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Introduction 26 

An important question for researchers and practitioners is whether an individual’s risk of injury 27 

increases if they make prior changes to their training load.1 In this field of research, “load” 28 

typically refers to in-training distances-covered, speed, and accelerations.1 Attention has 29 

generally focused on whether a person’s acute (e.g., 7-day) increase in load, normalised to that 30 

person’s prior “baseline” of chronic (e.g., 28-day) load, predicts injury.1 To obtain this 31 

normalised predictor, acute load is typically divided by chronic load to provide the acute-to-32 

chronic workload ratio (ACWR).1 33 

 34 

Fundamentally, simple ratios (Y/X) are formulated to “control for” a denominator variable 35 

(e.g., preceding chronic load) that is perceived to have an important biological influence on the 36 

numerator variable (e.g., acute load).2 Within this notion of “control for”3, it is generally 37 

posited that the denominator is a “nuisance” variable that is associated with the numerator of 38 

interest.2 Logically, a simple ratio index provides meaningful relative measures for clinical and 39 

prognostic purposes only if i) there is a ‘true’ and ‘proportional’ association between 40 

numerator and denominator in the first place, and ii) the ratio normalises for the denominator 41 

in a consistent manner for all individuals in the measurement range.2 42 

 43 

We have demonstrated recently that the typical practice in the current literature1 of including, 44 

for example, 7-day load within the 28-day load calculation can generate problems of “relating 45 

of a part to a whole” and provide biased ACWR estimates.4 In the context of the ACWR, 46 

“within-subjects” (repeated-measures) analyses are also critical to quantify the degree of any 47 

relative increase or decrease in the acute load experienced by a given player while controlling 48 

for any variation in prior chronic load in that same player.5 This is assuming that acute and 49 

chronic load are truly, non-spuriously, associated.4 Therefore, we aimed i) to scrutinise the 50 
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assumptions that underpin the ACWR,2 and ii) to compare the relative quality of twelve linear 51 

and non-linear functions for modelling the longitudinal within-subjects relationships between 52 

acute load and chronic load.5 6 53 

 54 

Artefactual ratio correlation compounded from unrelated measurements 55 

We analysed the data collected as part of a previous study, which received Institutional Ethics 56 

approval.7 A sample of English Premier League players (n=24) were monitored over thirty-57 

eight in-season weeks. General linear models were used to derive the overall within-player 58 

correlations over the multiple in-season weeks by regressing acute load (or the ACWR) on 59 

chronic load, with, participant entered as a categorical factor.8 Total distance (m) acute load 60 

was designated as the most recent 7-day period, whereas the 28-day period defining chronic 61 

load was calculated separately4 as a conventional rolling-average.9 As recommended, data 62 

collected during pre-season were not included in the chronic load calculation.9 Only data from 63 

players with four complete measurements prior to the fifth acute period were analysed.  64 

 65 

We found only a trivial within-subject correlation of −0.04 (95%CI: −0.44 to 0.37) between 66 

acute and chronic load. Second, we found a large and inverse within-subject correlation 67 

between the ACWR and its chronic load denominator; r = −0.50 (95%CI: −0.71 to −0.18). 68 

Specifically, this meant that the use of the ACWR biased a person’s status of acute total 69 

distance as too low when prior chronic total distance loads were high, and vice versa (Figure 70 

1). Such bias will naturally occur, especially in this case where the association between 71 

numerator and denominator is trivial.2  72 

 73 

Therefore, because within-person variations in prior chronic load were not influential on 74 

subsequent within-person variations in acute load,2 it is possible that the ACWR (or indeed any 75 
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normalisation approach) essentially incorporates the “noise” of an unrelated denominator to 76 

the numerator of interest. 77 

 78 

To demonstrate how a researcher should formulate and evaluate appropriate scaling models, 79 

we used the MODEL procedure in SAS OnDemand for Academics® to perform within-subject, 80 

non-linear regression analyses of untransformed acute and chronic total distance load 81 

measurements. We fitted three sets of four models assuming multiplicative, log-normal, 82 

heteroscedastic error, and additive, normal, homoscedastic or heteroscedastic error, 83 

respectively.5 6 The relative quality of each candidate model was determined using an 84 

information-theoretic approach.10 85 

 86 

Notably, all the ratio models (i.e., straight line, no intercept models) had no empirical support 87 

in this model comparison (Table 1). The allometric exponent (95%CI) describing the 88 

relationship between acute and chronic load was 0.058 (95%CI: 0.040 to 0.063) and 0.061 89 

(95%CI: 0.045 to 0.077) for the two-parameter power function with normal, homoscedastic or 90 

heteroscedastic error, respectively. These two models, alongside the straight lines, intercept, 91 

and normal homoscedastic or heteroscedastic error, were clearly more appropriate than ratio 92 

normalisation for our data (Table 1). Nevertheless, these allometric exponents were close 93 

enough to zero for us to question, again, the fundamental need to normalise acute load for 94 

chronic load using any statistical approach whatsoever in this particular dataset.2 5 6 95 

 96 

Practical implications and future directions 97 

Collectively, the results of our previous4 and present study suggest that acute load itself could 98 

be a useful predictor of injury in absolute terms, and may not necessarily require normalisation 99 

for chronic load via a ratio, or different statistical approaches (Table 1). It is, therefore, difficult 100 
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to conceive a causal pathway between changes in chronic load and changes in acute load if 101 

these variables are, in fact, not associated with each other,3 as we found in the present study.  102 

 103 

If the lack of a ‘true’ within-person association between acute and chronic load is confirmed 104 

in other, larger datasets, then formulation of the ACWR may merely add undesired “noise” to 105 

an injury prediction model. We suggest that different scaling models should be appraised 106 

carefully before the ACWR is naturally assumed to be a suitable exposure for injury risk. Until 107 

this appraisal is completed and appropriate epidemiological models are evaluated, the current 108 

use of the ACWR to identify at-risk athletes and manage them may be premature. Future 109 

research appears necessary to establish the optimal analytical approach for training load 110 

monitoring and injury prediction in everyday practice. 111 
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 159 

FIGURE LEGENDS 160 

 161 

Figure 1.     Each slope shown in the scatterplot represents the within-subject association 162 

between ACWR and chronic total distance load (m) for each participant in the present sample. 163 

 164 

 165 

 166 

TABLE LEGENDS 167 

 168 

Table 1. Within-subject statistical models fitted to untransformed acute and chronic load data 169 

over thirty-eight in-season weeks. 170 

 171 
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Figure 1. Each slope shown in the scatterplot represents the within-subject association between 179 

ACWR and chronic total distance load (m) for each participant in the present sample. 180 
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 190 

Table 1. Within-subject statistical models fitted to untransformed acute and chronic load data over thirty-eight in-season weeks 

Model AIC ∆AIC  Inference 
    
Straight line, no intercept, with lognormal heteroscedastic error 13919.56 352.96 no empirical support 

    

Three-parameter power function with lognormal, heteroscedastic error 13825.72 259.12 no empirical support 

    

Straight line, intercept, with lognormal heteroscedastic error 13823.78 257.18 no empirical support  

      

Two-parameter power function with lognormal, heteroscedastic error 13823.74 257.14 no empirical support 

    

Straight line, no intercept, with normal heteroscedastic error 13702.02 135.42 no empirical support 

    

Straight line, no intercept, with normal homoscedastic error 13696.38 129.78 no empirical support 

    

Three-parameter power function with normal, heteroscedastic error 13610.86 44.26 no empirical support 

    

Three-parameter power function with normal, homoscedastic error 13604.72 38.12 no empirical support 

      

Straight line, intercept, with normal, heteroscedastic error 13568.30 1.70 essentially equivalent 

    

Straight line, intercept, with normal, homoscedastic error 13567.62 1.02 essentially equivalent  

    

Two-parameter power function with normal, homoscedastic error 13567.60 1.00 essentially equivalent 

      

Two-parameter power function with normal, heteroscedastic error 13566.60 0 best 

AIC = Akaike’s information criterion; ∆AIC = Akaike difference. Qualitative terms for the relative difference (∆AIC) from the estimated best 
model (i.e., the model with the lowest AIC value; ∆AIC = 0) were assigned according to the following scale: 0–2, essentially equivalent;     2–
7, plausible alternative; 7–14, weak support; >14, no empirical support.10 
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