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Abstract. Novel algorithmic ideas for big data have not been accompa-
nied by advances in the way central memory is allocated to concurrently
running programs. Commonly, RAM is poorly managed since the pro-
grams’ trade offs between speed of execution and RAM consumption are
ignored. This trade off is, however, well known to the programmers. We
adopt mechanism design tools to truthfully elicit this (multidimensional)
information with the aim of designing more clever RAM allocation al-
gorithms. We introduce a novel paradigm wherein programs are bound
to overbidding declarations of their running times. We show the limi-
tations of this paradigm in the absence of transfers and prove how to
leverage waiting times, as a currency, to obtain optimal money burning
mechanisms for the makespan.

1 Introduction

With data volumes growing much faster than typical users’ computing infras-
tructure, the role of efficient algorithms for big data becomes crucial. While it
might be tempting to move all data to some huge commercial cloud service, legal
and logistic issues will often force users or companies to keep their valuable data
locally and either stick to their existing hardware or seek for a moderate cost-
effective upgrade. In this situation, users are often rather willing to slowly run
their programs concurrently on shared hardware and compete for resources in-
stead of submitting their programs to an offline queuing system where they might
experience unpredictable waiting times before their program is quickly executed.
As a consequence the accumulated input data will typically not completely fit
in the main memory (RAM) of the computer system at hand but has to reside
on external storage like hard disks. External-memory (EM) algorithms [12,17]
are especially tuned for this setting. They optimize the data access patterns and
typically perform the better the more RAM they are assigned. However, there
are huge differences: For example during a linear data scan, EM algorithms of-
ten can do with only a constant number of pages held in RAM, whereas for EM
merge-sort of n items, the number of phases is bounded by O(logx n) where x
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denotes the number of pages that can be kept in RAM simultaneously: obviously,
the larger x the faster the sorting, but one essentially has to square x in order
to halve the number of sorting phases.

In isolation, a typical EM algorithm prefers to take as much RAM as is
available. For example, prior to running a program from the EM algorithms
library STXXL [6] the default setting is to reserve a significant fraction of the
available RAM for its execution. With several programs competing for a shared
RAM the task becomes significantly harder, especially if these programs are not
cooperating. Already from the simple example discussed above it is clear that
assigning equally sized fixed shares of RAM to all programs will not necessarily
optimize overall performance. Therefore, a common operating systems’ solution
is to apply online paging algorithms like LRU that dynamically decide which
pages to keep in RAM. Unfortunately, even for a single program, online paging
algorithms do not know about the future request sequences and are therefore
prone to wrong decisions in the worst case [7].

We aim to use methods from Algorithmic Mechanism Design (AMD) in or-
der to reasonably solve the RAM assignment problem for concurrently running
programs: In principle, the best knowledge about the trade offs between usable
RAM size and performance is with the designers/programmers of the individ-
ual algorithms. If they extend their programs with an interface in order to bid
for individual RAM sizes, an operating system could use these bids within an
appropriate mechanism in order to solve the RAM assignment problem for con-
currently running programs. The obvious advantage of this setting would be that
neither the users of programs (who are typically not the programmers) nor the
operating system need knowledge about the RAM-performance footprints of the
individual programs and yet obtain a reasonable RAM sharing. Of course the
RAM assignment mechanism must be designed to motivate truthful requests,
especially if the users do not have to pay money for the RAM their executed
programs occupy. In the absence of money, in fact, selfish programmers could
claim to need unreasonably large chunks of central memory for a “fast” execution
of their programs.

Our contribution. In this work, we focus on the design of truthful mechanisms
in the context of RAM allocation to programs, with the objective to minimize
the makespan. Specifically, we concentrate on a feasibility study for the case of
a single execution interval and ask the question of whether truthfulness can be
enforced, and at what cost, in the single-shot case.

Monitoring. In our model, each programmer, also termed agent or bidder in
this setting, controls one program/task, and has as a type a decreasing3 cost
function mapping an amount of allocated RAM to execution times. She declares
to the RAM allocation mechanism a potentially different function as her cost.4

Ideally, truthfulness of bidders’ declarations should be guaranteed without the

3 For simplicity, throughout the paper we use ’decreasing’ with the meaning ’non-
increasing’, and similarly we use ’increasing’ instead of ’non-decreasing’.

4 When these functions have a “large” representation, oracle queries are used just like
in the Combinatorial Auctions (CA) literature [3], see preliminaries for a discussion.



use of monetary transfers since there is no easy way to charge the programmers.
However, very little can be done in mechanism design when money is out of
the picture, e.g., as noted above, nothing prevents programmers from exagger-
ating their RAM needs by overbidding their execution times. Therefore, we look
at a mechanism design framework wherein a bidder overbidding her execution
time (her cost in mechanism design terminology), ends up with this augmented
execution time (rather than her true execution time).5 So a bidder’s reported
cost will be interpreted by the mechanism as a lower bound to her execution
time: a bidder will be allowed to be slower than declared but not faster. This
assumption was part of the model defined by Nisan and Ronen in [13]6, and has
been later dubbed monitoring in [14]. We believe these mechanisms to make a
feasible assumption that can be implemented in some real-life scenarios (such as
the application that motivates us).

Monitoring and verification. Motivated by the recent advances in trading ver-
ification of bidders’ behavior with money in mechanism design for CAs [8,9],
in Section 4 we ask whether similar conclusions can be drawn in our scenario.
Verification, in this context, means that a bidder cannot underbid her execution
time, for otherwise the RAM would be preempted and the task would be aborted
(see preliminaries for a formal definition). We call a mechanism using monitoring
and verification, a mechanism with strong monitoring. We prove a quite interest-
ing dichotomy.7 To the algorithmic characterization of truthfulness, we pair the
positive result that the optimum makespan can be computed truthfully when
tasks have known k-step cost functions (i.e., the values of the cost functions are
known to the mechanism but the discontinuity points are not) and the nega-
tive result that no approximation of the optimal makespan can be returned by
a truthful mechanism when the k-step functions are unknown (i.e., value and
discontinuity points are both unknown) even for k = 1.

Monitoring and transfers. Given the limitations of mechanisms with strong mon-
itoring and no monetary transfers, in Section 5 we turn our attention to mecha-
nisms using (some form of) transfers. Since, as observed above, currency is not
available in the setting at hand, we interpret transfers as waiting times and focus
on money burning mechanisms [10]. In details, the output of a mechanism will
be a RAM chunk size and a waiting time for each bidder so that the bidder will
be able to run her task using the amount of RAM allocated by the mechanism
only after the waiting time. Since waiting times degrade the performance of the
system, the objective function of interest must take transfers in consideration.
In our case, the objective is the minimization of the maximum (over all bidders)

5 This might be implemented by letting the mechanism hold back the results of the
computation whenever the program terminates before the reported time.

6 Specifically, Nisan and Ronen embedded the monitoring assumption in their ’mech-
anisms with verification’, but here we use the term verification in a different sense.

7 Even though we depart from much of the recent literature (see, e.g., [8,14] and
references therein) on mechanisms with verification, which uses no monitoring, we
remark that using similar arguments, one can prove the same dichotomy also in that
weaker model.



of the total cost, where the total cost of a bidder is defined as the sum of her
execution time and waiting time (transfer). This is a “money burning” version
of the makespan objective function. Here we drop the verification assumption
but keep the monitoring hypothesis, and call the mechanisms in this section
mechanisms with monitoring. As a warm-up, we consider the case that RAM
chunking is fixed and give a truthful mechanism with monitoring that returns
solutions minimizing the makespan (for the fixed chunking), and the total costs
of the tasks do not exceed the makespan. This mechanism is thus optimal not
only for the classical makespan minimization objective, but also for the money
burning objective function. We also show that its transfers (waiting times) are
minimal, for the given allocation. We complement this result by showing how
to maintain optimality, minimal transfers and truthfulness while computing the
RAM chunking that gives the minimum possible makespan.

Following the preliminaries in Section 2, Section 3 provides a graph-theoretic
characterization of the algorithms that are truthful(ly implementable) in a mech-
anism with monitoring. In Sections 4 and 5 we present our results for mechanisms
with strong monitoring and no transfers, and for mechanisms with monitoring
and transfers, respectively. Some proofs are omitted due to space limitations.

Related work. This study connects to a number of research agendas in (A)MD.
Mechanisms with verification (i.e., strong monitoring in our terminology)

have been introduced in [13] for the problem of scheduling unrelated selfish ma-
chines. A stream of work has looked instead at verification without monitoring
(i.e., assuming only no underbidding) in the presence of money [16,14,11] and
without [8,9]. Money burning mechanisms are studied in [10] for single-parameter
agents and utilitarian money burning objective functions. For multi-unit auc-
tions, [10] shows that the largest relative loss due to money burning is logarithmic
in the number of bidders. In contrast, we show that transfers do not add any
cost to the makespan.

An interesting hybrid between verification and money burning mechanisms is
[2], which considers exact but costly verification and seeks to maximize the social
welfare minus the verification cost for truthful auctions of indivisible goods.

Mechanisms for selfish jobs are also relevant. [4,1] consider truthful mecha-
nisms for selfish one-parameter tasks and makespan minimization on identical
machines, with different definitions for the tasks’ completion times, use of money,
and definition of verification. Coordination mechanisms [5] deal with selfish tasks
but focus on equilibrium approximation guarantee rather than truthfulness.

2 Preliminaries

We have one resource available in m copies and n selfish agents. Each selfish
agent has a decreasing cost function, also called type ti : [m]>0 → R>0, where
[m]>0 denotes the set of positive integers not larger than m. For m′ ∈ [m]>0,
ti(m

′) is the cost paid by agent i if she is allowed to use m′ copies of the resource.
The type ti is private knowledge of agent i. The set of all legal cost functions ti
is called the domain of agent i, and is denoted by Di.



Assuming that each agent has reported or bid a (true or false) cost function
bi ∈ Di, a mechanism determines an allocation (o1, . . . , on) of the m copies of
the resource to the n agents. The set O of all possible allocations contains tuples
(o1, . . . , on) such that oi ≥ 1 and

∑
i oi ≤ m. Furthermore, depending on (the

allocation and) the bi,’s, it may determine transfers to be paid by the agents.
In our model without money, transfers are realized as waiting times, and will be
denoted by w = (w1, . . . , wn). (When currency is involved, transfers are usually
called payments in literature.) In summary, a mechanism is a pair (f, w), where
f : D1× . . .×Dn → O is an algorithm (also termed social choice function) that
maps agents’ costs to a feasible solution in O; and w : D1× . . .×Dn → Rn≥0 is a
function mapping cost vectors to transfers from each agent i to the mechanism.

A mechanism without transfers is simply a social choice function f as above;
sometimes, it is convenient to see a mechanism without transfers as a pair (f, w)
where w is a constant function of value 0.

Given a vector b = (bi,b−i) = (b1, . . . , bn) of reported cost functions, and
f(b) = (o1, . . . , on), we let fi(b) = oi denote the number of copies of the resource
that the function f assigns to agent i on input b. We assume no externalities,
that is, the cost of an agent depends only on her own received number of copies.
Therefore, bi(f(b)) = bi(fi(b)). For mechanism (f, w) (with or without trans-

fers) let cost
(f,w)
i (bi,b−i) denote the total cost (including transfer wi) of agent

i for the output computed by (f, w) on input (bi,b−i). Since the types ti are
private knowledge of the agents, they might find it profitable to bid bi 6= ti. We
are interested in mechanisms for which truthtelling is a dominant strategy for
each agent.

Definition 1 (Truthful mechanisms). A mechanism (f, w) (with or without
transfers) is truthful if for any i, any bids b−i of the agents other than i, and

any bi ∈ Di, cost
(f,w)
i (ti,b−i) ≤ cost(f,w)

i (bi,b−i).

Observe that the mechanisms we deal with, are not individually rational, in that
the agents have a positive cost, and therefore negative valuation for any outcome.
Also, not giving an agent any portion of the resource, is not a possible output for
the mechanism. Formally, we could elaborate on this (i.e., make the mechanism
individually rational), by assuming that an agent not performing her task incurs
an infinitely high cost.

Commonly, costi is defined as a linear combination of the transfer and the
agent’s true cost for the resource allocated by the algorithm. Here, we define a
novel mechanism design paradigm, called mechanisms with monitoring, wherein
this quasi-linear definition is maintained but costs paid by the agents for the
allocated resource are more strictly tied to their declarations. Intuitively, mon-
itoring means that those agents who are allocated a portion of the resource for
that their reported cost was exaggerated (bi > ti), have to process their task up
to time bi instead of the true processing time ti.

Definition 2 (Mechanism with monitoring). In a mechanism with moni-
toring (f, w), the bid bi is a lower bound on agent i’s cost of using fi(bi,b−i),



so an agent is allowed to have a real cost higher than bi(f(b)) but not lower.

Formally, we have cost
(f,w)
i (bi,b−i) := wi(b) + max{ti(f(b)), bi(f(b))}.

This notion of monitoring is very much related to a concept introduced and
termed ’mechanisms with verification’ by Nisan and Ronen in [13]. The idea is
that if costs are verifiable (e.g., they represent time) and if agents are monitored
and claim that the cost using resource fi(b) is bi(fi(b)), then either this is going
to be their actual cost (whenever bi(f(b)) ≥ ti(f(b))), or it can be verified that
this declaration is insincere since bi(f(b)) (which is smaller than ti(f(b))) is
not going to be enough for them to complete their work with the resource (e.g.,
execute a job). The latter case assumes implicitly that the resource is preempted
after bi(f(b)) time steps at which point the cost of the agent is simply ∞. In
other words, agents will never underbid in the model of [13]. Our mechanism with
monitoring model is much less restrictive and punitive for the agents as we allow
them to complete the job, i.e., we do not preempt resources. Moreover, unlike
[13], we do not tie transfers with observed costs but only with declarations.

However, for our partially negative results without transfers (Section 4), we
allow the mechanisms to even use both monitoring (for overbidding agents) and
verification (for underbidding agents), i.e., the resource is never provided longer
than bi(fi(b)) time for processing the task of i. Practically, in this model under-
bidding is excluded. We call a mechanism with monitoring that also uses this
verification for underbidding agents a mechanism with strong monitoring.

We say that a social choice function f is implementable with (strong) moni-
toring if there exists a suitable transfer function w such that (f, w) is a truthful
mechanism with (strong) monitoring. In this case, we say that w (strongly) im-
plements f . Given b, we say that w∗i minimally implements f at b for agent i
if w∗i (b) = minw implements f wi(b).

We consider mechanisms that run in time polynomial in n and logm; however,
the representation of the types might need time exponential in those parameters.
We therefore assume, as in the related literature, that types are accessed through
value or demand queries [3] depending on the algorithm at hand.

3 Graph-theoretic characterization of truthful
mechanisms with monitoring

In this section we show how to adapt the cycle-monotonicity technique to design
truthful mechanisms with (strong) monitoring. The proofs are standard, and are
omitted in this short version.

The central tools we use are defined next. An edge (a, b) in the defined graphs
represents the option of bidding b instead of the true cost function a. The weight
δa,b of the edge represents the difference of actual costs when bidding b instead
of a; thus when negative, its absolute value is a lower bound on the difference of
truthful payments.

Definition 3. Let f be a social choice function. For every i and b−i, the dec-
laration graph associated to f has a node for each type in Di and an ad-
ditional source node called ω. The set of directed weighted edges is defined



as follows. For every a, b ∈ Di, a 6= b, add an edge (a, b) of weight δa,b :=
max{a(f(b), b(f(b))} − a(f(a,b−i)); for any a ∈ Di, add an edge (ω, a) of
weight 0.

The verification graph associated to f is defined similarly but an edge (a, b)
belongs to the graph only if a(f(b,b−i)) ≤ b(f(b,b−i)).

Note that the declaration graph will be useful for proving truthfulness with
monitoring, and the verification graph can be used in case of strong monitoring.
Since in the latter case underbidding is not an option, no edge (a, b) has to be
considered if b(f(b,b−i)) < a(f(b,b−i)).

The next theorem states that, in order to check that a social choice func-
tion is implementable with (strong) monitoring and with transfers, it suffices to
check that all cycles of the associated graph(s) have a nonnegative weight. For
implementation without transfers, instead, it suffices to look at the sign of every
single edge. The argument is similar to that used for classical mechanisms [15,18]
and mechanisms with verification and no monitoring [16,8].

Theorem 1. A social choice function f is implementable with monitoring (resp.,
strong monitoring) when agents bid from finite domains, if and only if, for all i
and declarations b−i, the declaration (resp., verification) graph associated to f
does not have negative weight cycles.

Moreover, f is implementable with monitoring (resp., strong monitoring)
without transfers if and only if, for all i and b−i, the declaration (resp., ver-
ification) graph associated to f does not have negative weight edges (the size of
the domains does not matter).

Given our interest in money burning mechanisms, we also prove here what form
minimal transfers have.

Theorem 2. Let f be a social choice function f implementable with monitoring
(resp., strong monitoring). For any b = (bi,b−i) and any i, the transfer function
that minimally implements f at b for agent i is w∗i (b) = −SP(ω, bi), where
SP(ω, bi) is the length of the shortest path from ω to bi in the declaration (resp.,
verification) graph associated to f.

4 Mechanisms with strong monitoring and no transfers

Here we give results on mechanisms with strong monitoring and no transfers.

4.1 Algorithmic characterization

We begin by characterizing the class of algorithms that are truthful with strong
monitoring in the case in which transfers are not allowed.

Theorem 3. An algorithm f is truthful with strong monitoring and no transfers
if and only if for all i, b−i, and a, b ∈ Di, a(f(b,b−i)) ≤ b(f(b,b−i)) implies
b(f(b,b−i)) ≥ a(f(a,b−i)).



4.2 Known k-step tasks

We now provide the characterization for a specific family of domains for selfish
tasks.

Definition 4. The task (agent) i has a known k-step function domain if, for
some known c1i ≥ . . . ≥ cki and unknown r1i ≤ . . . ≤ rk−1i (≤ rki = m), her type
satisfies

ti(m
′) =

{
c1i if 0 < m′ < r1i
cji if rj−1i ≤ m′ < rji , 1 < j ≤ k .

The cost function of such a task is then completely determined by the threshold
values rji ; i.e., Di can be assumed to consist of vectors in [m]k>0.

A known k-step task is a task with a known k-step function domain. Below, with
a slight abuse of notation, a ∈ Di will both denote the (k-)tuple in Di and the
corresponding cost function. We define the property that characterizes truthful
algorithms f in this context. Subsequently, we show that this property is a quite
natural one, in the sense that for a large class of objective functions, the optimal
allocation fulfils it.

Definition 5. An algorithm f is k-step monotone if for any i, b−i, and a =
(rji )

k
j=1, b = (r̃ji )

k
j=1 ∈ Di, with rji ≤ r̃

j
i for all 1 ≤ j < k, fi(a,b−i) < rji implies

fi(b,b−i) < r̃ji .

Lemma 1. An algorithm f is truthful with strong monitoring and no transfers
for known k-step tasks if and only if it is k-step monotone.

For a bid vector b and feasible solution o = (o1, . . . , on) ∈ O, let µ(b, o) be a
function increasing in every single cost bi(oi), e.g, for the makespan µ(b, o) =
maxi bi(oi). Define OPTµ as the social choice function that on input b returns
a solution minimizing µ using a tie-breaking rule independent of b.

Theorem 4. For any increasing cost function µ, OPTµ is k-step monotone.

4.3 Unknown single-step tasks and limitations of mechanisms
without transfers

Definition 6. The task (agent) i has an unknown single-step function domain
if her type satisfies

ti(m
′) =

{
hi if m′ < ri
li if m′ ≥ ri

,

for some unknown hi > li and unknown ri. The cost function of such a task is
then completely determined by the triple (ri, hi, li); i.e., Di can be assumed to
consist of vectors in [m]>0 × R2

>0.

An unknown single-step task is a selfish task with an unknown single-step func-
tion domain. Given a cost function a = (ar, ah, al) ∈ Di, ar will denote the
threshold in [m], and ah and al denote the high and low cost respectively.



Definition 7. An algorithm f is unknown single-step monotone if for any i,
b−i, and a, b ∈ Di, such that ar ≤ br, ah ≤ bh and al ≤ bl, fi(a,b−i) < ar
implies fi(b,b−i) < br.

The property above characterizes truthfulness when costs are not known:

Lemma 2. An algorithm f is truthful with strong monitoring and no transfers
for unknown single-step tasks if and only if it is unknown single-step monotone.

We now prove that these algorithms cannot return any reasonable approximation
of the makespan.

Theorem 5. For any α > 0, there is no algorithm without transfers that is
truthful with strong monitoring for unknown single-step tasks, and returns a
better than α-approximation of the optimal makespan.

Proof. Consider an instance with two unknown single-step tasks such that r1 =
r2 = r, l1 = l2 = 1, h1 = α(1+ δ) and h2 = 1+ δ for some δ > 0. Set r < m < 2r
so that only one task can get the RAM she needs to be fast. Any better than
α-approximate algorithm for the makespan will assign r to task 1 and some
ε > 0 to task 2. Consider now a new instance wherein task 2 modifies h2 as
h′2 = α2(1 + δ). Since the algorithm is truthful then it must be unknown single-
step monotone thus implying that the outcome of the algorithm cannot assign
at least r to task 2, thus returning an α-approximation of the makespan (the
optimum would indeed allocate r to task 2 and some ε > 0 to task 1).

We next show that by introducing transfers – in terms of waiting time for using
the allocated RAM – we can indeed design better mechanisms for tasks with
general cost functions.

5 Optimal mechanisms with monitoring using transfers

We begin with a general result. Quite interestingly, the next theorem shows that
given monitoring, there is a truthful PTAS for scheduling unrelated machines (at
least for finite domains), alternative to the compensation-and-bonus mechanism
of [13], that does not need verification to be truthful.

Theorem 6. For any social choice function f , there exists a transfer function w
such that (f, w) is truthful with monitoring when agents bid from finite domains.

For the applicability of the theorem, we need to bound and discretize the range
of the admitted cost functions ti, so we assume for the rest of the section that
the ti(m

′) (and the bids bi(m
′)) are integers from a given Interval [0, T ].

5.1 Optimal mechanism for makespan with fixed memory chunks

Assume that n memory chunks of fixed size have to be allocated one-to-one
among n agents, each of whom has a task to process. We identify the memory



chunks with their sizes m1 ≤ m2 ≤ . . . ≤ mn in increasing order. Let ti(mj)
denote the (true) processing time of task i using a memory chunk of size mj .

We consider a greedy allocation rule called Best-Fit Procedure that allocates
the chunks in increasing order of size, as follows: m1 is allocated to the task
i with the minimum processing time given this amount of memory ti(m1) =
mink tk(m1); then iteratively, for every j = 2, . . . , n, mj is given to the remaining
agent with the smallest reported processing time with memory of size mj .

Best-Fit Allocation Procedure

Input: matrix of processing times t = (t1, t2, . . . , tn)

1. N ← [n]

2. for j = 1 . . . n do

(a) Let i = arg mini∈N ti(mj)

(b) Set fWi (t) = mj

(c) N ← N \ {i}
3. Output fW = (fW1 , ..., fWn ).

We claim first, that without waiting times as transfers, this allocation rule is
optimal for the makespan objective (maximum processing time over all tasks).
Then we introduce waiting times wi as payments, so that the resulting mech-
anism is truthful, and the waiting times do not increase the makespan, so the
mechanism is both truthful and achieves optimal makespan.

Lemma 3. The Best-Fit procedure achieves optimal makespan among all bijec-
tive allocations of the n memory chunks to the n agents.

The proof goes by induction on n, and is based on a standard exchange-argument
in a fixed optimal allocation turning it into the Best-Fit allocation while pre-
serving optimality. In particular, if the smallest chunk is allocated to task i in
Best-Fit, but to task k Opt, then exchanging the chunks between these two tasks
in Opt does not increase the makespan.

Next we show that this allocation rule can be implemented by a truthful
mechanism by using waiting times as payments by the agents. Given the al-
location fW , these waiting times are defined to be smallest possible (for each
agent) such that in increasing order of chunk size the total costs (processing plus
waiting time) of the respective agents become increasing.

In the code below we complement the Best-Fit Procedure to a mechanism
by setting the waiting times wi. The mechanism takes as input the matrix b of
reported running times of the agents. Observe that cj stands for the maximum
processing time over chunks 1 to j after allocation step j. For bidder i, who gets
chunk mj , the payment in form of waiting time is wi = cj − bi(mj).

Best-Fit Mechanism

Input: matrix of reported processing times b = (b1, b2, . . . , bn)

1. N ← [n]

2. (c1, . . . , cn)← (0, . . . , 0)



3. for j = 1 . . . n do

(a) Let i = arg mini∈N bi(mj)

(b) fWi (b)← mj

(c) N ← N \ {i}
(d) cj ← max{cj−1, bi(mj)}
(e) wi ← cj − bi(mj)

4. Output fW = (fW1 , ..., fWn ), and w = (w1, w2, . . . , wn).

Note that the total cost costi(b) of the agent who gets mj , is max{cj , ti(mj)} ≥
max{cj−1, ti(mj)} (here we use that the cost is always at least the true running
time), and it is exactly cj = max{cj−1, ti(mj)} if bi(mj) = ti(mj).

Theorem 7. The Best-Fit Mechanism is truthful.

Proof. Here we provide only a sketch of the proof. For some bidder i, let bi 6= ti
be an advantageous false bid with the minimum number of indices j such that
bi(mj) 6= ti(mj), and let ` be the smallest such index.

There are two nontrivial cases to consider. First, when i receives m` by
bidding ti(m`) and does not receive m` when bidding bi(m`) > ti(m`). This oc-
curs when there is a bidder k with bid bi(m`) ≥ bk(m`) ≥ ti(m`), who gets
m`. The total cost of i when bidding ti would be max{c`−1, ti(m`)}. With
bid bi she gets a chunk with higher index, and her cost will be at least c` =
max{c`−1, bk(m`)} ≥ max{c`−1, ti(m`)} (where c` is meant with input bi).

Second, consider the case when i receives m` by bidding bi(m`) and does not
receive m` when bidding ti(m`) > bi(m`). Again, there must be a bid of some
agent k so that ti(m`) ≥ bk(m`) ≥ bi(m`). Now, if agent i bids bi, then her
cost is max{c`−1, ti(m`)}. If she bids ti(m`) instead of bi(m`) then she receives a
(larger) chunk ms, for total cost of max{cs−1, ti(ms)}. However, it can be shown
that max{cs−1, ti(ms)} ≤ max{c`−1, ti(m`)}, implying that agent i could change
her bid for chunk ` from bi(m`) to ti(m`).

Finally, we show that the waiting times used as transfers in the Best-Fit mecha-
nism have further appealing features apart from truthfulness. First, these waiting
times do not ruin the makespan-minimizing property of the mechanism; second,
these waiting times correspond to the transfers that minimally implement the
makespan minimizing allocation rule Best-Fit.8

Lemma 4. The Best-Fit mechanism achieves minimum makespan (for any given
input b).

Lemma 5. For fixed memory chunks m1,m2, . . . ,mn, the payments wi = cj −
bi(mj) used in the Best-Fit mechanism correspond to the transfer functions that
minimally implement the Worst-Fit allocation rule fW .

8 For the definition of ’minimally implements’, see the Preliminaries.



5.2 Mechanism with memory chunking

In this section we treat the problem of optimally chunking a given total size
m ∈ N of memory into n chunks (m1,m2, . . . ,mn) (s.t.

∑
jmj = m, and mj ∈

N), and then determining a one-to-one allocation of the chunks, with the goal
of minimizing the makespan over all chunkings and all bijections f : [n] →
{m1,m2, . . . ,mn}. We call such a more complex algorithm a chunking algorithm,
which then can be implemented by a chunking mechanism. Unfortunately it turns
out that finding the optimal chunking, and applying the Best-Fit mechanism
with this given chunking does not yield a truthful chunking mechanism.

Theorem 8. For any algorithm that takes as input the (reported) cost functions
bi : [m] → N, then determines an optimal (makespan minimizing) chunking
(m1,m2, . . . ,mn), and finally outputs the optimal allocation fW and transfers
w according to the Best-Fit mechanism with input (m1,m2, . . . ,mn) and b, the
resulting chunking mechanism is not truthful.

Proof. Consider the following instance with n = 3 tasks, and total memory size
m = 6. Let the true cost-functions be t1(m′) = 1 for all m′ ≥ 1; t2(1) = 5, and
t2(m′) = 3 for m′ ≥ 2; finally, t3(m′) = 7 for m′ < 4, and t3 = 3 for m′ ≥ 4.
The optimal makespan is 5, achieved with the memory chunking (1, 1, 4). In
this optimal allocation task 2 has running time t2(1) = 5, and no waiting time.
However, if agent 2 bids b2(1) = 8, and b2(m′) = 3 for m′ ≥ 2, then (2, 2, 2)
becomes the optimal chunking with makespan 7, and task 2 has running time
max{t2(2), b2(2)} = 3 and no waiting time. Thus agent 2 has an incentive to
report false running times, so the mechanism is not truthful.

Nevertheless, we know from Theorem 6, that for any fixed optimal allocation
algorithm with memory chunking, there do exist transfers that yield a truth-
ful mechanism. Indeed, one such chunking mechanism is the following. Let the
chunking algorithm determine an optimal chunking and allocation with makespan
Mopt. A trivial truthful mechanism charges wi = Mopt − bi(m

i) to agent i
who gets chunk mi, so that the total cost of each agent i becomes costi =
max{Mopt, ti(m

i)}. (In fact, such mechanism is optimal and truthful also in case
of any fixed chunking.) There is a slightly better truthful pricing rule, charging
the above prices, except for agents who get a memory chunk of minimum size;
these agents do not have waiting times. This slight modification of the trans-
fer function may seem to be of little use. Observe though, that charging the
makespan as total cost to every agent is a highly unrealistic solution, because
with this rule the total cost of an agent can become by an arbitrary factor higher
than her running time using any memory size. In contrast, in the Best-Fit mech-
anism, the total cost cj of a truthful agent getting chunk mj is either her own
running time, or the running time of some task getting a smaller chunk, so that
agent i would have had a higher running time than cj with that chunk. That is,
for each task her total cost is within the range of running times of this task.

We define a particular chunking mechanism that finds the optimal makespan
by binary search, and charges waiting times according to the above rule. Sub-
sequently, we show that the mechanism is truthful, and that the waiting times



correspond to the minimum transfers that implement this particular allocation
rule truthfully. Note however, that there might exist different optimal allocation
rules with smaller truthful payments.

Binary-Chunking Mechanism

Input: reported functions of processing times b = (b1, b2, . . . , bn), where
bi : [m]→ [T ]

1. M ← bT/2c
2. do binary search for the optimum makespan Mopt

(a) for i = 1 to n do
find (with binary search) the minimum demand mi of agent i in order
to finish within M

(b) if
∑
im

i > m then set M higher

(c) else set M lower if possible, otherwise set Mopt = M

3. for i = 1 to n do
(a) fCi (b)← mi

(b) if mi = 1 then wi ← 0

(c) else wi ←Mopt − bi(mi)

4. Output fC = (fC1 , ..., f
C
n ), and w = (w1, w2, . . . , wn).

We note that the binary search for Mopt can also be carried out using demand
queries. In this case, subsequently the bi(m

i) have to be queried as well (since
costi = Mopt−bi(mi)+bi(m

i), there is no reason to report these non-truthfully).

Theorem 9. The Binary-Chunking mechanism is truthful. The same holds for
any chunking mechanism with an optimal chunking algorithm, and with the pay-
ments of Binary-Chunking.

Theorem 10. The waiting times used in the Binary-Chunking mechanism are
the minimum transfers that make the allocation rule of Binary-Chunking truthful.

6 Conclusions

We have started our research from a rather practical problem in the context of
concurrent execution of memory-bound programs. Our first solutions presented
here, deal with the static case where an appropriate RAM distribution has to
be determined once, under the makespan objective.

From a more theoretical point of view, our work introduces an interesting
new model of mechanism design wherein studying money burning objective func-
tions is the right research challenge. In fact, we prove that all algorithms admit
transfers that make them truthful with monitoring and therefore, also in light of
the negative results in [10], this paradigm seems to be the right arena to study
the optimal trade off between quality of allocation and transfers introduced.



We believe that our results pave the way to a number of interesting open
questions, the main being the extent to which our positive results can be exported
to more general models allowing repeated allocation mechanisms and/or stronger
solution concepts (e.g., collusion-resistance for known coalitions). In our setting,
the minimization of the sum of the total costs of the agents (i.e., the original
utilitarian objective for money burning) needs to be explored.
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