆D > 1, then it will be the case that ∆D ≥ 2. Since the difference between the squares is bounded from below
by −1, then (5) follows.
If −1 < ∆D ≤ 1, then it will be the case that ∆D ∈ {0, 1}. If xi = 0, then ci(xi,x−i) > ci(s,x−i) implies
bi >

1−∆D
2 and, from bi ∈ Bi, bi ≥ 1−∆D+1/2

2 ; for these values of bi and xi (5) follows. Similarly, if xi = 1,
then ci(xi,x−i) > ci(s,x−i) implies bi < 1+∆D

2 and, from bi ∈ Bi, bi ≤ 1+∆D−1/2
2 ; for these values of bi and

xi (5) follows.
If ∆D ≤ −1, then we will reach a contradiction. Indeed, since the difference between the squares is bounded
from above by 1, we have ci(xi,x−i) ≤ ci(s,x−i).

3.2 General weights
We now show how to extend the bound for the convergence of the best-response dynamics to general weights. Our
bound will depend on the precision k needed to represent the weights, i.e., the maximum number k of digits after
the decimal point in the decimal representation of the weights.

Given a finite opinion game G, we consider a game G′ that is exactly the same as G except that in G′ the cost
of player i in the profile x is

c′i(x) = 10k · ci(x).

We say G′ is the integer version of G. Obviously, G is pure best-response equivalent to G′ and G′ is a potential
game with potential function Φ′ = 10k · Φ. Note that G′ can be equivalently described as follows: each player
has two strategies, 0 and 1, and a personal belief bi as in G; for each edge e of the social graph of G, we set
w′e = 10k · we and D′i(x) =

∑
j : xi 6=xj w

′
ij . Then

c′i(x) = 10k(xi − bi)2 +D′i(x).

Note that w′e is an integer for each edge e. Then we have the following lemma.

Lemma 3.5. Consider a finite opinion game G and for each player i consider the setB′i as defined in Definition 3.2.
Then for each b ∈ B′i, we have that 10k · 2b is an integer.
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Proof. If b ∈ {0, 1}, then the lemma trivially follows. As for b being a threshold belief, we distinguish two cases:
if b ≤ 1/2, then, by Lemma 2.4, there is a profile x such that

bi =
1

2
− 1

2

∑
j

wij +
∑

j : xj=0

wij .

Hence,
10k · 2bi = 10k −

∑
j

w′ij + 2
∑

j : xj=0

w′ij .

Since each term in the right-hand side of the last equation is an integer then so is also 10k · 2bi. The case b > 1/2
can be handled similarly.

Now we are ready for proving a bound on the convergence time of the best-response dynamics.

Theorem 3.6. The best-response dynamics for an n-player finite opinion game G whose edge weights have
bounded precision k converges to a Nash equilibrium in O(10k · n2 · wmax), where wmax is the largest edge
weight in G.

Proof. Fix the finite opinion game G and for each player i consider the setB′i as defined in Definition 3.2. Consider,
moreover, Bi containing every element of B′i, and in addition, the element 1

2 (b′1 + b′2) for every pair of consecutive
elements b′1, b′2 of B′i.

Let G′ be a finite opinion game such that each player i has belief in Bi. From Lemma 3.3, G and G′ are pure
best-response equivalent games. Moreover consider G′′ the integer version of G′, which is pure best-response
equivalent to G′ and then to G. Below all the notation defined so far uses a double prime when it refers to G′′. We
show that best-response dynamics converges in O(10k · n2 · wmax) steps on G′′.

We begin by observing that for every profile x, we have 0 ≤ Φ′′(x) ≤ 10k
(∑

(i,j)∈E wij + n
)

= O(10k ·
n2 ·wmax). Thus, the theorem follows by showing that at each time step the cost of a player decreases by at least a
constant value. Fix x−i, the opinions of players other than i, and let xi be the strategy currently played by player
i and s be her best response. From the definition of best response, it follows that c′′i (x) > c′′i (s,x−i). We will
show that

1/2 ≤ Φ′′(x)− Φ′′(s,x−i) = c′′i (xi,x−i)− c′′i (s,x−i)

= 10k
(
(xi − bi)2 − (s− bi)2

)
+D′′i (x)−D′′i (s,x−i) = 10k (2|xi − bi| − 1) + ∆D,

(6)

where the last equality follows by (4) (with xi in place of Bi) and by using ∆D as a shorthand for D′′i (x) −
D′′i (s,x−i). We distinguish three cases based on the value of ∆D.
If ∆D > 10k, then, since all edge weights are integers, it will be the case that ∆D ≥ 10k+1. Since the difference
between the squares is bounded from below by −1, then (6) follows.
If −10k < ∆D ≤ 10k, then, since all edge weights are integers, we have ∆D ∈ {−10k + 1, . . . , 10k}. If xi = 0,
then c′′i (xi,x−i) > c′′i (s,x−i) implies bi > 10k−∆D

2·10k
. Since 10k · 2b is an integer for each threshold belief b, the

smallest threshold belief greater than 10k−∆D
2·10k

should be at least 10k−∆D+1
2·10k

. Hence, the first element of Bi greater
than 10k−∆D

2·10k
will be at least

1

2

(
10k −∆D

2 · 10k
+

10k −∆D + 1

2 · 10k

)
=

10k −∆D + 1/2

2 · 10k
.

Thus, if xi = 0, then bi ≥ 10k−∆D+1/2
2·10k

and (6) follows. Similarly, one can prove that if xi = 1, then bi ≤
10k+∆D−1/2

2·10k
and (6) follows.

If ∆D ≤ −10k, then we will reach a contradiction. Indeed, since the difference between the squares is bounded
from above by 1, we have ci(xi,x−i) ≤ ci(s,x−i).

The bound on the convergence time of the best response dynamics given in previous theorem can be very large
if the edge weights are very large or they need high precision. However, in the next section we will show that, in
these cases, such a large bound cannot be avoided. On the positive side, we remark that our bounds hold regardless
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of the order in which player are selected for playing the best-responses. In particular, they hold even if this order
is chosen adversarially.

Interestingly, the machinery used for proving Theorem 3.6 can be useful for proving that best-response dynam-
ics can converge in time that is polynomial on the number of players and in the maximum weight to ε-approximate
equilibria, i.e., profiles in which no player can improve her utility by more than ε by changing their strategy.
Specifically, we have the following theorem.

Theorem 3.7. The best-response dynamics for an n-player finite opinion game G converges to a ε-approximate
equilibrium in O(log 1

ε · n
2 · wmax), where wmax is the largest edge weight in G.

Indeed, one can define an approximate integer version G′ of the finite opinion game G, by setting the cost of
player i to c′i(x) =

⌈
10dlog10

1
εe · ci(x)

⌉
. Observe that if in the original game G there is a player that has a best

response that diminishes her cost by more than ε, then this strategy remains a best-response for the player in the
game G′. Hence, every equilibrium of G′ must be an ε-approximate equilibrium of G. Then, by repeating the
arguments of Theorem 3.6 one can prove that the best response takes O(log10

1
ε · n

2 · wmax) steps to converge to
a Nash equilibrium of G′.

3.3 Exponentially many best-response steps for general weights
The following result builds a game with an exponentially large gap between the largest and the smallest edge
weight for which there exist exponentially long sequences of best responses, where the choice of the player switch-
ing her strategy at each step is made by an adversary. Thus it remains an open question whether exponentially-
many steps may be required if, for example, players were allowed to best-respond in round robin manner, or if the
best-responding player was chosen randomly at each step. However this does establish that the potential function
on its own is insufficient to bound from above the number of steps with any polynomial. The construction uses
graphs with bounded degree and path-width, with all players having belief 1

2 .

Theorem 3.8. The best-response dynamics for finite opinion games may take exponentially many steps.

Proof. In the following construction, all players have a belief of 1
2 .

We start by giving some preliminary definitions. A 6-gadget G is a set of 6 players {A,B,C,D,E, F} with
edges (A,B), (B,C) and (C,D) having weights ε, 2ε, 3ε respectively and edges (D,E), (B,F ) and (D,F ), all
weighting 4ε, for some ε > 0 (see Figure 1).

A B C

F D E

A0

ε 2ε

3ε
4ε

4ε
4ε

4ε

4ε

Figure 1: A 6-gadget G with its switch

Consider a 6-gadget and a new player A0 with edges (A0, B) and (A0, D) of weight 4ε. We say that A0

is a switch for the 6-gadget G, since it allows G to switch between the opinion vectors (0, 0, 0, 0, 0, 1) and
(0, 1, 0, 1, 0, 1). Specifically, if initially the players (A,B,C,D,E, F ) have opinions (0, 0, 0, 0, 0, 1) and A0

is set to 1, then we can have the following best-response sequence in the 6-gadget, that will be named switch-on
cycle:

(0, 0, 0, 0, 0, 1)→ (0, 1, 0, 0, 0, 1)→ (0, 1, 0, 1, 0, 1).

Indeed, in the first step B reduces her cost from 1
4 + 8ε to 1

4 + 3ε, whereas in the second step D reduces her cost
from 1

4 + 8ε to 1
4 + 7ε. If instead the players (A,B,C,D,E, F ) have opinions (0, 1, 0, 1, 0, 1) and A0 is set to 0,

then we can have the following best-response sequence in the 6-gadget, that will be named switch-off cycle:

(0, 1, 0, 1, 0, 1)→ (1, 1, 0, 1, 0, 1)→ (1, 0, 0, 1, 0, 1)→ (0, 0, 0, 1, 0, 1)→ (0, 0, 1, 1, 0, 1)→ (0, 1, 1, 1, 0, 1)

→ (1, 1, 1, 1, 0, 1)→ (1, 1, 1, 0, 0, 1)→ (1, 1, 0, 0, 0, 1)→ (1, 0, 0, 0, 0, 1)→ (0, 0, 0, 0, 0, 1).
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To see that in the switch-off cycle all steps consists of best-responses, observe that: in the first step, A reduces her
utility from 1

4 + ε to 1
4 ; in the second step, B reduces her utility from 1

4 + 6ε to 1
4 + 5ε; in the third step, A reduces

her utility from 1
4 + ε to 1

4 ; in the fourth step, C reduces her utility from 1
4 + 3ε to 1

4 + 2ε; in the fifth step, B
reduces her utility from 1

4 + 6ε to 1
4 + 5ε; in the sixth step, A reduces her utility from 1

4 + ε to 1
4 ; in the seventh

step, D reduces her utility from 1
4 + 8ε to 1

4 + 7ε; in the eighth step, C reduces her utility from 1
4 + 3ε to 1

4 + 2ε;
in the ninth step, B reduces her utility from 1

4 + 6ε to 1
4 + 5ε; in the last step, A reduces her utility from 1

4 + ε to
1
4 .

Notice also thatA’s opinion does not change in the switch-on cycle, whereas it follows the sequence 0→ 1→
0→ 1→ 0 during the switch-off cycle.

We now define the game. Consider n 6-gadgets Gi with players {Ai, Bi, Ci, Di, Ei, Fi} and edge weights
parametrized by εi, where 1 ≤ i ≤ n. For each i = 2, . . . , n, we connect Gi with Gi−1 by having Ai−1 acting as
a switch for Gi. We finally add the switch player A0 for G1. Thus, the total number of players is 6n+ 1.

In order that the behavior of Ai in gadget Gi, for i = 1, . . . , n − 1 is not influenced by the new edges,
(Ai, Bi+1) and (Ai, Di+1) of weight 4εi+1, we need that the weights of these edges are small enough with respect
to the weight of the unique edge incident on Ai in the gadget Gi, namely (Ai, Bi) of weight εi. Specifically, it
is sufficient to set εi > 8εi+1. Hence, the largest edge-weight is 4ε1 and the smallest edge-weight is εn and their
ratio is greater than 4 · 8n−1 = 23n−1.

Consider now the following starting profile: players B1 and D1 have opinion 1, all players Fi have opinion 1,
and all other players start with opinion 0. Note that G1 is in the starting configuration of a switch-off cycle.

We finally specify an exponentially-long sequence of best-response: we start the switch-off cycle of G1; as
long asAi, for i = 1, . . . , n−1, switches her opinion from 0 to 1, we execute the switch-on cycle ofGi+1; as long
as Ai, for i = 1, . . . , n− 1, switches her opinion from 1 to 0, we execute the switch-off cycle of Gi+1. Note that
the last two cases occur two times during the switch-off cycle of Gi. Thus, G2 goes through 2 switch-on cycles
and 2 switch-off cycles, G3 goes through 4 switch-on cycles and 4 switch-off cycles and, hence, Gn goes through
2n−1 switch-on cycles and 2n−1 switch-off cycles.

4 Logit Dynamics for Finite Opinion Games
Let G be a finite opinion game and let S = {0, 1}n denote the set of all strategy profiles. For two vectors x,y ∈ S,
we denote with H(x,y) = |{i : xi 6= yi}| the Hamming distance between x and y. The Hamming graph of the
game G is defined as H = (S,E), where two profiles x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ S are adjacent in H
if and only if H(x,y) = 1.

The logit dynamics is a decentralized dynamics that models the behavior of players that can sometimes take
wrong decisions. In the logit dynamics for a finite opinion game G, at each time step a player i is selected uniformly
at random. The selected player is assumed to update her strategy according to the Boltzmann distribution with
parameter β over the set Si = {0, 1} of her strategies. That is, a strategy si ∈ Si will be selected with probability

σi(si | x−i) =
1

Zi(x−i)
e−βci(x−i,si), (7)

where x−i ∈ {0, 1}n−1 is the profile of strategies played at the current time step by players other than i,Zi(x−i) =∑
zi∈Si e

−βci(x−i,zi) is the normalizing factor, and β ≥ 0. As mentioned above, from (7), it is easy to see that
for β = 0 player i selects her strategy uniformly at random, for β > 0 the probability is biased toward strategies
promising higher payoffs, and for β that goes to∞ player i chooses her best response strategy (if more than one
best response is available, she chooses one of them uniformly at random).

The above dynamics defines a logit dynamics Markov chain {Xt}t∈N on the set of strategy profiles, where
the probability P (x,y) of a transition from profile x = (x1, . . . , xn) to profile y = (y1, . . . , yn) is zero if
H(x,y) ≥ 2 and it is 1

nσi(yi | x−i) if the two profiles differ exactly at player i. Hence, we have that P (x,x) =
1
n

∑
i σi(xi | x−i).

The logit dynamics Markov chain is ergodic, i.e. there is T such that for every pair of profiles x,y ∈ S there
is a positive probability that the logit dynamics starting from x reaches y in T steps. In particular, one can check
that this property holds for T = n. Hence, from every initial profile x the distribution P t(x, ·) of chainXt starting
at x will eventually converge to a stationary distribution π as t tends to infinity.4 As in [5], we call the stationary

4The notation P t(x, ·), standard in Markov chains literature [31], denotes the probability distribution over states of S after the chain has
taken t steps starting from x.
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distribution π of the logit dynamics Markov chain on a game G, the logit equilibrium of G. It is known [11] that
the logit equilibrium of a finite opinion games is the well known Gibbs measure, i.e.

π(x) =
1

Z
e−βΦ(x) (8)

where Z =
∑

y∈S e
−βΦ(y) is the normalizing constant.

It is easy to check that the logit dynamics Markov chain for a finite opinion game G is reversible with respect
to the logit equilibrium π. That is, if, for all x,y ∈ S, it holds that

π(x)P (x,y) = π(y)P (y,x).

In this work we bound the rate of convergence of the logit dynamics for a finite opinion game G to its logit
equilibrium, that is the first time step tmix, known as mixing time, in which the distance between the distribution
of the logit dynamics Markov chain after t steps and the logit equilibrium is below a given parameter ε.

For more details on logit dynamics and logit equilibria and for a discussion of some of their properties we
refer the interested reader to [5].

4.1 Known mixing time results
Auletta et al. [3] give bounds on the mixing time of the logit dynamics for potential games. Specifically, they give
two bounds that hold for every β: poly (n) · eβ∆Φ [3, Theorem 3.3], where ∆Φ = maxx,y(Φ(x) − Φ(y)), and
exp (n) · eβζ [3, Theorem 3.5], where ζ is the maximum variation in the potential function that is necessary to
observe if one wants to connect any pair of profiles (see [3, Section 3.4] for a formal definition). Note that these
two bounds are not comparable: indeed, ζ can be extremely smaller than ∆Φ and, hence, one can have that the
first bound is better than the second for small β, whereas the latter becomes more stringent when β is large.

Since a finite opinion game is a potential game all these bounds hold also in our setting. However, we will
show that for this class of games better bounds (actually tight ones) can be given. Specifically, we prove that
for every β it holds that the mixing time of the logit dynamics for potential games is bounded from above by
poly (n) · eβΘCW(G), where CW(G) denotes the cutwidth of the network G underlying the game, and it is defined
as follows: Consider the bijective function σ : V → {1, . . . , |V |} representing an ordering of vertices of G; let
L be the set of all orderings of vertices of G and set V σi = {v ∈ V : σ(v) < i}; for any partition (L,R) of
V let W (L,R) be the sum of the weights of edges that have an endpoint in L and the other one in R; then, the
(weighted) cutwidth of G is

CW(G) = min
σ∈L

max
1<i≤|V |

W (V σi , V \ V σi ).

It is not hard to see that CW(G) can be at least a linear factor smaller than ∆Φ. Consider, for example, a finite
opinion game played on a cycle with an even number of vertices and with all players having belief 0. Clearly,
the potential of the profile 0 in which all players adopt opinion 0 is exactly 0. On the other hand, the profile x
in which players on the cycle alternatively select opinion 0 and 1 has potential value Φ(x) = 3n

2 . Hence, in this
case ∆Φ ≥ 3n

2 . Nevertheless, it is well known that the cutwidth of the cycle is 2. This implies that our bound can
improve on the first of the bounds described above.

As for the second bound in [3], it turns out that ζ = Θ(CW(G)). Hence, even the second bound described
above, that is exponential in the number of players, is always worse than the one discussed in this work.

Moreover, our bound also has another advantage with respect to the bounds given in [3] for general potential
games. While theirs refer to abstract properties of the potential functions, our bounds describe the topological
properties of the networks that influence the rate of convergence of the logit dynamics.

In [3], it is also proved that for every potential game the logit dynamics takes O(n log n) steps to converge to
the logit equilibrium, whenever β ≤ c

nδΦ [3, Theorem 3.4], where c < 1 and δΦ = maxx,y : H(x,y)=1(Φ(x) −
Φ(y)). Observe that in finite opinion games it holds that δΦ ≥ wmax and thus a direct application of the result of
[3] gives aO(n log n) bound to the mixing time of the logit dynamics for finite opinion games only for β < 1

nwmax
.

In this work, we will prove that the O(n log n) bound can proved to hold for every β ≤ 1
∆maxwmax

, where ∆max

be the maximum degree in the graph. Note that this means that for graphs of bounded degree the range of values
of β for which the logit dynamics converges to the equilibrium very quickly is substantially larger than what was
previously known.

In [3] several bounds are given about the convergence rate of logit dynamics to logit equilibria in graphical
coordination games. We note that these results do not extend to finite opinion game, since, as stated above, they do
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not belong to the class of graphical coordination games. Still, as we will show later, some of the tools developed
for the latter class of games will be useful also for proving our results.

4.2 Techniques
To derive our bounds, we employ several different techniques: Markov chain coupling and spectral techniques for
the upper bound and bottleneck ratio for the lower bound. They are well-established techniques for bounding the
mixing time; we next summarize them.

4.2.1 Markov Chain Coupling

A coupling of two probability distributions µ and ν on S is a pair of random variables (X,Y ) defined on S × S
such that the marginal distribution ofX is µ and the marginal distribution of Y is ν. A coupling of a Markov chain
M on S with transition matrix P is a process (Xt, Yt)

∞
t=0 with the property thatXt and Yt are both Markov chains

with transition matrix P and state space S. When the two coupled chains (Xt, Yt)
∞
t=0 start at (X0, Y0) = (x,y),

we write Px,y (·) and Ex,y [·] for the probability and the expectation on the space S ×S. We denote by τcouple the
first time the two chains meet; that is,

τcouple = min{t : Xt = Yt}.
We consider only couplings of Markov chains with the property that Xs = Ys for s ≥ τcouple.

Recall that H = (S,E) is the Hamming graph; for x,y ∈ S, we denote by ρ(x,y) the length of the shortest
path inH between x and y. Then we have the following theorem.

Theorem 4.1 (Path Coupling [12]). Suppose that for every edge (x,y) ∈ E a coupling (Xt, Yt) of M with
X0 = x and Y0 = y exists such that Ex,y [ρ(X1, Y1)] ≤ e−α for some α > 0. Then

tmix = O
(

log(diam(H))

α

)
where diam(H) is the diameter ofH.

4.2.2 Spectral Techniques

Let P and S be the transition matrix and the state space of the logit dynamics Markov chain for a finite opinion
game. We denote the eigenvalues of P as

λ1 ≥ λ2 ≥ · · · ≥ λ|S|.

The mixing time is related to these eigenvalues by the following theorem.

Theorem 4.2.
tmix ≤ log

(
4

πmin

)
1

1−maxi=2,...,|S| |λi|
,

where πmin = minx∈S π(x).

In order to use the theorem above we need to bound these eigenvalues. To this aim, we will use the following
lemma.

Lemma 4.3. Let G be an n-player finite opinion game and let π be the stationary distribution of the logit dynamics
for G. For every pair of profiles x,y we assign a path Γx,y on the Hamming graphH. Then

1

1−maxi=2,...,|S| |λi|
≤ 2n max

z,w :
H(z,w)=1
π(z)≤π(w)

1

π(z)

∑
x,y :

(z,w)∈Γx,y

π(x)π(y)|Γx,y|.

Proof. Let S and P be respectively the state space and the transition matrix of the Markov chain associated to the
logit dynamics for G.

In [3] it is proved that all the eigenvalues of P are non-negative. It follows then that 1
1−maxi=2,...,|S| |λi|

=
1

1−λ2
. Moreover, by reversibility of P , we have that for z,w ∈ S such that H(z,w) = 1 and π(z) ≤ π(w) it

holds that

π(z)P (z,w) = π(w)P (w, z) ≥ π(z)

2n
.

Thus, the claim follows from [3, Theorem 2.6] (see also [29]).
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4.2.3 Bottleneck Ratio

Finally, an important concept to establish our lower bounds is represented by the bottleneck ratio. Consider an
ergodic Markov chain with finite state space S, transition matrix P , and stationary distribution π. The bottleneck
ratio of L ⊆ S, L non-empty, is

B(L) =
π(L)P (L, S \ L)

π(L)
,

where π(L) =
∑

x∈L π(x) and P (L, S \ L) =
∑

x∈L
y∈S\L

P (x,y). We use the following theorem to derive lower

bounds to the mixing time (see, for example, Theorem 7.3 in [31]).

Theorem 4.4 (Bottleneck ratio). The mixing time of the logit dynamics for a finite opinion game with profile space
S is

tmix ≥ max
L⊆S : π(L)≤1/2

1

4B(L)
.

4.3 Upper bounds
4.3.1 For every β

Theorem 4.5. Let G be an n-player finite opinion game on a graph G = (V,E). The mixing time of the logit
dynamics for G is

tmix ≤ (1 + β) · poly (n,wmax) · eβΘ(CW(G)).

Proof. Let S, P and π be respectively the state space, the transition matrix and the stationary distribution of the
logit dynamics Markov chain for G.

In this proof we use the spectral techniques described above for bounding the mixing time. Specifically, we
use Lemma 4.3 for bounding the eigenvalues of P and then Theorem 4.2 for extend this bound to the mixing time.

In order to use Lemma 4.3, it is necessary to describe for every pair of profiles x,y ∈ S a path Γx,y between
these two profiles. In this work we adopt exactly the same choice for paths as done by Berger et al. [7, Propo-
sition 1.1] for a very specific graphical coordination game and generalized by Auletta et al. [3, Theorem 5.1] to
every graphical coordination game. For sake of completeness, we recall here this choice of paths: Consider the or-
dering of vertices ofG that obtains the cutwidth; Fix x,y ∈ S and let v1, v2, . . . , vd denote the indexes (according
to this ordering) of the vertices at which the profiles x and y differ; We consider the path Γx,y = (x0,x1, . . . ,xd)
onH, where

xi =
(
y1, . . . , yvi+1−1, xvi+1 , . . . , xn

)
.

(Above, we assume vd+1 = n+ 1). Notice that x0 = x, xd = y and |Γx,y| ≤ n.
The crux of the proof will be then to prove that this choice for Γx,y is sufficient to give the desired bound. (We

recall that finite opinion games are not graphical coordination games and thus the result of [3] does not apply to
this setting.) To this aim, we need two ingredients. First, you can check that the potential function Φ described in
(2) can be conveniently expressed as follows: Φ(x) =

∑
e∈E Φe(x), where, for an edge e = (i, j),

Φe(x) =


αe :=

b2i
∆i

+
b2j
∆j
, if xi = xj = 0;

βe :=
b2i
∆i

+
(1−bj)2

∆j
+ wij , if xi = 0 and xj = 1;

γe := (1−bi)2

∆i
+

b2j
∆j

+ wij , if xi = 1 and xj = 0;

δe := (1−bi)2

∆i
+

(1−bj)2

∆j
, if xi = xj = 1.

(9)

The second ingredient, already adopted in [7] and in [3], consists of a function Λξ for every edge ξ =
(xi,xi+1) ofH that assigns to every pair of profiles x,y such that ξ ∈ Γx,y, the following new profile

Λξ(x,y) =

{(
x1, . . . , xvi+1−1, yvi+1

, yvi+1+1, . . . , yn
)

if π(xi) ≤ π(xi+1);(
x1, . . . , xvi+1−1, xvi+1 , yvi+1+1, . . . , yn

)
otherwise.

It is easy to see that Λξ is an injective function (see, for example, [3, Lemma 5.2]).
The proof now proceeds by adapting some of the arguments of [7] and [3] to finite opinion games. Let E? =

{(j, k) ∈ E : j < vi+1 and k ≥ vi+1}: observe that
∑

(j,k)∈E? wjk ≤ CW(G). For any edge e = (j, k) ∈ E?,
for every x,y ∈ S and for every ξ = (xi,xi+1) ∈ Γx,y, we distinguish two cases:
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If xj = yj or xk = yk, for all available values of xj , yj , xk and yk we show

Φe(x) + Φe(y)− Φe(arg min{π(xi), π(xi+1)})− Φe(Λξ(x,y)) = 0.

Firstly, assume that xj = yj and arg min{π(xi), π(xi+1)} = xi which in turns implies that Λξ(x,y) =
(x1, . . . , xvi+1−1, yvi+1 , yvi+1+1, . . . , yn). We have:

Φe(x) + Φe(y)− Φe(arg min{π(xi), π(xi+1)})− Φe(Λξ(x,y))

= Φe(xj , xk) + Φe(yj , yk)− Φe(yj , xk)− Φe(xj , yk)

= Φe(xj , xk) + Φe(xj , yk)− Φe(xj , xk)− Φe(xj , yk) = 0.

It is not hard to check that the same is true for all the other possible cases arising.
If xj 6= yj and xk 6= yk, similarly to the above, it is not hard to see that for all available values of xj , yj , xk and
yk

Φe(x) + Φe(y)− Φe(arg min{π(xi), π(xi+1)})− Φe(Λξ(x,y)) = ±(αe + δe − βe − γe) = ±2we,

where αe, βe, γe and δe are defined in (9). Moreover for e = (j, k) ∈ E \ E? it holds:

Φe(x) + Φe(y)− Φe(arg min{π(xi), π(xi+1)})− Φe(Λξ(x,y)) = 0

since, by construction, one of arg min{π(xi), π(xi+1)} and Λξ(x,y) has j-th and k-th entry of x and the other
has j-th and k-th entry of y. Thus, we have that for every x,y ∈ S and for every ξ = (xi,xi+1) ∈ Γx,y,

Φ(x) + Φ(y)− Φ(arg min{π(xi), π(xi+1)})− Φ(Λξ(x,y))

=
∑
e∈E

(
Φe(x) + Φe(y)− Φe(arg min{π(xi), π(xi+1)})− Φe(Λξ(x,y))

)
=
∑
e∈E?

(
Φe(x) + Φe(y)− Φe(arg min{π(xi), π(xi+1)})− Φe(Λξ(x,y))

)
≥ −2CW(G).

(10)

Now let ξ? = (z,w) with π(z) ≤ π(w) be the edge of H for which
∑

x,y :
ξ?∈Γx,y

π(x)π(y)
π(z) |Γx,y| is maximized.

Applying Lemma 4.3, we obtain

1

1−maxi=2,...,|S| |λi|
≤ 2n

∑
x,y :

ξ?∈Γx,y

π(x)π(y)

π(z)
|Γx,y| ≤ 2n2

∑
x,y :

ξ?∈Γx,y

π(x)π(y)

π(z)π(Λξ?(x,y))
π(Λξ?(x,y))

≤ 2n2e2βCW(G)
∑
x,y :

ξ?∈Γx,y

π(Λξ?(x,y)) ≤ 2n2e2βCW(G)
∑
x

π(x) ≤ 2n2e2βCW(G),

where the third inequality follows from (8) and (10), and the penultimate from the fact that Λξ is injective.
The theorem follows from Theorem 4.2 and by observing that, since Φ(x) ≥ 0 for any strategy profile x, the

definition of π implies

log
(
(πmin/4)−1

)
= log

(
4
∑
x

e−β(Φ(x)−Φmax)

)
≤ log

(
2n+2 · eβΦmax

)
≤ log

(
en+2+βΦmax

)
= n+ 2 + βΦmax,

where Φmax = maxx Φ(x) ≤ n+W.

4.3.2 For small β

The following theorem shows that for small values of β the mixing time is polynomial. We remark that there are
network topologies for which this result improves on Theorem 4.5, in the sense that sets an higher upper bound
on the value of β that is necessary to have polynomial mixing time.
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Theorem 4.6. Let G be finite opinion game on a connected graph G, with n > 2 players. If β ≤ 1/(wmax∆max),
then the mixing time of the logit dynamics for G is O(n log n).

Proof. The proof uses a standard coupling approach (Theorem 4.1). Similar arguments have been used repeatedly
for bounding the mixing time of several and different Markov chains (see, e.g., [3, Theorem 3.4]).

However, we prefer to give here the full proof, since the structure of finite opinion games allows to simplify
many of previous arguments and makes it possible to adapt the result to properties of the network in place of
abstract properties of the potential function.

Consider two profiles x and y that differ only in the strategy played by player j. W.l.o.g., we assume xj = 1
and yj = 0. We consider the following coupling for two chains X and Y starting respectively from X0 = x and
Y0 = y: Pick a player i uniformly at random; Update the strategies xi and yi of player i in the two chains, by
setting

(xi, yi) =


(0, 0), with probability min{σi(0 | x), σi(0 | y)};
(1, 1), with probability min{σi(1 | x), σi(1 | y)};
(0, 1), with probability σi(0 | x)−min{σi(0 | x), σi(0 | y)};
(1, 0), with probability σi(1 | x)−min{σi(1 | x), σi(1 | y)}.

Observe that for every player i, at most one of the updates (xi, yi) = (0, 1) and (xi, yi) = (1, 0) has positive
probability. Moreover, if σi(0 | x) = σi(0 | y) and player i is chosen, then, after the update, we have xi = yi.

Let Ni be the set of neighbors of i in the finite opinion game. Notice that for any player i, σi(0 | x) only
depends on xk, for any k ∈ Ni, and σi(0 | y) only on yk, for any k ∈ Ni. Therefore, since x and y only differ at
position j, σi(0 | x) = σi(0 | y) for i /∈ Nj .

We start by observing that if position j is chosen for update (this happens with probability 1/n) then, by the
observation above, both chains perform the same update. Since x and y differ only for player j, we have that the
two chains are coupled (and thus at distance 0). Similarly, if player i 6= j with i /∈ Nj is selected for update (which
happens with probability (n−∆j − 1)/n) we have that both chains perform the same update and thus remain at
distance 1. Finally, let us consider the case in which i ∈ Nj is selected for update. In this case, since xj = 1 and
yj = 0, we have that σi(0 | x) ≤ σi(0 | y). Therefore, with probability σi(0 | x) both chains update position i to
0 and thus remain at distance 1; with probability σi(1 | y) = 1− σi(0 | y) both chains update position i to 1 and
thus remain at distance 1; and with probability σi(0 | y) − σi(0 | x) chain X updates position i to 1 and chain
Y updates position i to 0 and thus the two chains go to distance 2. By summing up, we have that the expected
distance E[ρ(X1, Y1)] after one step of coupling of the two chains is

E[ρ(X1, Y1)] =
n−∆j − 1

n
+

1

n

∑
i∈Nj

[σi(0 | x) + 1− σi(0 | y) + 2 · (σi(0 | y)− σi(0 | x))]

=
n−∆j − 1

n
+

1

n
·
∑
i∈Nj

(1 + σi(0 | y)− σi(0 | x))

=
n− 1

n
+

1

n
·
∑
i∈Nj

(σi(0 | y)− σi(0 | x)).

Let us now evaluate the difference σi(0 | y)−σi(0 | x) for some i ∈ Nj . Recall thatW s
i (x) denotes the sum of the

weights of edges connecting iwith neighbors that have opinion s in the profile x. Note thatW 0
i (y) = W 0

i (x)+wij
and W 1

i (x) = W 1
i (y) + wij = Wi − W 0

i (x). For sake of compactness we will denote with ` the quantity
eβ(2bi−1+2W 1

i (x)−Wi). By (7) we have

σi(0 | x) =
e−β(b2i+W

1
i (x))

e−β(b2i+W
1
i (x)) + e−β((1−bi)2+Wi−W 1

i (x))
=

1

1 + `
,

and

σi(0 | y) =
e−β(b2i+W

1
i (x)−wij)

e−β(b2i+W
1
i (x)−wij) + e−β((1−bi)2+Wi−W 1

i (x)+wij)
=

1

1 + `e−2wi,jβ
.

The function 1

1+`e−2wijβ
− 1

1+` is maximized for ` = ewijβ . Thus

σi(0 | y)− σi(0 | x) ≤ 1

1 + e−β
− 1

1 + eβ
=

2

1 + e−β
− 1.
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By using the well-known approximation e−wijβ ≥ 1− wijβ and since by hypothesis wijβ ≤ 1/∆max, we have

σi(0 | y)− σi(0 | x) ≤ wijβ ·
1

2− wijβ
≤ 1

∆max
· ∆max

2∆max − 1
.

We can conclude that the expected distance after one step of the chain is

E[ρ(X1, Y1)] ≤ n− 1

n
+

1

n
· ∆j

2∆max − 1
≤ n− 1

n
+

2

3n
= 1− 1

3n
≤ e− 1

3n .

where the second inequality relies on the fact that ∆max ≥ 2, since the social graph is connected and n > 2. Since
diam(H) = n, by applying Theorem 4.1 with α = 1

3n , we obtain the theorem.

4.4 Lower bound
Recall that H is the Hamming graph on the set of profiles of a finite opinion games on a graph G. The following
observation easily follows from the definition of cutwidth.

Observation 4.7. For every path on H between the profile 0 = (0, . . . , 0) and the profile 1 = (1, . . . , 1) there
exists a profile for which the weight of the discording edges is at least CW(G).

From now on, let us write CW as a shorthand for CW(G), when the reference to the graph is clear from the
context. For sake of compactness, we set b(x) =

∑
i(xi − bi)2. We denote as b? the minimum of b(x) over all

profiles with CW discording edges.
Let R0 (R1) be the set of profiles x for which a path from 0 (resp., 1) to x exists in H such that every profile

along the path has potential value less than b? + CW. To establish the lower bound we use the technical result
given by Theorem 4.4 which requires to compute the bottleneck ratio of a subset of profiles that is weighted at most
a half by the stationary distribution. Accordingly, we set R = R0 if π(R0) ≤ 1/2 and R = R1 if π(R1) ≤ 1/2.
(If both sets have stationary distribution less than one half, the best lower bound is achieved by setting R to R0 if
and only if Φ(0) ≤ Φ(1) since, in this case, b(0) ≤ b(1).) W.l.o.g., in the remaining of this section we assume
R = R0.

4.4.1 For large β

Let ∂R be the set of profiles in R that have at least a neighbor y in the Hamming graph H such that y /∈ R.
Moreover let E(∂R) the set of edges (x,y) in H such that x ∈ ∂R and y /∈ R: note that |E(∂R)| ≤ n|∂R|. The
following lemma bounds the bottleneck ratio of R.

Lemma 4.8. For the set of profiles R defined above, we have B(R) ≤ n · |∂R| · e−β(CW+b?−b(0)).

Proof. Since 0 ∈ R, it holds π(R) ≥ π(0) = e−βb(0)

Z . Moreover, by (7) we have

π(R)P (R,R) =
∑

(x,y)∈E(∂R):
y=(x−i,yi)

e−βΦ(x)

Z

e−βci(y)

e−βci(x) + e−βci(y)

=
∑

(x,y)∈E(∂R):
y=(x−i,yi)

e−βΦ(x)

Z

e−βΦ(y)e−β(ci(x)−Φ(x))

e−βΦ(x)e−β(ci(x)−Φ(x)) + e−βΦ(y)e−β(ci(x)−Φ(x))

=
1

Z

∑
(x,y)∈E(∂R)

e−βΦ(x)e−βΦ(y)

e−βΦ(x) + e−βΦ(y)
=

1

Z

∑
(x,y)∈E(∂R)

e−βΦ(y)

1 + eβ(Φ(x)−Φ(y))

≤ 1

Z

∑
(x,y)∈E(∂R)

e−βΦ(y) ≤ |E(∂R)| · e
−β(b?+CW)

Z
.

The second equality follows from the definition of potential function which implies Φ(y)−Φ(x) = ci(y)− ci(x)
for x and y as above; last inequality holds because if by contradiction Φ(y) < b? + CW then, by definition of R,
it would be y ∈ R, a contradiction.
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From Lemma 4.8 and Theorem 4.4 we obtain a lower bound to the mixing time of the logit dynamics for finite
opinion games that holds for every value of β, every social network G and every vector (b1, . . . , bn) of internal
beliefs. However, it is not clear how close this bound is to the one given in Theorem 4.5. Nevertheless, by taking
bi = 1/2 for each player i and β high enough, we obtain the following theorem.

Theorem 4.9. Let G be an n-player finite opinion game on a graph G. Then, there exists a vector of internal
beliefs such that for β = Ω

(
n logn
CW

)
it holds tmix ≥ eβΘ(CW).

Proof. If bi = 1/2 for every player i, from Lemma 4.8 and Theorem 4.4, since |∂R| ≤ 2n then

tmix ≥
eβCW

n2n
= eβCW−n log(2n) = eβΘ(CW).

4.4.2 For smaller β

Theorem 4.9 gives an (essentially) tight lower bound for high values of β for each network topology. It would be
interesting to prove a matching bound also for lower values of the rationality parameter: in this section we prove
such a bound for specific classes of graphs: complete bipartite graphs and cliques.

We start by considering the class of complete bipartite graphs Km,m.

Theorem 4.10. Let G be an n-player finite opinion game on Km,m. Then, there exist a vector of internal beliefs
and edge weights such that, for every β = Ω

(
1
m

)
, we have tmix ≥ eβΘ(CW)

n .

To prove the theorem above, we start by evaluating the cutwidth of Km,m: we focus on instances of the game
with identical edge weights. To simplify the exposition, we assume that we = 1 for all the edges e of Km,m and
characterize the best ordering from which the cutwidth is obtained. We will denote with A and B the two sides of
the bipartite graph.

Claim 4.11. For identical edge weights, the ordering that obtains the cutwidth in Km,m is the one that selects
alternatively a vertex from A and a vertex from B. Moreover, the cutwidth of Km,m is dm2/2e.

Proof. Let (T, V \ T ) be a cut of the graph, we denote with t the size of T : we also denote tA as the number of
vertices of A in T and tB as the number of vertices of B in T . Obviously, t = tA + tB . Given tA and tB , the
size of the cut (T, V \ T ) will be tA(m− tB) + tB(m− tA) = mt− 2tA(t− tA). It is immediate to check that
for every fixed t the cut is minimized when dt/2e vertices of T are taken from A and the remaining ones from B.
Therefore, the cutwidth is achieved by an ordering which selects alternatively vertices from the two sides of the
graph and is then given by the maximum over t of⌈

t

2

⌉(
m−

⌊
t

2

⌋)
+

⌊
t

2

⌋(
m−

⌈
t

2

⌉)
.

The above function is equal to mt− t2−1
2 for t odd and m− t2/2 for t even. Both these fuctions are maximized

for t = m. However, this may be impossible to achieve when for example t is odd and m is even. Nevertheless, a
simple case analysis on the parity of m and t shows that the maximum is achieved for t = m− 1,m,m+ 1 when
m is even and for t = m for m odd, resulting in a cutwidth of dm2/2e.

The following lemma gives a bound to the size of ∂R for this graph.

Lemma 4.12. For the finite opinion game on the graph Km,m with bi = 1/2 for every player i and identical edge
weights, there exists a constant c1 such that |∂R| ≤ ec1

√
CW.

Proof. Since bi = 1/2 for every player i, we have that b(x) = n/4 for every profile x. Therefore, by definition
of R, all profiles in R (and therefore ∂R) have less then CW discording edges. Indeed, for x ∈ R we have
b(x) + |D(x)| = Φ(x) < b? + CW. Moreover, if a profile y has less then CW −m discording edges, then y is
not in ∂R as a state neighbor of y has at most m− 1 additional discording edges.

Consequently, to bound the size of ∂R, we need to count the number of profiles in R that have potential
between b? +CW−m and b? +CW− 1 (i.e., the number of profiles with at least CW−m and at most CW− 1
discording edges). To count that, we consider two sets L0 and L1: we start by setting L0 = V and L1 = ∅. We
take vertices from L0 and sequentially move them to L1. We can think of L0 as the set of vertices with opinion
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0 and L1 as the set of vertices with opinion 1: this way we can model a path from 0 to 1 in the Hamming graph.
The numberM(t) of edges between L0 and L1 after tmoves is the number of discording edges in the social graph
when vertices in L0 have opinion 0 and vertices in L1 have opinion 1. We have⌈

t

2

⌉(
m−

⌊
t

2

⌋)
+

⌊
t

2

⌋(
m−

⌈
t

2

⌉)
≤M(t) ≤ mt,

where the lower bound follows from the structural proof of minimum cuts contained in Claim 4.11.
Let t1 be the largest integer such that for all possible ways to choose t1 − 1 vertices in L0 and move them in

L1, the number of edges between L0 and L1 is less than CW −m, i.e.

(t1 − 1)m < CW −m⇒ t1 =

⌊
CW

m

⌋
=

⌊
m

2

⌋
=

⌊
n

4

⌋
.

Let t2 be the smallest integer such that for all possible ways to move t2 + 1 vertices from L0 to L1, the number of
edges between L0 and L1 is at least CW, i.e.⌈

t2 + 1

2

⌉(
m−

⌊
t2 + 1

2

⌋)
+

⌊
t2 + 1

2

⌋(
m−

⌈
t2 + 1

2

⌉)
≥ CW,

that, as showed in Claim 4.11, means t2 = m− 2 for m even and t2 = m− 1 for m odd. Then, we can conclude
t2 ≤ m− 1.

By the definition of t1, all profiles with at most t1 − 1 players with opinion 1 are not in ∂R and, by definition
of t2, all profiles with at least t2 + 1 players with opinion 1 are not in R. Thus, we have

|∂R| ≤
t2∑
i=t1

(
n

i

)
≤

t2∑
i=t1

(n · e
i

)i
≤

t2∑
i=t1

(5e)
i

=
(5e)t2+1 − (5e)t1

5e− 1
≤ (5e)t2+1 ≤ (5e)m ≤ e3m, (11)

where in the third inequality we used the fact that i ≥ t1 > n/5, in the penultimate the fact that t2 < m and lastly
the fact that 5m ≤ e2m for m ≥ 0. The lemma follows since m ≤

√
2
√
CW.

Proof of Theorem 4.10. If bi = 1/2 for every player i, from Lemmata 4.8 and 4.12, we have

B(R) ≤ n · ec1
√
CW · e−βCW ≤ n · e−βCW(1−c2),

where c2 = c1
√
CW

βCW < 1 since by hypothesis β > c1√
CW

= Ω(1/m); we also notice that c2 goes to 0 as β increases.
The theorem follows from Theorem 4.4.

We remark that it is possible to prove a result similar to Theorem 4.10 also for the cliqueKn: the proof follows
from a simple generalization of Theorem 15.3 in [31] and by observing that the cutwidth of a clique is bn2/4c.

5 Conclusions and open problems
In this work we analyze two decentralized dynamics for finite opinion games with only two available opinions:
the best-response dynamics and the logit dynamics. As for the best-response dynamics we show that it takes time
polynomial in the number of players to reach a Nash equilibrium, the latter being characterized by the existence of
clusters in which players have a common opinion. On the other hand, for the logit dynamics we show polynomial
convergence when the level of noise is high enough and that it increases as β grows.

It is important to highlight, as noted above, that the convergence time of the two dynamics are computed with
respect to two different equilibrium concepts, namely Nash equilibrium for the best-response dynamics and logit
equilibrium for the logit dynamics. This explains why the convergence times of these two dynamics asymptotically
diverge even though the logit dynamics becomes similar to the best response dynamics as β goes to infinity.

Theorem 4.5 and 4.9 which prove bounds to the convergence of logit dynamics can also be read in a positive
fashion. Indeed, for social networks that have a bounded cutwidth, the convergence rate of the dynamics depends
only on the value of β. (We highlight that checking if a graph has bounded cutwidth can be done in polynomial
time [36].) In general, we have the following picture: as long as β is less than the maximum of (roughly) logn

CW and
1

wmax∆max
the convergence time to the logit equilibrium is polynomial. Moreover, Theorem 4.9 shows that for β
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lower bounded by (roughly) n logn
CW the convergence time to the logit equilibrium is super-polynomial. Then for

some network topology, there is a gap in our knowledge which is naturally interesting to close.
In [4] the concept of metastable distributions has been introduced in order to predict the outcome of games for

which the logit dynamics takes too much time to reach the stationary distribution for some value of β. Furthermore,
in [24] a large class of potential games, that includes finite opinion games on well-defined classes of graphs (e.g.,
cliques, rings, complete bipartite graphs, etc.), has been shown to admit metastable distributions. It would be
interesting to specialize the general result of [24] so to investigate more closely the structure of such distributions
for our finite opinion games.
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