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ABSTRACT
In this work we propose regularised bi-level constraint-based
modelling to determine the fluxomic profiles for four differ-
ent influenza viruses, H7N9, H7M7, H3N2 and H5N1. We
report here the first step of the analysis of the flux data using
AutoSOME clustering where we identify novel biomarkers
of infection. This is a work in progress that can directly lead
to novel therapeutic targets.
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1 INTRODUCTION
Previous work [4] analysed transcriptomic data to identify
FDA-approved antiviral drugs that would be effective against
the H7N9 Anhui01 influenza virus. This was done by infect-
ing human bronchial epithelial cells cells with H7N9 and
comparing the transcriptomic profile of these with cells in-
fected with H3N2, H5N1 and H7N7. Four replicate samples

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IWBDA, July 31 - August 3 2018, Berkley, CA USA
© 2018 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

were taken at 3, 7, 12, and 24 hours. A control batch of un-
infected cells was also sampled at the same time. Here we
extend on this work by applying genome-scale modelling to
the transcriptomic profiles of the four strains of influenza
virus H3N2, H5N1, H7N7, H7N9 in order to determine their
metabolic phenotypes.

Standardmetabolicmodels created using FBA and constraint-
based modelling have no unique solution for the optimal flux
vector. The Cobra 3.0 toolbox [3] introduced a regularisa-
tion function so that the optimisation problem has a single
unique solution. We here adapt the regularisation function to
create a novel bi-level constraint-based model with FBA and
regularisation. To our knowledge, this is the first time this
has been reported in the literature. This modelling enables
us to predict how the distribution of flux rates within the
cell responds to infection with different influenza viruses.
The transcriptomic data from each individual virus is used
to constrain the model to generate a virus-specific meta-
bolic model for each of the H7N9, H3N2, H5N1 and H7N7
influenza strains at each of the four time points sampled.

2 METHODS
Data processing and metabolic modelling
After retrieving the transcripomic datawas fromGEO (GSE49840),
the probe data was matched to HGNC IDs. Where multiple
probes were associated with a single HGNC ID, the gene ex-
pression values were averaged. The replicate samples were
averaged to give a single transcriptomic profile for each time
point. The transcriptomic data was normalised by taking
the ratio of the influenza data to the control data to obtain
the fold change. The normalised transcriptomic profiles of
the influenza viruses were then used to create virus spe-
cific bronchial epithilel cell metabolic models. The metabolic
models were created using constraint based modelling and
flux balance analysis (FBA) of the human epithelial cell aug-
mented with transcriptomics [4] through GEMsplice [1].

Constraint-based modelling with regularisation
In FBA the cell is assumed to be in steady state, Sv = 0, where
S is a stoichiometric matrix of all known metabolic reactions
(metabolites x reactions) and v is the vector of reaction by
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flux rates. Additionally, every reaction flux is constrained
by lower- and upper- bounds (vmin and vmax). Here we con-
strain the strain-specific metabolic models generated from
the transcriptomics data with upper- and lower-bounds on
reactions set as a function of the expression level of the genes
involved in the reactions using GEMsplice [1]. We set the
primary objective as maximisation of biomass and the sec-
ondary objective as maximisation of ATP production. We
additionally apply regularisation to the secondary objective
function such that it is maximised subject to the primary
objective being maximised with a penalty term defined as
a multiple of vTv . This is achieved by adding a function
that drives minimisation of the squared flux rates. This state
reflects the most efficient metabolic network. We use the
following bi-level program with regularisation:

max дᵀv −
σ

2
vTv

such that max f ᵀv, Sv = 0,

vminφ(Θ) ≤ v ≤ vmaxφ(Θ).

(1)

The Boolean vectors f and д are weights to select the first
and second objectives respectively to be maximised from the
vectorv i.e. biomass and ATP maintenance. Vectorsvmin and
vmax represent the lower- and upper-bounds for flux rates.
The regularisation function (σ2v

Tv) requires that the sum of
the square of the fluxes be minimised for the maximisation of
the second objective to be obtained. To maintain the optimal
value of the original linear objective whilst minimising the
square of the fluxes, the σ coefficient is set to 10−6.
The vector Θ represents the set of gene expression val-

ues for the enzymes catalysing the biochemical reactions
associated with the vector of fluxes v . The upper- and lower-
bounds are constrained depending on the expression levels
of the enzymes and a rule based on the type of enzyme, single
enzyme, isozyme, or enzymatic complex, using the function
φ [2]. Simulations were performed in Matlab R2016b.

Clustering
To cross-compare the fluxomics of the four viruses, flux
distributions were clustered using AutoSOME [5], an un-
supervised SOM-based method for high-dimensional data
that uses a combination of density equalisation, minimum
spanning tree clustering and ensemble averaging strategies.
AutoSOME has the advantage that it does not require prior
knowledge of the number of clusters and is not skewed by
outliers in the data.

3 RESULTS AND CONCLUSIONS
Clustering the influenza sample subsystems according to
their flux profile using AutoSOME resulted in four clusters.
Cluster 4 shows the majority of the first three samples from
all the viruses having similar metabolic effects on the cell.

 1        2 3 4 Cluster

-156.03 138.68

Figure 1: Heatmap of AutoSOME clustering. A subset of the
subsystems is shown illustrating the main variability be-
tween the four clusters.

Cluster 1 contains a single sample, H3N2 at 24 hours, largely
based on its affect on butanoate metabolism. In cluster 3,
the avian-origin virus samples, H5N1, H7N7 and H7N9 are
grouped at 24 hours. Interestingly, while H5N1 and H7N7
show very similar fluxomic profiles, H7N9 is less distinct
from the human virus, H3N2, in cluster 1. In particular, the
fluxomic perturbations in H7N9 for alanine/aspartate metab-
olism, r-group synthesis, glyoxylate and dicarboxylatemetab-
olism, the citric acid cycle and glycolysis/gluconeogenesis are
more similar to H3N2. Cluster 2 groups the highly pathogenic
viruses H5N1 andH7N7 samples at 3 and 7 hours respectively
based on butanoate and arginine/proline metabolism. These
results identify novel biomarkers of infection, suggesting
that further analysis of the data using machine learning tech-
niques focussed on these metabolic features could contribute
to the identification of novel therapeutic targets.
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