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Abstract 

In the design and manufacturing of mechanical components, the dynamic properties of continuum 

structure are one of the most significant performances. At the same time, the uncertainty is widespread 

in these dynamic problems. This paper presents a robust topology optimization methodology of 

structure for dynamic properties with consideration of hybrid uncertain parameters. The imprecise 

probability uncertainties including materials, geometry and boundary condition are treated as an 

interval random model, in which the probability distribution parameters of random variables are 

modeled as the interval variables instead of given precise values. Two dynamic properties, including 

dynamic-compliance and eigenvalue, are chosen as the objective function. In addition, different 

excitation frequency or eigenvalue is discussed. In this work, the bi-directional evolutionary structural 

optimization (BESO) method is adopted to find the optimal robust layout of the structure. A series of 

numerical examples is presented to illustrate the optimization procedure, and the effectiveness of the 

proposed method is demonstrated clearly. 
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1. Introduction 

Topology optimization for continuum structures is one of the most general forms 

of structural optimization [1-5]. Since the late 1980s, enormous progress has been 

made in the theory, methods and applications of topology optimization [6]. On the 

basis of the topology optimization methods, the topology optimization for dynamic 

property, the one of the most important performance in designing of structure, was 

first proposed with the landmark work of Bendsøe and Kikuchi [7], and followed by a 

rapid expansion [8-14]. Diaz and Kikuchi [15] first studied the shape and topology 

optimization of structures to maximize a natural frequency using homogenization 

method. Ma et al. [13, 16] and Min et al. [17] applied the homogenization method to 

analyze the vibrating structures. Jog [18] studied the topology configuration of 

structures subjected to periodic loadings from the global and local dynamic constraints. 

Du and Olhoff [19] employed SIMP (Solid Isotropic Material with Penalization) to 

maximize the eigenvalue of higher order, or the gap between two consecutive 

Eigen-frequencies of given orders. Additionally, ESO (Evolutionary Structural 

Optimization) was employed to optimization problems with frequency constraints (Xie 

and Steven [20]) and dynamic loads (Huang et al [21]). Yan et al. [22] present a 

topology optimization method to optimize the plate structural dynamic performance. 

However, these above algorithms are usually with the assumption that the system 

parameters are deterministic, which means that the dynamic performance of the 

continuum structure considering uncertainties of system parameters is ignored. 

However, in practical engineering, the parameters of system such as material 
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properties, geometric properties, and boundary conditions might be uncertain, which 

leads to the optimization procedure cannot be perfect with just considering the 

deterministic parameters. It is worth noting that these errors and uncertainties are 

small in most cases, but coupling together can cause large deviations in the system, 

especially in dynamic problem, which is of high sensitivity. 

Generally, probabilistic method [23-26], fuzzy-set method [27-29], interval 

method [30-35], and convex model [36-38] are the main ways to deal with uncertain 

parameters in the system. However, due to the complexity of the parameters and the 

disparate availability of uncertainty, the use of a single uncertainty modeling 

technology has been unable to meet the needs of simulation in the modern 

engineering system model [39-41]. For this reason, the hybrid approach, a method 

inspired by these uncertainty analyses, is proposed [40-47]. Among these hybrid 

uncertainty methods, the interval random method is a better choice when the 

probability distribution of the uncertainty can only be acquired from limited interval 

information [48]. The interval random model was firstly proposed by Elishakoff et al. 

[49, 50], and subsequently applied to the structural response analysis [51] and the 

structural reliability analysis [52-54]. 

In order to solve the problem of uncertainty, two structural optimization methods 

are adopted. One approach considers the possibility of structural failure and evaluates 

its performance through a so-called reliability index, which is known as 

reliability-based design optimization [55, 56]; the other one is to find an optimal 

design that minimizes the effect of uncertain variables on the performance so that the 
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design can be applied to all conditions. This method is called the robust design 

optimization [57, 58], which is considered in this paper. In the topology optimization, 

the robust design optimization can be extended to the robust topology optimization 

(RTO), and several algorithms have been proposed to handle uncertainties in topology 

optimization. Ben-Tal and Nemirovski [59] proposed a method based on semi-definite 

programming for robust truss topology optimization accounting for uncertain load 

conditions. Lógó et al. [60, 61] presented RTO algorithms using a first-order 

approximation for compliance in the presence of uncertainty in applied loads. Chen et 

al. [62, 63] studied a level-set based robust shape and topology optimization under 

random loading, material properties and geometrical uncertainties. Asadpoure et al. 

[64] proposed a method for robust structural topology optimization in the second 

order statistics uncertainties. Dunning et al. [65] formulated a robust topology 

optimization method that considered simultaneous minimization of expectancy and 

variance of compliance under uncertainty in loading magnitude. Schevenels et al. [66] 

focused on a robust topology optimization approach accounting for spatially varying 

manufacturing errors for the design of macro-, micro- or nano- structures. Zhao et al. 

[67] presented a convex modeling based topology optimization with load uncertainty. 

Chen et al. [68] carried out a robust topology optimization of structures with interval 

random parameters for static performance. 

From the overall perspective, research on the dynamic property based on topology 

optimization considering the hybrid interval random variables, still has not been 

studied systematically and some important issues are still unsolved. Firstly, the 
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dynamic property with uncertain parameters is an intricate target [69], which means 

that the performance of the system under various dynamic frequencies needs to be 

taken into account. Secondly, the eigenvalues of structure with uncertainty parameters, 

which is of great importance in many engineering fields, e.g. aerospace and 

automotive industries [20], should be considered. Finally, the optimization of dynamic 

performance is characterized by a high sensitivity that leads to some difficulties in the 

numerical processing. It is necessary to propose a numerical solution for dynamic 

performance topology optimization to overcome the high sensitivity of the dynamic 

problem. In short, it is necessary to develop an efficient, robust and accurate algorithm 

for the structural dynamic topology optimization with hybrid uncertainties. 

In this paper, the hybrid interval random model is proposed to deal with the 

uncertainties in topology optimization for dynamic performance by using 

bi-directional evolutionary structural optimization (BESO) method. The 

dynamic-compliance and eigenvalues are the two optimization objectives of dynamic 

performance. This paper is outlined as follows: Section 2 illustrates the interval 

random variables and presents the numerical perturbation analysis model considering 

the interval random variables. Section 3 develops topology optimization formulations 

and sensitivity analysis for dynamic property. Section 4 elaborates the algorithm of 

RTO for dynamic property with interval random uncertainties. Section 5 describes the 

numerical implementation of the proposed BESO procedure for the topology 

optimization of structure of dynamic property with hybrid uncertainty parameters. 

Three numerical examples are presented in Section 6; and the final conclusions are 
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made in Section 7.  

2. Interval random parameter model 

2.1 Definition of interval random variable 

Two main steps are required to model the interval random parameters. First, a 

random distribution is used to describe the uncertainty for each uncertain parameter. 

Second, the probability distribution parameters are given by the intervals rather than 

the deterministic values, which are difficult to acquire from the limited information 

[49, 50]. The interval random variables are represented to describe the existing 

uncertainties in material properties, geometric properties and boundary conditions. 

Let r(i) be the parameter vector of interval random variables, and i be the interval 

vector of every random parameter [48, 70, 71]. To implement the first step, r(i) can be 

describe as Eq. (1): 

 ( ) = ( ( ), ( ),......, ( ),......),     =1,2,......,1 2 z 1r r r z Jr i i i i  (1) 

where rz(i) represents the zth interval random parameter with an interval parameter iy, 

and z denotes the identifier of the random parameters. J1 represents the number of 

random parameters. In this paper, the random parameter rz(i) is assumed to obey the 

normal distribution. The interval vector i can be expressed as follows: 

 2= [ , ,......, ,......],     =1,2,......,1 y 2i i i y Ji  (2) 

in which iy denotes the yth interval parameter. The symbol y denotes the identifier of 

the interval parameters. J2 represents the number of the interval parameters. For every 

number of interval parameters (1 to J2), iy can be expressed as 
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where yi and yi  denote the lower and upper bounds of interval parameter yi ; 
m

yi  

represents the mean value of yi , which can be calculated by averaging the lower and 

upper bounds value; 
I

yi  denotes the uncertainty of the interval vector yi , it can be 

obtained by averaging the difference of the lower and upper bounds value. 

The expectation ( ) r i  and variance ( )  r i  of the interval random vector can 

be expressed as 

 ( ) ( ( ), ( ),......, ( ))
11 2 Jr r r   r i i i i  

(4) 

 ( ) ( ( ), ( ),......, ( ))
11 2 Jr r r    r i i i i  

2.2 Perturbation analysis with interval random parameters  

To analyze the perturbation caused by the interval random parameters, the 

interval variables i of the interval random parameters r(i) can be first regarded as 

deterministic. In this case, the first-order Taylor expansion of the interval random 

parameter R(r(i)) at the expectation of the interval random parameter r(i) can be 

expressed as 

       
   

      1z z

z z

r r R
r


 


   




R r i
R r i R r i i r i  (5) 

As the variation of parameter is relatively small to itself, the error of the 

first-order Taylor expansion  1R r in Eq. (5) can be ignored. It is obvious that, in Eq. 

(5), the interval random parameter R(r(i)) is divided into two parts: the first part of Eq. 
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(5) represents the expectation E(R), and the second part denotes the standard variance 

SD(R). E(R) and SD(R) are stated as 

      E R R r i  (6) 

  
   

  

2

SD z

z z

r
r

r




 
 
 
 


R i

R i  (7) 

Note that the interval variables in Eqs. (6) and (7) are regarded as deterministic. 

Considering the interval variables, the first-order Taylor expansion is adopted again at 

the mean value of the interval vector i. Eqs. (6) and (7) can be transformed to Eqs. (8) 

and (9), respectively: 
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(9) 

when the variation of parameter is relatively small to itself, the error of the first-order 

Taylor expansion  1R r  in Eqs. (8) and (9) can be ignored. 0R , 1,zR , 2,zR  and 

3,zyR  can be expressed by the following equation: 

    m

0 R R r i  (10) 
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3. Topology optimization for dynamic performance 

In the design of structural dynamic performance, reducing the dynamic responses 

and raising the eigenvalues of structure are often considered. In this section, the above 

two dynamic performance-based topological optimization equations and sensitivity 

analysis are introduced. First of all, an alternative material interpolation scheme is 

presented. 

3.1 An alternative material interpolation scheme 

To obtain the gradient information of the design variable, a material interpolation 

scheme proposed by SIMP method [72] is usually adopted. However, such a scheme 

would result in numerical difficulties [73], which means, in dynamic problems, the 

high ratio between mass matrix and stiffness matrix could cause artificial localized 

vibration modals in low density regions. One effective method [19] to deal with this 

problem is to keep the ratio between mass and stiffness constant when xe=xmin by 

 min min( )x x    

(14) 

 min min( )E x x E  

where ρ0 and E0 denote the density and Young’s modulus of the solid materials, 

respectively. Therefore, an alternative material interpolation scheme can be expressed 
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as: 

 ( )e ex x    

(15) 

  min min
min

min

( ) 1    (0< 1)
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p
p p

e e e ep

x x
E x x x E x x
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     

 
 

ex





K
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ex





M
 can be directly obtained from Eq. (15) as 

 
0

e
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

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M
M  

(16) 

 
1 0min
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1

1

p

e ep

e

x
px

x x




 

K
K  

where 
0

eM  and 
0

eK  are mass and stiffness matrices of element e when it is solid 

[74]. 

3.2 Dynamic-compliance topology optimization 

It is generally desirable to minimize the overall response level of the structure in 

the design of the vibration and noise reduction, and the specific target values can be 

chosen differently. One of them is to optimize the steady-state response amplitude [12, 

75].Another common approach is to introduce a concept which is widely used in static 

condition, the compliance, to dynamic field [20, 76-78], which is described below. 

Problem statement 

The dynamic-compliance optimization problem under dynamic external 

excitation can be expressed [79] as follows: 

 
T T

, 1,...,
min  

e E
d d

e N
C

 
 F U U K U  (17) 

 Subject to:
2( )d p  K U K M U F  (18) 
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* 0,   ( * ),
EN

e e

e

x V V V V


    (19) 

 where : or  1      ( 1,..., ).e min Ex x e N ，  (20) 

where Cd denotes the dynamic-compliance, Uimplies the displacement amplitude 

vector of the steady-state response, 
2

d p K K M is defined as the dynamic stiffness 

matrix, where U and Kd can be acquired by Eq. (18) that shows the steady-state 

response formulation of the structure. F expresses the load vector of the external 

loading. The external loading vector f (t) with the given excitation frequency ωp can be 

expressed as f(t)=F 𝑒𝑗𝜔𝑡 and the displacement response can be treated as 

u(t)=U𝑒𝑗𝜔𝑡.The symbols K and M in Eq. (18) represent the global structural stiffness 

and mass matrices, respectively. The symbol xe in Eq. (19) is the design variable 

corresponding to element e. The parameter α in Eq. (19) shows the volume fraction of 

the available material, which is given by V*/V0. V0 is the volume of the design domain 

and V*shows the desirable volume which is predefined. In Eq. (20), xe=xmin and 

xe=1denote the void elements and solid elements. To avoid the singularity of the 

global dynamic stiffness matrix, a small value, e.g. 0.001, is used. The symbol NE 

represents the total number of finite elements. 

Sensitivity analysis 

The sensitivity of the objective function dObj C  in Eq. (17) with respect to 

the design variables xe is given by 

  
T

Td

e e e

C

x x x

  
 

  

F U
U F  (21) 

where 

T

ex





F
 denotes the sensitivity of external excitation respect to the design 
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variable xe, and the =0
T

ex





F
 holds when the external excitation is independent of the 

design variable xe. Otherwise it can be handled using the method described by 

Hammer and Olhoff [80, 81]. 
ex





U
means the derivative of amplitude of steady state 

response, and it is given by 

 
2 2( ) ( )p p

e e e e

f
x x x x

 
   

    
   

U F K M
K M U  (22) 

where the vector 
2( )p

e e e

f
x x x


  

  
  

F K M
U  is known as the pseudo load. To solve 

Eq.(21), the adjoint method[82] is adopted. In bi-directional evolutionary structural 

optimization (BESO) method [19], as xmin tends to 0 (and p>1),the sensitivity number 

αe for the eth element can be expressed by 

 

T 0 2 0

T 2 0

min

2 ( )      when 1

2 ( )                  when 

T e
e e e p e e

ed
e

T ee
e e p e e

e

p x
xC

x
x x

x








    

  
   

 

F
U U K M U

F
U U M U

 (23) 

where Ue denotes the displacement response amplitude of element e. 

When the external load F is independent of the design variable xe, Eq. (23) can 

be simplified as 

 

T 0 2 0

T 2 0

min

( )      when 1

( )                    when 

e e p e ed
e

e e p e e

p xC

x x x






   
  
 

U K M U

U M U
 (24) 

Dynamic optimization under multi-frequency (frequency band) excitation 

While the value of the external excitation of the structure is in a frequency range, 

such as [ω1, ω2], a multi-frequency optimization problem is need to be considered. 
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The commonly used method is to take the sub-objective function at each frequency or 

to separate the frequency band into discrete multiple sub-objective functions, and then 

we consider a weighted sum of the form as a new objective function to optimize, 

which can be described as follows 

 
1

( ) ( )ck d



  



    (25) 

where ( )ck   denotes the weight coefficient of objective frequency ω, ( )  

represents the objective function corresponding to frequency ω, and   represents 

the objective function of multi-frequency optimization. Similarly, in the 

multi-objective optimization problem, the sensitivity of multi-frequency optimization 

can be expressed as 

 
1

( ) ( )dk d



  



    (26) 

 ( ) ( ) ( )d c sk k k    (27) 

where ( ) implies the sensitivity corresponding to frequency ω, and   represents 

the sensitivity of multi-frequency optimization. ( )dk   is the weight coefficient of 

objective frequency ω, which is expressed in Eq. (27). ( )sk   represents the 

sensitivity coefficient, which is used to correct the value of the sub-sensitivity of ω. If 

the first sensitivity coefficient is defined as a constant, the sensitivity coefficient of 

the ith frequency can be computed as follows: 

 

1

1
1

1

( )

( ) ( )     

( )

E

E

N

e

e
s i s EN

e i

e

k k e= 1,2,......,N



 
















 (28) 

https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E7%9F%AB%E6%AD%A3%E7%B3%BB%E6%95%B0
https://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.1.4320&q=%E7%9F%AB%E6%AD%A3%E7%B3%BB%E6%95%B0
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3.3 Eigenvalue topology optimization 

As the linear elastic structure of forced vibration, when the external frequencies 

are close to the eigenvalue of the structure, the dramatic amplification of the structural 

amplitude will appear. This is the occurrence of the so-called resonance phenomenon. 

Avoidance of resonance is one of the important objectives of structural dynamic 

performance design, which can be achieved by keeping the eigen-frequency of the 

structure away from the frequency of the external excitation. For structural 

optimization design, it is a feasible idea to change the eigenvalue of the structure by 

optimizing the mass and stiffness of the structure. In the topology optimization, this 

idea has been developed for structural eigenvalue optimization [9, 20, 73]. This 

method is presented below. 

Problem statement 

For a solid-void design, the eigenvalue optimization can be stated as 

 
, 1,...,
max   

e E

obj
e N




 (29) 

 Subject to: ( ) 0obj obj K M φ  (30) 

 
0

1

* 0,   ( * ),
EN

e e

e

x V V V V


    (31) 

 where : or  1      ( 1,..., ).e min Ex x e N ，  (32) 

where K is the global stiffness matrix, M is the global mass matrix. obj  denotes the 

objective eigenvalue of the structure and objφ  represents the eigenvector 

corresponding to eigenvalue obj . obj  and objφ  are related to each other with the 

following Rayleigh quotient: 
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T

obj obj

obj T

obj obj

 
φ Kφ

φ Mφ
 (33) 

Sensitivity analysis 

From Eq. (33), the sensitivity of the objective function obj  can be expressed as 

 obj T

obj obj obj

e e ex x x




   
  

   

K M
φ φ  (34) 

ex





K
 and 

ex





M
 can be directly obtained from Eq. (16). The sensitivity number for 

solid and soft elements can be expressed as 

When xmin tends to 0 (and p>1), the sensitivity numbers can be simplified as 

4. Robust dynamic property optimization under uncertainty 

4.1 Dynamic-compliance topology optimization formulation 

The robust topology optimization model for minimizing the maximum 

dynamic-compliance under uncertainties can be derived from Eqs. (17) - (20) as 

follows: 
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e e
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x V V V V
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 where :  or 1      ( 1,..., ).e min Ex x e N ，  

where κ is a predefined parameter. Combined with Eqs. (8) and (9), the maximum 

values of expectation E(Cd)max and standard variance SD(Cd)max are given as follows: 

When the structures are under the external dynamic excitation, the equilibrium 

equation can be written as 

         d K r i U r i F r i  (40) 

where   dK r i ,   U r i and   F r i  represent the so-called dynamic-stiffness matrix, 

displacement vector and external dynamic load vector with interval random 

parameters, respectively. Substituting μ(r(im)) into Eq. (40), we can obtain 

            m m m

d   K r i U r i F r i  (41) 

To solve Eqs. (10) -(13), combined with Eq.(41), the displacement vector U and 

the derivative of U with respect to the related interval random variables can be 

expressed as 
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4.2 Sensitivity of dynamic-compliance robust optimization 

The sensitivity of dynamic-compliance robust optimization can be expressed as 
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where 0
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In Eq. (49) and Eq. (51), the terms 1,

T

x

ex

F U
and

3,

T

zy

ex





F U
are caused by the 
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uncertainties of the boundary conditions and material properties, respectively. 

4.3 Eigenvalue topology optimization formulation 

The robust eigenvalue optimization model aimed to maximize the minimum 

value of the target mode can be expressed as follows: 

 min
, 1,...,
max :  

e E

obj
e N




 

(52) 

 Subject to: min min maxE( ) SD( )obj obj obj      
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 where : or  1      ( 1,..., ).e min Ex x e N ，  

Considering the interval random parameters, minE( )obj  and maxSD( )obj  of 

the objective function can be expressed as 
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(54) 

Combined with Eq.(33), 0obj 、 1,obj z 、 2,zobj 、 3,obj zy  can be obtained as 
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4.4 Sensitivity of eigenvalue 

The sensitivity of robust eigenvalue optimization can be expressed as: 
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Combining with Eq.(34), 
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5. Numerical implementation 

5.1 Filter scheme 

The filter schemes have been used by finite element method based topology 

optimization methods in order to avoid numerical instabilities [83, 84]. A spatial 

linear filter is used in this work to smooth the sensitivity numbers to prevent checker 

boards and mesh-dependence. The filtering procedure starts with distributing the 

elemental sensitivity numbers to the mesh nodes according to their nodal connectivity, 

which is expressed as follows 
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 (65) 

where K denotes the total number of nodes in sub-domain Ωi. The sub-domain Ωi is 

generated by drawing a circle of radius minr , which is the center of the ith element.

ijr represents the distance between the center of element i and element j. j is the 

sensitivity number of element j. ( )ijw r  is the linear weight factor defined as 
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 (66) 

5.2 Sensitivity history 

A history-averaging of the sensitivities is used to help stabilize the optimization 

process [52, 53]. The smoothed sensitivity number from Eq. (24) and (36) is averaged 

here with their value of the previous iteration. 
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where k represents the number of current iteration. 

5.3 Convergence criterion 

Once the predefined final volume is achieved, the optimization procedure 

continues until the objective function converges. The convergence check is expressed 

as follows: 
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 (68) 

where Ck represents the objective function value in the kth iteration. N is usually set to 

5, which means that the change of the objective function in the last 10 iterations is 

small enough.   represents the tolerance of change.    

5.4 Summary of the numerical implementation 

The main step of the proposed robust topology optimization for dynamic 

problems with the interval random variables is given in Fig.1. 
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Fig.1 Main step of the solution algorithm 

6. Numerical examples 

In this section, three examples are presented. The first two examples are the 

robust dynamic-compliance optimization cases, and the last example is a robust 

eigenvalue optimization problem. It is assumed for all cases that the base 

deterministic material has Young’s modulus E=210GPa, Poisson’s ratio v=0.3 and 

density ρ=7900g/cm3. And the design variable x=1mm or 0.01mm. The Young’s 

modulus, density and Poisson’s ratio of material, the design variable and the angle of 

external excitation are assumed to be interval random variables and the random 

parameters follow the normal distribution. The intervals of the expectation and 
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standard variance of the uncertain parameters are given below: 

 ( ) = [189,231]GPa  , ( ) =[18.9,23.1]GPaI IE E   

(69) 

 [0.285,0.315] , [0.01425,0.01575]I Iv v        

 
3 3[7505,8205]g/ cm  , [750.5,820.5]g/ cmI I          

 [0.95,1.05]mm , [0.0475,0.0525]mmI Ix x        

 [0 ,3 ] , [0.27 ,0.33 ]I I          

Where μ and σ stand for the expectation and standard variance, respectively, and E, ν, 

ρ, x, θ denote the Young’s modulus, Poisson’s ratio, density, the design variable and 

the angle of external excitation, respectively. The value of the predefined coefficient κ 

is set to 1 in the numerical examples of this section. 

Four-node quadrilateral elements are used. Several dynamic work conditions 

under hybrid interval random uncertain are discussed. In the BESO method, the 

evolutionary ratio is set to 2%, and the filter radius is 20mm. The penalty exponent 

p=3.0 is used in calculating the sensitivity numbers. 

6.1 Dynamic-compliance optimization with independent uncertainty in cantilever 

beam 

The first example considers the dynamic-compliance topology optimization with 

interval random uncertainties of material properties, geometrical properties and 

boundary conditions in a long cantilever. These variables represent three main 

uncertainties in real engineering [85].  
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The design domain, boundary conditions and external load of the cantilever are 

shown in Fig.2. The left end of the cantilever is fixed, and an external excitation with 

frequency is loaded on the middle of the right end which is marked as P. The 

excitation on y direction is deterministic, and it is interval random variable on x 

direction which can be described as tanx yF F   , where the symbol ‘-’ contributes 

the direction. Due to the presence of the parameters defined before, the structural 

dynamic-compliance of the cantilever is an interval random parameter, which can be 

carried out with Eqs. (38) and (39), and the topology design can be formulated with 

the iteration of the sensitivity of dynamic-compliance. The design variable xi is set to 

be either 1 or xmin=0.001 in this example and the volume fraction V* is set to 50% 

Fig.3 shows the dynamic-compliance topology design results for the cantilever 

under different external excitation frequency carried out by RTO with interval random 

parameters. Fig. 3(a-c), Fig. 3(d-f) and Fig. 3(g-i) present the optimal design under 

material, geometrical and boundary uncertainties, respectively. For the purpose of 

comparison, Fig. 3 (j-l) is employed to show the optimal topology design under 

deterministic parameters. 

 

θ 

x

y

900mmL 

300mmD 

1yF N 

tanxF Fy  
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Fig. 2. Design domain of a cantilever beam 
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Fig.3 Optimal topology design under various uncertainties 

It can be observed that, in Fig.3 (a-c), the optimal designs of the structure under 

material uncertainties are much different from the deterministic results. In addition, 

the optimal structures are various at different frequencies under the interval random 

uncertainties. Fig.3 (d-f) shows the optimal topology design considering geometrical 

uncertainties. In this condition, the optimal design is more similar to the deterministic 

design, because the perturbation of thickness is tiny and the contribution for the 

dynamic property is less than the material uncertainties do in the SIMP material 

model. Fig.3 (g-i) presents the results of robust topology optimization under boundary 

condition uncertainties (loading angle) in this example. The uncertain force of 

x-direction leads to the variation of the optimal design and as the changing of external 
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loading frequency, the different topology design results presented. The numerical 

results presented in this section has clearly indicated that the topology optimization of 

structure for dynamic properties considering the interval random uncertainties is 

extremely different from that in static case. In addition, the uncertainty from different 

factors is crucial to determine the final layout of optimized structure. 

 

Fig. 4 Topology optimization result with frequency band excitation (10-350Hz)under interval random 

uncertainties of material 

 

Fig. 5 Frequency response comparison between the initial and final optimized design on point P 

considering interval random uncertainties of material 

Fig. 4 shows the layout after the optimal topology design of the 

dynamic-compliance under frequency band excitations with interval random material 

uncertainty. The frequency band of external excitation is loaded from 10Hz to 350Hz. 
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That means the optimal topology design is considered as a multi-objective 

optimization problem. In such complex conditions, the optimal topology design 

presents a completely different form. 

Fig. 5 compares the frequency response curve of point P from 10Hz to 350Hz 

between the optimized and original structures. The full line and dashed line represent 

the frequency response of optimal design and original design, respectively. From this 

Figure, it can be seen that when the initial design is under an external load with 

frequency from 200 Hz to 350 Hz, the response at point P in the structure reaches a peak, 

which is inadvisable for structural dynamic performance. By adopting the RTO method 

for dynamic compliance under multi-frequency excitation from 10Hz to 350Hz, it is 

found that the frequency response of the optimized structure shows a better dynamic 

performance. In addition, it is noticed that the response peak from 200 Hz to 350 Hz 

also disappears, which means that the structure is not under the severe vibration at the 

target frequency. In summary, the efficient algorithm developed in this work provides 

an excellent tool to optimize the structure and avoid the occurrence of resonance in the 

frequency band. This is extremely important in the design of continuum structure under 

the dynamic circumstances. 

 

Fig.6 Topology design with a frequency band (10-200Hz) under interval random variables of geometry.  
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Fig. 6 shows the optimal robust topology design under geometrical uncertainties 

with a frequency band (10-200Hz). It can be seen that even if the structure is under 

the influence of geometrical uncertainties which have low sensitivity, the final optimal 

topology design results are still different. This indicates that the dynamic problem has 

the characteristics of high sensitivity.  

Fig. 7 presents the optimized dynamic-compliance topology design considering 

an interval random loading angle with a frequency band (10-210Hz), which is  

different from the optimal design considering a single frequency. Because of the 

interval random load forced at x-direction, the dynamic-compliance becomes different. 

Considering the fact that there are a lot of loading frequencies in the practical 

condition, the powerful optimization model established in this paper can be 

effectively applied to the complicated engineering problems. 

 

Fig.7A new topology design with a frequency band (10-210Hz) excitation under interval random 

loading angle uncertainties 
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6.2 Dynamic-compliance optimization with simultaneous uncertainty in a 

clamped-clamped beam 
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Fig.8Illustration of a clamped-clamped beam 

Fig.8 depicts a clamped-clamped beam of dimensions1200mm  200mm . The 

design domain is discretized with 120  20  four node quadrilateral element. The 

design variable xi is set to be either 1 or xmin=0.001 in this example and the volume 

fraction V* is set to 50%. The basic parameters of the material are the same as the 

previously described one, and these parameters are also uncertain.  

 Uncertain results Deterministic results 

50Hz 
 

(a) 

 

(e) 

100Hz  

(b) 

 

(f) 

200Hz  

(c) 

 

(g) 

300Hz 
 

(d) 

 

(h) 

Fig.9 Topology optimization with simultaneous interval random parameters. 
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Fig. 10 Evolution history of the robust dynamic-compliance topology optimization (frequency is 50Hz) 

Fig.9 shows the topology optimization results with interval random uncertainties 

of material, geometrical and boundary condition, simultaneously for different 

frequency, and a typical evolution history (frequency is 50Hz), is shown in Fig. 10. 

For the purpose of comparison, the optimization results of the deterministic design are 

also shown in this figure. As outlined in Fig. 9, there is an obvious difference between 

the deterministic topology designs and the uncertain topology designs considering the 

interval random variables. It is well known that the simultaneous uncertainties from 

manufacturing, measurement and installation are unavoidable in real engineering 

problems. Therefore, it is very necessary to carry on the topology optimization for 

dynamic properties of structure with uncertain effects. The proposed algorithm 

developed in this work provides a powerful tool to improve the design of structure 

with the uncertainty. 
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6.3 Topology optimization of eigenvalue with material and geometrical uncertainties 

In this example, the robust objective is to maximize the first bending natural 

eigenvalue of a beam-like 2D structure with simply supported ends shown in Fig. (11) 

for a prescribed volume fraction V*=50% of the design domain and the design 

variable xi is set to be either 1 or xmin=10-6 in this example [19]. The rectangular 

design domain of 1600mm×200mm is divided into 160×20 four node quadrilateral 

element. The material parameters are defined in Eq. (69).  

 

(a) material and geometrical uncertainty 

 

(b)material uncertainty 

 

(b)geometrical uncertainty 

 

x

y

1.6mL 
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Fig.11：Design domain of a simply supported beam 
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(d) deterministic model 

Fig. 12 Results of first bending modal frequency topology optimization 

Fig. 12 (a) shows the topology optimization results for the 1st order of eigenvalue 

under simultaneous effects with material and geometrical uncertainty. In order to 

illustrate the individual effect of uncertainty factors, the optimized layouts for the 1st 

order of eigenvalue are outlined in Figs. 12 (b) and (c) with material and geometrical 

uncertainty, respectively. The results of the deterministic topology optimization are 

shown in Fig. 12 (d) for comparison. It can be clearly observed from Fig. 12 that the 

uncertainties from material properties and geometry play a very important role to 

determine the final layouts. The slight variance of material properties and geometry 

may result in an obvious difference between the deterministic and uncertainty design. 

The efficient algorithm of dynamic topology optimization with consideration of 

uncertainty developed in this work has been demonstrated again by this example. 

7. Conclusions 

This paper deals with robust topology optimization (RTO) for dynamic 

properties considering hybrid uncertain parameters. The material, geometrical and 

boundary uncertainty are modeled with the interval random model. Two typical 

dynamic properties, including the frequency response and eigenvalue, of the 

continuum structure are chosen as the objective function. The expressions of the 

dynamic-compliance of frequency response and eigenvalue with interval random 
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uncertainty and its sensitivities are derived. 

With consideration of the hybrid interval random parameter, two numerical 

examples are presented to compare the robust dynamic-compliance topology 

optimization with deterministic topology optimization and there are great differences 

between the robust results with hybrid interval random uncertainty and deterministic 

parameters. Additionally, the dynamic-compliance topology design considering a 

frequency band excitation is also presented. It can be seen that the robust 

dynamic-compliance topology optimization method would reduce the frequency 

response of the structure efficiently, which is significant in practical engineering. And 

another numerical example is shown to present the robust eigenvalue topology 

optimization with hybrid interval random parameters. The examples distinctly show 

that the uncertainties of material, geometry and boundary condition have a 

considerable effect on the optimal topology design. This robust topology optimization 

method is very effective to design the structure under dynamic circumstances with 

hybrid interval random uncertainties. Furthermore, the efficient algorithm established 

in this work can be easily extended to multi-physics domains. 
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